

The
Complete
Reference™

Java

Eighth Edition

®

About the Author
Herbert Schildt is a leading authority on the Java, C++, C, and C# languages.

His programming books have sold millions of copies worldwide and have been

translated into all major foreign languages. He is the author of numerous

books on Java, including Java: A Beginner’s Guide, Herb Schildt’s Java Programming
Cookbook, Swing: A Beginner’s Guide, and The Art of Java. Among his other

bestsellers are C++: The Complete Reference™, C#: The Complete Reference™, and

C: The Complete Reference™. Although interested in all facets of computing, his

primary focus is computer languages, including compilers, interpreters, and

robotic control languages. He also has an active interest in the standardization

of languages. Schildt holds both graduate and undergraduate degrees from

the University of Illinois. He can be reached at his consulting office at (217)

586-4683. His web site is www.HerbSchildt.com.

About the Technical Editor

Dr. Danny Coward has been a contributor to the Java Platforms since 1997. He

was a founding member of the Java EE group while at Sun. He has served as a

member of the Java Community Process Executive Committee and has been a

leading contributor to all editions of the Java Platform—Java SE, Java ME, and

Java EE—and established the original JavaFX team.

www.HerbSchildt.com

Th e
Complete
Reference™

Herbert Schildt

New York Chicago San Francisco
 Lisbon London Madrid Mexico City

 Milan New Delhi San Juan
 Seoul Singapore Sydney Toronto

Java

Eighth Edition

®

Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database
or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-160631-8

MHID: 0-07-160631-9

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-160630-1,
MHID: 0-07-160630-0.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Trademarks: McGraw-Hill, the McGraw-Hill Publishing logo, Complete Reference™, and related trade dress are trademarks or
registered trademarks of The McGraw-Hill Companies and/or its affi liates in the United States and other countries and may not be used
without written permission. All other trademarks are the property of their respective owners. The McGraw-Hill Companies is not
associated with any product or vendor mentioned in this book.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of
any information included in this work and is not responsible for any errors or omissions or the results obtained from the use of such
information.
 Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any
information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use
the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may
be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special,
punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised
of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause
arises in contract, tort or otherwise.

If there are other Oracle users at

your location who would like to

receive their own subscription to

Oracle Magazine, please photo-

copy this form and pass it along.

Three easy ways to subscribe:

Web
 oracle.com/oraclemagazine

Fax

+1.847.763.9638

Mail

 P.O. Box 1263, Skokie, IL 60076-8263

1

2

3

FREE SUBSCRIPTIONGET
Y O U R

TO ORACLE MAGAZINE
Oracle Magazine is essential gear for today’s information technology professionals.

Stay informed and increase your productivity with every issue of Oracle Magazine.

Inside each free bimonthly issue you’ll get:

Copyright © 2008, Oracle and/or its affiliates. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

WHAT IS THE PRIMARY BUSINESS ACTIVITY
OF YOUR FIRM AT THIS LOCATION? (check
one only)

o 01 Aerospace and Defense Manufacturing
o 02 Application Service Provider
o 03 Automotive Manufacturing
o 04 Chemicals
o 05 Media and Entertainment
o 06 Construction/Engineering
o 07 Consumer Sector/Consumer Packaged

Goods
o 08 Education
o 09 Financial Services/Insurance
o 10 Health Care
o 11 High Technology Manufacturing, OEM
o 12 Industrial Manufacturing
o 13 Independent Software Vendor
o 14 Life Sciences (biotech, pharmaceuticals)
o 15 Natural Resources
o 16 Oil and Gas
o 17 Professional Services
o 18 Public Sector (government)
o 19 Research
o 20 Retail/Wholesale/Distribution
o 21 Systems Integrator, VAR/VAD
o 22 Telecommunications
o 23 Travel and Transportation
o 24 Utilities (electric, gas, sanitation, water)
o 98 Other Business and Services _________

WHICH OF THE FOLLOWING BEST DESCRIBES
YOUR PRIMARY JOB FUNCTION?
(check one only)

CORPORATE MANAGEMENT/STAFF
o 01 Executive Management (President, Chair,

CEO, CFO, Owner, Partner, Principal)
o 02 Finance/Administrative Management

(VP/Director/ Manager/Controller,
Purchasing, Administration)

o 03 Sales/Marketing Management
(VP/Director/Manager)

o 04 Computer Systems/Operations
Management
(CIO/VP/Director/Manager MIS/IS/IT, Ops)

IS/IT STAFF
o 05 Application Development/Programming

Management
o 06 Application Development/Programming

Staff
o 07 Consulting
o 08 DBA/Systems Administrator
o 09 Education/Training
o 10 Technical Support Director/Manager
o 11 Other Technical Management/Staff
o 98 Other

WHAT IS YOUR CURRENT PRIMARY OPERATING
PLATFORM (check all that apply)

o 01 Digital Equipment Corp UNIX/VAX/VMS
o 02 HP UNIX
o 03 IBM AIX
o 04 IBM UNIX
o 05 Linux (Red Hat)
o 06 Linux (SUSE)
o 07 Linux (Oracle Enterprise)
o 08 Linux (other)
o 09 Macintosh
o 10 MVS
o 11 Netware
o 12 Network Computing
o 13 SCO UNIX
o 14 Sun Solaris/SunOS
o 15 Windows
o 16 Other UNIX
o 98 Other
99 o None of the Above

DO YOU EVALUATE, SPECIFY, RECOMMEND,
OR AUTHORIZE THE PURCHASE OF ANY OF
THE FOLLOWING? (check all that apply)

o 01 Hardware
o 02 Business Applicat ions (ERP, CRM, etc.)
o 03 Applicat ion Development Tools
o 04 Database Products
o 05 Internet or Int ranet Products
o 06 Other Sof tware
o 07 Middleware Products
99 o None of the Above

IN YOUR JOB, DO YOU USE OR PLAN TO PUR-
CHASE ANY OF THE FOLLOWING PRODUCTS?
(check all that apply)

SOFTWARE
o 01 CAD/CAE/CAM
o 02 Collaboration Software
o 03 Communications
o 04 Database Management
o 05 File Management
o 06 Finance
o 07 Java
o 08 Multimedia Authoring
o 09 Networking
o 10 Programming
o 11 Project Management
o 12 Scientific and Engineering
o 13 Systems Management
o 14 Workflow

HARDWARE
o 15 Macintosh
o 16 Mainframe
o 17 Massively Parallel Processing

o 18 Minicomputer
o 19 Intel x86(32)
o 20 Intel x86(64)
o 21 Network Computer
o 22 Symmetric Multiprocessing
o 23 Workstation Services

SERVICES
o 24 Consulting
o 25 Education/Training
o 26 Maintenance
o 27 Online Database
o 28 Support
o 29 Technology-Based Training
o 30 Other
99 o None of the Above

WHAT IS YOUR COMPANY’S SIZE?
(check one only)

o 01 More than 25,000 Employees
o 02 10,001 to 25,000 Employees
o 03 5,001 to 10,000 Employees
o 04 1,001 to 5,000 Employees
o 05 101 to 1,000 Employees
o 06 Fewer than 100 Employees

DURING THE NEXT 12 MONTHS, HOW MUCH
DO YOU ANTICIPATE YOUR ORGANIZATION
WILL SPEND ON COMPUTER HARDWARE,
SOFTWARE, PERIPHERALS, AND SERVICES FOR
YOUR LOCATION? (check one only)

o 01 Less than $10,000
o 02 $10,000 to $49,999
o 03 $50,000 to $99,999
o 04 $100,000 to $499,999
o 05 $500,000 to $999,999
o 06 $1,000,000 and Over

WHAT IS YOUR COMPANY’S YEARLY SALES
REVENUE? (check one only)

o 01 $500, 000, 000 and above
o 02 $100, 000, 000 to $500, 000, 000
o 03 $50, 000, 000 to $100, 000, 000
o 04 $5, 000, 000 to $50, 000, 000
o 05 $1, 000, 000 to $5, 000, 000

WHAT LANGUAGES AND FRAMEWORKS DO
YOU USE? (check all that apply)

o 01 Ajax o 13 Python
o 02 C o 14 Ruby/Rails
o 03 C++ o 15 Spring
o 04 C# o 16 Struts

o 05 Hibernate o 17 SQL
o 06 J++/J# o 18 Visual Basic
o 07 Java o 98 Other
o 08 JSP
o 09 .NET
o 10 Perl
o 11 PHP
o 12 PL/SQL

WHAT ORACLE PRODUCTS ARE IN USE AT YOUR
SITE? (check all that apply)

ORACLE DATABASE
o 01 Oracle Database 11g
o 02 Oracle Database 10g
o 03 Oracle9i Database
o 04 Oracle Embedded Database

(Oracle Lite, Times Ten, Berkeley DB)
o 05 Other Oracle Database Release

ORACLE FUSION MIDDLEWARE
o 06 Oracle Applicat ion Server
o 07 Oracle Por tal
o 08 Oracle Enterpr ise Manager
o 09 Oracle BPEL Process Manager
o 10 Oracle Ident ity Management
o 11 Oracle SOA Suite
o 12 Oracle Data Hubs

ORACLE DEVELOPMENT TOOLS
o 13 Oracle JDeveloper
o 14 Oracle Forms
o 15 Oracle Repor ts
o 16 Oracle Designer
o 17 Oracle Discoverer
o 18 Oracle BI Beans
o 19 Oracle Warehouse Builder
o 20 Oracle WebCenter
o 21 Oracle Applicat ion Express

ORACLE APPLICATIONS
o 22 Oracle E-Business Suite
o 23 PeopleSof t Enterpr ise
o 24 JD Edwards Enterpr iseOne
o 25 JD Edwards World
o 26 Oracle Fusion
o 27 Hyperion
o 28 Siebel CRM

ORACLE SERVICES
o 28 Oracle E-Business Suite On Demand
o 29 Oracle Technology On Demand
o 30 Siebel CRM On Demand
o 31 Oracle Consult ing
o 32 Oracle Educat ion
o 33 Oracle Suppor t
o 98 Other
99 o None of the Above

YOU MUST ANSWER ALL 10 QUESTIONS BELOW.

1

2

3

4

5

6

7

8

9

08
01
40
04

s i g n a t u r e (r e q u i r e d) d a t e

x
From time to time, Oracle Publishing allows our partners

exclusive access to our e-mail addresses for special promo-

tions and announcements. To be included in this program,

please check this circle. If you do not wish to be included, you

will only receive notices about your subscription via e-mail.

Oracle Publishing allows sharing of our postal mailing list with

selected third parties. If you prefer your mailing address not to

be included in this program, please check this circle.

If at any time you would like to be removed from either mailing list, please contact

Customer Service at +1.847.763.9635 or send an e-mail to oracle@halldata.com.

If you opt in to the sharing of information, Oracle may also provide you with

e-mail related to Oracle products, services, and events. If you want to completely

unsubscribe from any e-mail communication from Oracle, please send an e-mail to:

unsubscribe@oracle-mail.com with the following in the subject line: REMOVE [your

e-mail address]. For complete information on Oracle Publishing’s privacy practices,

please visit oracle.com/html/privacy/html

n a m e t i t l e

c o m p a n y e - m a i l a d d r e s s

s t r e e t / p . o . b o x

c i t y / s t a t e / z i p o r p o s t a l c o d e t e l e p h o n e

c o u n t r y f a x

Want your own FREE subscription?

Yes, please send me a FREE subscription Oracle Magazine. No.

Would you like to receive your free subscription in digital format instead of print if it becomes available? Yes No

To receive a free subscription to Oracle Magazine, you must fill out the entire card, sign it, and date

it (incomplete cards cannot be processed or acknowledged). You can also fax your application to

+1.847.763.9638. Or subscribe at our Web site at oracle.com/oraclemagazine

10

Contents at a Glance

 Part I The Java Language

 1 The History and Evolution of Java 3

 2 An Overview of Java 17

 3 Data Types, Variables, and Arrays 35

 4 Operators 61

 5 Control Statements 81

 6 Introducing Classes 109

 7 A Closer Look at Methods and Classes 129

 8 Inheritance 161

 9 Packages and Interfaces 187

 10 Exception Handling 207

 11 Multithreaded Programming 227

 12 Enumerations, Autoboxing, and Annotations

 (Metadata) 259

 13 I/O, Applets, and Other Topics 289

 14 Generics 325

 Part II The Java Library

 15 String Handling 371

 16 Exploring java.lang 397

 17 java.util Part 1: The Collections Framework 453

 18 java.util Part 2: More Utility Classes 525

 19 Input/Output: Exploring java.io 581

 20 Exploring NIO 629

 21 Networking 667

 22 The Applet Class 687

 23 Event Handling 707

 24 Introducing the AWT: Working with Windows,

 Graphics, and Text 735

 25 Using AWT Controls, Layout Managers, and Menus 773

 26 Images 829

 27 The Concurrency Utilities 861

 28 Regular Expressions and Other Packages 909

 v

vi Java: The Complete Reference, Eighth Edition

 Part III Software Development Using Java

 29 Java Beans 933

 30 Introducing Swing 945

 31 Exploring Swing 965

 32 Servlets 993

 Part IV Applying Java

 33 Financial Applets and Servlets 1019

 34 Creating a Download Manager in Java 1053

 Appendix Using Java’s Documentation Comments 1079

 Index 1087

 vii

 Preface .xxix

 Part I The Java Language

 Chapter 1 The History and Evolution of Java .3
 Java’s Lineage . 3

 The Birth of Modern Programming: C .4

 C++: The Next Step. .5

 The Stage Is Set for Java .6

 The Creation of Java . 6

 The C# Connection .8

 How Java Changed the Internet . 8

 Java Applets .8

 Security .9

 Portability .9

 Java’s Magic: The Bytecode . 9

 Servlets: Java on the Server Side . 10

 The Java Buzzwords . 10

 Simple .11

 Object-Oriented .11

 Robust .11

 Multithreaded .12

 Architecture-Neutral .12

 Interpreted and High Performance .12

 Distributed .12

 Dynamic .13

 The Evolution of Java. 13

 Java SE 7 .14

 A Culture of Innovation. 16

 Chapter 2 An Overview of Java. .17
 Object-Oriented Programming. 17

 Two Paradigms . 17

 Abstraction . 18

 The Three OOP Principles . 18

 A First Simple Program . 23

 Entering the Program . 23

Contents

viii Java: The Complete Reference, Eighth Edition

 Compiling the Program . 23

 A Closer Look at the First Sample Program. 24

 A Second Short Program . 26

 Two Control Statements. 28

 The if Statement . 28

 The for Loop . 29

 Using Blocks of Code. 30

 Lexical Issues . 32

 Whitespace . 32

 Identifi ers . 32

 Literals . 32

 Comments . 32

 Separators. 33

 The Java Keywords . 33

 The Java Class Libraries . 34

 Chapter 3 Data Types, Variables, and Arrays .35
 Java Is a Strongly Typed Language . 35

 The Primitive Types . 35

 Integers . 36

 byte . 36

 short . 37

 int . 37

 long. 37

 Floating-Point Types. 38

 fl oat. 38

 double. 38

 Characters. 39

 Booleans . 40

 A Closer Look at Literals . 41

 Integer Literals. 41

 Floating-Point Literals . 42

 Boolean Literals . 43

 Character Literals . 43

 String Literals. 43

 Variables . 44

 Declaring a Variable . 44

 Dynamic Initialization . 45

 The Scope and Lifetime of Variables . 45

 Type Conversion and Casting . 48

 Java’s Automatic Conversions . 48

 Casting Incompatible Types . 48

 Automatic Type Promotion in Expressions . 49

 The Type Promotion Rules . 50

 Arrays . 51

 One-Dimensional Arrays . 51

 Contents ix

 Multidimensional Arrays . 54

 Alternative Array Declaration Syntax . 58

 A Few Words About Strings . 58

 A Note to C/C++ Programmers About Pointers 59

 Chapter 4 Operators .61
 Arithmetic Operators. 61

 The Basic Arithmetic Operators . 62

 The Modulus Operator . 63

 Arithmetic Compound Assignment Operators 63

 Increment and Decrement . 64

 The Bitwise Operators . 66

 The Bitwise Logical Operators . 67

 The Left Shift . 69

 The Right Shift. 70

 The Unsigned Right Shift . 72

 Bitwise Operator Compound Assignments 73

 Relational Operators . 74

 Boolean Logical Operators . 75

 Short-Circuit Logical Operators . 76

 The Assignment Operator . 77

 The ? Operator. 77

 Operator Precedence. 78

 Using Parentheses . 79

 Chapter 5 Control Statements. .81
 Java’s Selection Statements . 81

 if . 81

 switch . 84

 Iteration Statements. 89

 while . 89

 do-while . 90

 for . 93

 The For-Each Version of the for Loop . 97

 Nested Loops . 102

 Jump Statements . 102

 Using break . 102

 Using continue. 106

 Chapter 6 Introducing Classes .109
 Class Fundamentals . 109

 The General Form of a Class. 109

 A Simple Class . 110

 Declaring Objects. 113

 A Closer Look at new. 113

 Assigning Object Reference Variables . 115

 Introducing Methods . 115

 Adding a Method to the Box Class . 116

x Java: The Complete Reference, Eighth Edition

 Returning a Value . 118

 Adding a Method That Takes Parameters 119

 Constructors . 121

 Parameterized Constructors . 123

 The this Keyword . 124

 Instance Variable Hiding. 125

 Garbage Collection . 125

 The fi nalize() Method . 125

 A Stack Class . 126

 Chapter 7 A Closer Look at Methods and Classes .129
 Overloading Methods . 129

 Overloading Constructors . 132

 Using Objects as Parameters . 134

 A Closer Look at Argument Passing . 136

 Returning Objects . 138

 Recursion . 139

 Introducing Access Control. 141

 Understanding static . 145

 Introducing fi nal . 146

 Arrays Revisited . 147

 Introducing Nested and Inner Classes . 149

 Exploring the String Class . 152

 Using Command-Line Arguments . 154

 Varargs: Variable-Length Arguments . 155

 Overloading Vararg Methods . 158

 Varargs and Ambiguity . 159

 Chapter 8 Inheritance .161
 Inheritance Basics . 161

 Member Access and Inheritance . 163

 A More Practical Example. 164

 A Superclass Variable Can Reference a Subclass Object 166

 Using super. 167

 Using super to Call Superclass Constructors 167

 A Second Use for super. 170

 Creating a Multilevel Hierarchy . 171

 When Constructors Are Called . 174

 Method Overriding . 175

 Dynamic Method Dispatch . 178

 Why Overridden Methods? . 179

 Applying Method Overriding . 180

 Using Abstract Classes . 181

 Using fi nal with Inheritance . 184

 Using fi nal to Prevent Overriding . 184

 Using fi nal to Prevent Inheritance . 185

 The Object Class. 185

 Contents xi

 Chapter 9 Packages and Interfaces. .187
 Packages . 187

 Defi ning a Package . 188

 Finding Packages and CLASSPATH . 188

 A Short Package Example . 189

 Access Protection . 190

 An Access Example . 191

 Importing Packages . 194

 Interfaces . 196

 Defi ning an Interface . 196

 Implementing Interfaces. 197

 Nested Interfaces . 200

 Applying Interfaces . 201

 Variables in Interfaces . 204

 Interfaces Can Be Extended . 205

 Chapter 10 Exception Handling .207
 Exception-Handling Fundamentals . 207

 Exception Types . 208

 Uncaught Exceptions. 209

 Using try and catch . 210

 Displaying a Description of an Exception 212

 Multiple catch Clauses . 212

 Nested try Statements . 214

 throw . 216

 throws . 217

 fi nally. 218

 Java’s Built-in Exceptions . 220

 Creating Your Own Exception Subclasses . 221

 Chained Exceptions . 224

 Three New JDK 7 Exception Features . 225

 Using Exceptions . 226

 Chapter 11 Multithreaded Programming .227
 The Java Thread Model . 228

 Thread Priorities . 229

 Synchronization . 229

 Messaging . 230

 The Thread Class and the Runnable Interface 230

 The Main Thread . 231

 Creating a Thread . 232

 Implementing Runnable. 233

 Extending Thread . 235

 Choosing an Approach . 236

 Creating Multiple Threads . 236

 Using isAlive() and join() . 238

 Thread Priorities . 240

xii Java: The Complete Reference, Eighth Edition

 Synchronization . 241

 Using Synchronized Methods . 241

 The synchronized Statement . 243

 Interthread Communication . 245

 Deadlock. 249

 Suspending, Resuming, and Stopping Threads 251

 Suspending, Resuming, and Stopping Threads Using Java 1.1

 and Earlier . 251

 The Modern Way of Suspending, Resuming, and

 Stopping Threads. 253

 Obtaining A Thread’s State . 256

 Using Multithreading. 257

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata)259
 Enumerations . 259

 Enumeration Fundamentals . 259

 The values() and valueOf() Methods. 262

 Java Enumerations Are Class Types . 263

 Enumerations Inherit Enum. 265

 Another Enumeration Example . 267

 Type Wrappers . 268

 Character . 269

 Boolean . 269

 The Numeric Type Wrappers . 269

 Autoboxing . 270

 Autoboxing and Methods . 271

 Autoboxing/Unboxing Occurs in Expressions 272

 Autoboxing/Unboxing Boolean and Character Values 274

 Autoboxing/Unboxing Helps Prevent Errors 274

 A Word of Warning . 275

 Annotations (Metadata) . 275

 Annotation Basics . 276

 Specifying a Retention Policy . 276

 Obtaining Annotations at Run Time by Use of Refl ection. 277

 The AnnotatedElement Interface . 282

 Using Default Values . 282

 Marker Annotations. 284

 Single-Member Annotations . 285

 The Built-In Annotations . 286

 Some Restrictions . 288

 Chapter 13 I/O, Applets, and Other Topics. .289
 I/O Basics . 289

 Streams . 290

 Byte Streams and Character Streams . 290

 The Predefi ned Streams . 292

 Contents xiii

 Reading Console Input . 293

 Reading Characters . 293

 Reading Strings . 294

 Writing Console Output . 296

 The PrintWriter Class. 296

 Reading and Writing Files . 297

 Automatically Closing a File . 303

 Applet Fundamentals. 307

 The transient and volatile Modifi ers. 309

 Using instanceof. 310

 strictfp . 312

 Native Methods. 312

 Problems with Native Methods . 316

 Using assert. 316

 Assertion Enabling and Disabling Options 319

 Static Import. 319

 Invoking Overloaded Constructors Through this() 321

 Chapter 14 Generics .325
 What Are Generics? . 326

 A Simple Generics Example . 326

 Generics Work Only with Objects. 330

 Generic Types Differ Based on Their Type Arguments. 330

 How Generics Improve Type Safety . 330

 A Generic Class with Two Type Parameters . 332

 The General Form of a Generic Class. 334

 Bounded Types. 334

 Using Wildcard Arguments . 337

 Bounded Wildcards . 339

 Creating a Generic Method. 344

 Generic Constructors . 346

 Generic Interfaces . 347

 Raw Types and Legacy Code . 349

 Generic Class Hierarchies . 352

 Using a Generic Superclass . 352

 A Generic Subclass. 354

 Run-Time Type Comparisons Within a Generic Hierarchy 355

 Casting . 357

 Overriding Methods in a Generic Class . 358

 Type Inference with Generics . 359

 Erasure . 361

 Bridge Methods . 362

 Ambiguity Errors . 364

 Some Generic Restrictions . 365

 Type Parameters Can’t Be Instantiated . 365

xiv Java: The Complete Reference, Eighth Edition

 Restrictions on Static Members. 366

 Generic Array Restrictions . 366

 Generic Exception Restriction . 367

 Part II The Java Library

 Chapter 15 String Handling .371
 The String Constructors . 372

 String Length . 374

 Special String Operations . 374

 String Literals. 374

 String Concatenation . 374

 String Concatenation with Other Data Types 375

 String Conversion and toString() . 376

 Character Extraction . 377

 charAt(). 377

 getChars() . 377

 getBytes() . 378

 toCharArray() . 378

 String Comparison . 378

 equals() and equalsIgnoreCase() . 378

 regionMatches() . 379

 startsWith() and endsWith(). 380

 equals() Versus ==. 380

 compareTo(). 381

 Searching Strings . 382

 Modifying a String . 384

 substring(). 384

 concat() . 385

 replace() . 385

 trim(). 385

 Data Conversion Using valueOf() . 386

 Changing the Case of Characters Within a String 387

 Additional String Methods . 387

 StringBuffer . 389

 StringBuffer Constructors . 389

 length() and capacity() . 389

 ensureCapacity() . 390

 setLength() . 390

 charAt() and setCharAt() . 390

 getChars() . 391

 append() . 391

 insert(). 392

 reverse() . 392

 delete() and deleteCharAt(). 393

 Contents xv

 replace() . 393

 substring(). 394

 Additional StringBuffer Methods . 394

 StringBuilder . 395

 Chapter 16 Exploring java.lang. .397
 Primitive Type Wrappers . 398

 Number . 398

 Double and Float . 398

 Understanding isInfi nite() and isNaN() 402

 Byte, Short, Integer, and Long . 403

 Character . 411

 Additions to Character for Unicode Code Point Support 414

 Boolean . 414

 Void . 416

 Process . 416

 Runtime . 417

 Memory Management . 418

 Executing Other Programs . 420

 ProcessBuilder . 421

 System . 423

 Using currentTimeMillis() to Time Program Execution. 425

 Using arraycopy() . 425

 Environment Properties . 426

 Object . 427

 Using clone() and the Cloneable Interface . 427

 Class. 429

 ClassLoader . 433

 Math . 433

 Trigonometric Functions. 433

 Exponential Functions . 434

 Rounding Functions . 434

 Miscellaneous Math Methods . 435

 StrictMath . 436

 Compiler. 436

 Thread, ThreadGroup, and Runnable . 436

 The Runnable Interface . 437

 Thread . 437

 ThreadGroup. 439

 ThreadLocal and InheritableThreadLocal . 444

 Package . 444

 RuntimePermission . 445

 Throwable. 445

 SecurityManager. 445

 StackTraceElement. 446

xvi Java: The Complete Reference, Eighth Edition

 Enum. 447

 ClassValue . 448

 The CharSequence Interface . 448

 The Comparable Interface . 448

 The Appendable Interface . 449

 The Iterable Interface . 449

 The Readable Interface . 449

 The AutoCloseable Interface . 449

 The Thread.UncaughtExceptionHandler Interface 450

 The java.lang Subpackages . 450

 java.lang.annotation . 450

 java.lang.instrument . 450

 java.lang.invoke . 451

 java.lang.management .451

 java.lang.ref .451

 java.lang.refl ect .451

 Chapter 17 java.util Part 1: The Collections Framework .453
 Collections Overview . 454

 JDK 5 Changed the Collections Framework. 455

 Generics Fundamentally Changed the Collections Framework . . 455

 Autoboxing Facilitates the Use of Primitive Types 456

 The For-Each Style for Loop . 456

 The Collection Interfaces . 456

 The Collection Interface. 457

 The List Interface . 459

 The Set Interface . 459

 The SortedSet Interface . 460

 The NavigableSet Interface. 461

 The Queue Interface. 462

 The Deque Interface . 463

 The Collection Classes . 465

 The ArrayList Class . 466

 The LinkedList Class . 469

 The HashSet Class . 470

 The LinkedHashSet Class . 472

 The TreeSet Class. 472

 The PriorityQueue Class . 473

 The ArrayDeque Class . 474

 The EnumSet Class . 475

 Accessing a Collection via an Iterator. 476

 Using an Iterator . 477

 The For-Each Alternative to Iterators. 479

 Storing User-Defi ned Classes in Collections. 480

 The RandomAccess Interface . 482

 Contents xvii

 Working with Maps. 482

 The Map Interfaces . 482

 The Map Classes. 487

 Comparators . 492

 Using a Comparator . 492

 The Collection Algorithms . 495

 Arrays . 501

 Why Generic Collections? . 505

 The Legacy Classes and Interfaces . 508

 The Enumeration Interface . 508

 Vector . 509

 Stack . 513

 Dictionary. 515

 Hashtable . 516

 Properties . 519

 Using store() and load() . 522

 Parting Thoughts on Collections . 524

 Chapter 18 java.util Part 2: More Utility Classes .525
 StringTokenizer . 525

 BitSet . 527

 Date . 530

 Calendar . 531

 GregorianCalendar . 534

 TimeZone . 536

 SimpleTimeZone . 537

 Locale . 538

 Random . 539

 Observable . 541

 The Observer Interface . 541

 An Observer Example . 542

 Timer and TimerTask . 544

 Currency . 547

 Formatter . 548

 The Formatter Constructors . 548

 The Formatter Methods . 549

 Formatting Basics. 549

 Formatting Strings and Characters. 551

 Formatting Numbers . 551

 Formatting Time and Date . 552

 The %n and %% Specifi ers . 554

 Specifying a Minimum Field Width . 555

 Specifying Precision. 556

 Using the Format Flags . 557

 Justifying Output . 558

 The Space, +, 0, and (Flags . 558

xviii Java: The Complete Reference, Eighth Edition

 The Comma Flag . 559

 The # Flag. 560

 The Uppercase Option . 560

 Using an Argument Index. 560

 Closing a Formatter . 562

 The Java printf() Connection . 562

 Scanner. 563

 The Scanner Constructors . 563

 Scanning Basics . 564

 Some Scanner Examples . 567

 Setting Delimiters . 570

 Other Scanner Features . 572

 The ResourceBundle, ListResourceBundle, and

 PropertyResourceBundle Classes . 573

 Miscellaneous Utility Classes and Interfaces . 577

 The java.util Subpackages . 578

 java.util.concurrent, java.util.concurrent.atomic,

 and java.util.concurrent.locks . 578

 java.util.jar . 578

 java.util.logging . 578

 java.util.prefs . 578

 java.util.regex . 579

 java.util.spi . 579

 java.util.zip . 579

 Chapter 19 Input/Output: Exploring java.io .581
 The I/O Classes and Interfaces. 581

 File. 582

 Directories . 585

 Using FilenameFilter . 586

 The listFiles() Alternative. 587

 Creating Directories . 588

 The AutoCloseable, Closeable, and Flushable Interfaces 588

 I/O Exceptions. 588

 Two Ways to Close a Stream. 589

 The Stream Classes. 590

 The Byte Streams . 590

 InputStream . 591

 OutputStream . 591

 FileInputStream. 592

 FileOutputStream . 594

 ByteArrayInputStream. 596

 ByteArrayOutputStream . 598

 Filtered Byte Streams. 599

 Buffered Byte Streams . 599

 SequenceInputStream. 603

 PrintStream . 605

 Contents xix

 DataOutputStream and DataInputStream 607

 RandomAccessFile . 609

 The Character Streams . 610

 Reader . 610

 Writer . 610

 FileReader . 612

 FileWriter . 613

 CharArrayReader . 614

 CharArrayWriter . 615

 BufferedReader . 616

 BufferedWriter . 618

 PushbackReader . 618

 PrintWriter . 619

 The Console Class . 620

 Serialization . 622

 Serializable . 622

 Externalizable . 623

 ObjectOutput. 623

 ObjectOutputStream. 624

 ObjectInput . 625

 ObjectInputStream . 625

 A Serialization Example . 626

 Stream Benefi ts . 628

 Chapter 20 Exploring NIO .629
 The NIO Classes . 629

 NIO Fundamentals. 630

 Buffers . 630

 Channels. 631

 Charsets and Selectors. 633

 Enhancements Added to NIO by JDK 7 . 634

 The Path Interface. 634

 The Files Class . 635

 The Paths Class . 638

 The File Attribute Interfaces. 638

 The FileSystem, FileSystems, and FileStore Classes 640

 Using the NIO System . 640

 Use NIO for Channel-Based I/O . 640

 Use NIO for Stream-Based I/O . 649

 Use NIO for Path and File System Operations 652

 Pre-JDK 7 Channel-Based Examples . 659

 Read a File, Pre-JDK 7 . 660

 Write to a File, Pre-JDK 7. 663

 Chapter 21 Networking. .667
 Networking Basics . 667

 The Networking Classes and Interfaces . 668

xx Java: The Complete Reference, Eighth Edition

 InetAddress. 669

 Factory Methods . 669

 Instance Methods. 670

 Inet4Address and Inet6Address . 671

 TCP/IP Client Sockets . 671

 URL. 675

 URLConnection . 676

 HttpURLConnection . 679

 The URI Class. 681

 Cookies . 681

 TCP/IP Server Sockets. 681

 Datagrams . 682

 DatagramSocket. 682

 DatagramPacket. 683

 A Datagram Example. 684

 Chapter 22 The Applet Class .687
 Two Types of Applets . 687

 Applet Basics. 687

 The Applet Class . 688

 Applet Architecture . 690

 An Applet Skeleton . 691

 Applet Initialization and Termination . 692

 Overriding update(). 693

 Simple Applet Display Methods . 693

 Requesting Repainting. 695

 A Simple Banner Applet . 697

 Using the Status Window. 699

 The HTML APPLET Tag . 699

 Passing Parameters to Applets. 701

 Improving the Banner Applet. 702

 getDocumentBase() and getCodeBase() . 704

 AppletContext and showDocument() . 704

 The AudioClip Interface . 706

 The AppletStub Interface . 706

 Outputting to the Console . 706

 Chapter 23 Event Handling. .707
 Two Event Handling Mechanisms. 707

 The Delegation Event Model . 708

 Events . 708

 Event Sources. 708

 Event Listeners. 709

 Event Classes. 709

 The ActionEvent Class. 711

 The AdjustmentEvent Class . 711

 The ComponentEvent Class . 712

 Contents xxi

 The ContainerEvent Class. 712

 The FocusEvent Class . 713

 The InputEvent Class . 713

 The ItemEvent Class . 714

 The KeyEvent Class . 715

 The MouseEvent Class. 716

 The MouseWheelEvent Class . 717

 The TextEvent Class. 718

 The WindowEvent Class . 718

 Sources of Events . 719

 Event Listener Interfaces. 720

 The ActionListener Interface . 721

 The AdjustmentListener Interface . 721

 The ComponentListener Interface . 721

 The ContainerListener Interface . 721

 The FocusListener Interface. 721

 The ItemListener Interface. 721

 The KeyListener Interface . 722

 The MouseListener Interface . 722

 The MouseMotionListener Interface . 722

 The MouseWheelListener Interface. 722

 The TextListener Interface . 722

 The WindowFocusListener Interface . 723

 The WindowListener Interface. 723

 Using the Delegation Event Model . 723

 Handling Mouse Events . 723

 Handling Keyboard Events . 726

 Adapter Classes. 729

 Inner Classes. 731

 Anonymous Inner Classes . 732

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text . . .735
 AWT Classes . 736

 Window Fundamentals . 738

 Component . 738

 Container . 739

 Panel . 739

 Window. 739

 Frame . 739

 Canvas. 739

 Working with Frame Windows. 739

 Setting the Window’s Dimensions . 740

 Hiding and Showing a Window . 740

 Setting a Window’s Title . 740

 Closing a Frame Window. 740

 Creating a Frame Window in an Applet . 741

 Handling Events in a Frame Window. 742

xxii Java: The Complete Reference, Eighth Edition

 Creating a Windowed Program. 747

 Displaying Information Within a Window . 749

 Working with Graphics . 749

 Drawing Lines . 749

 Drawing Rectangles . 750

 Drawing Ellipses and Circles . 751

 Drawing Arcs . 752

 Drawing Polygons . 753

 Sizing Graphics . 754

 Working with Color . 755

 Color Methods . 755

 Setting the Current Graphics Color . 756

 A Color Demonstration Applet. 756

 Setting the Paint Mode . 757

 Working with Fonts . 759

 Determining the Available Fonts . 760

 Creating and Selecting a Font. 762

 Obtaining Font Information. 764

 Managing Text Output Using FontMetrics. 764

 Displaying Multiple Lines of Text. 766

 Centering Text . 767

 Multiline Text Alignment . 768

 Chapter 25 Using AWT Controls, Layout Managers, and Menus773
 Control Fundamentals . 773

 Adding and Removing Controls . 774

 Responding to Controls . 774

 The HeadlessException. 774

 Labels . 775

 Using Buttons . 776

 Handling Buttons . 776

 Applying Check Boxes . 779

 Handling Check Boxes . 780

 CheckboxGroup. 782

 Choice Controls . 783

 Handling Choice Lists . 784

 Using Lists. 786

 Handling Lists . 787

 Managing Scroll Bars . 788

 Handling Scroll Bars . 790

 Using a TextField . 792

 Handling a TextField. 793

 Using a TextArea . 794

 Understanding Layout Managers . 796

 FlowLayout . 797

 BorderLayout . 798

 Using Insets . 800

 Contents xxiii

 GridLayout . 801

 CardLayout. 802

 GridBagLayout. 805

 Menu Bars and Menus . 810

 Dialog Boxes. 816

 FileDialog . 820

 Handling Events by Extending AWT Components 822

 Extending Button . 823

 Extending Checkbox . 824

 Extending a Check Box Group. 825

 Extending Choice . 826

 Extending List . 826

 Extending Scrollbar. 827

 A Word About Overriding paint() . 828

 Chapter 26 Images .829
 File Formats . 829

 Image Fundamentals: Creating, Loading, and Displaying 830

 Creating an Image Object . 830

 Loading an Image . 830

 Displaying an Image . 831

 ImageObserver . 832

 Double Buffering . 833

 MediaTracker . 836

 ImageProducer. 839

 MemoryImageSource . 839

 ImageConsumer. 841

 PixelGrabber . 841

 ImageFilter . 844

 CropImageFilter . 844

 RGBImageFilter . 845

 Cell Animation . 857

 Additional Imaging Classes . 860

 Chapter 27 The Concurrency Utilities .861
 The Concurrent API Packages . 862

 java.util.concurrent . 862

 java.util.concurrent.atomic . 863

 java.util.concurrent.locks . 863

 Using Synchronization Objects . 863

 Semaphore . 863

 CountDownLatch. 869

 CyclicBarrier. 871

 Exchanger . 873

 Phaser . 875

 Using an Executor . 882

 A Simple Executor Example . 883

 Using Callable and Future . 885

xxiv Java: The Complete Reference, Eighth Edition

 The TimeUnit Enumeration . 888

 The Concurrent Collections . 889

 Locks . 889

 Atomic Operations. 892

 Parallel Programming via the Fork/Join Framework 893

 The Main Fork/Join Classes . 894

 The Divide-and-Conquer Strategy . 897

 A Simple First Fork/Join Example . 898

 Understanding the Impact of the Level of Parallelism 900

 An Example that Uses RecursiveTask<V>. 903

 Executing a Task Asynchronously. 905

 Cancelling a Task . 906

 Determining a Task’s Completion Status . 906

 Restarting a Task . 906

 Things to Explore . 906

 Some Fork/Join Tips . 908

 The Concurrency Utilities Versus Java’s Traditional Approach 908

 Chapter 28 Regular Expressions and Other Packages .909
 The Core Java API Packages . 909

 Regular Expression Processing . 911

 Pattern . 911

 Matcher . 912

 Regular Expression Syntax . 913

 Demonstrating Pattern Matching . 913

 Two Pattern-Matching Options. 919

 Exploring Regular Expressions. 919

 Refl ection . 919

 Remote Method Invocation (RMI) . 923

 A Simple Client/Server Application Using RMI 923

 Text Formatting . 927

 DateFormat Class . 927

 SimpleDateFormat Class . 929

 Part III Software Development Using Java

 Chapter 29 Java Beans .933
 What Is a Java Bean?. 933

 Advantages of Java Beans . 934

 Introspection . 934

 Design Patterns for Properties . 934

 Design Patterns for Events . 936

 Methods and Design Patterns . 936

 Using the BeanInfo Interface . 936

 Bound and Constrained Properties . 937

 Persistence . 937

 Customizers . 937

 Contents xxv

 The Java Beans API . 938

 Introspector . 940

 PropertyDescriptor . 940

 EventSetDescriptor . 940

 MethodDescriptor . 940

 A Bean Example . 940

 Chapter 30 Introducing Swing .945
 The Origins of Swing . 945

 Swing Is Built on the AWT. 946

 Two Key Swing Features. 946

 Swing Components Are Lightweight . 946

 Swing Supports a Pluggable Look and Feel 946

 The MVC Connection . 947

 Components and Containers . 948

 Components. 948

 Containers . 949

 The Top-Level Container Panes . 949

 The Swing Packages . 950

 A Simple Swing Application . 950

 Event Handling . 954

 Create a Swing Applet . 957

 Painting in Swing . 959

 Painting Fundamentals . 960

 Compute the Paintable Area. 961

 A Paint Example . 961

 Chapter 31 Exploring Swing .965
 JLabel and ImageIcon . 965

 JTextField . 967

 The Swing Buttons . 969

 JButton . 969

 JToggleButton . 971

 Check Boxes. 973

 Radio Buttons. 975

 JTabbedPane. 977

 JList . 981

 JComboBox. 984

 Trees . 986

 JTable . 990

 Continuing Your Exploration of Swing. 992

 Chapter 32 Servlets. .993
 Background . 993

 The Life Cycle of a Servlet. 994

 Servlet Development Options . 994

 Using Tomcat . 995

xxvi Java: The Complete Reference, Eighth Edition

 A Simple Servlet . 996

 Create and Compile the Servlet Source Code 997

 Start Tomcat . 998

 Start a Web Browser and Request the Servlet 998

 The Servlet API. 998

 The javax.servlet Package . 998

 The Servlet Interface. 999

 The ServletConfi g Interface . 1000

 The ServletContext Interface . 1000

 The ServletRequest Interface . 1000

 The ServletResponse Interface . 1000

 The GenericServlet Class. 1002

 The ServletInputStream Class. 1002

 The ServletOutputStream Class . 1002

 The Servlet Exception Classes. 1002

 Reading Servlet Parameters. 1002

 The javax.servlet.http Package . 1004

 The HttpServletRequest Interface . 1004

 The HttpServletResponse Interface . 1005

 The HttpSession Interface . 1006

 The HttpSessionBindingListener Interface 1006

 The Cookie Class . 1007

 The HttpServlet Class . 1008

 The HttpSessionEvent Class . 1009

 The HttpSessionBindingEvent Class . 1010

 Handling HTTP Requests and Responses . 1010

 Handling HTTP GET Requests . 1010

 Handling HTTP POST Requests . 1012

 Using Cookies. 1013

 Session Tracking. 1015

 Part IV Applying Java

 Chapter 33 Financial Applets and Servlets .1019
 Finding the Payments for a Loan . 1020

 The RegPay Fields . 1024

 The init() Method . 1024

 The makeGUI() Method . 1024

 The actionPerformed() Method . 1027

 The compute() Method . 1028

 Finding the Future Value of an Investment . 1028

 Finding the Initial Investment Required to Achieve

 a Future Value. 1032

 Finding the Initial Investment Needed for a Desired Annuity 1036

 Finding the Maximum Annuity for a Given Investment 1040

 Finding the Remaining Balance on a Loan . 1044

 Contents xxvii

 Creating Financial Servlets . 1048

 Converting the RegPay Applet into a Servlet. 1048

 The RegPayS Servlet . 1048

 Some Things to Try . 1052

 Chapter 34 Creating a Download Manager in Java .1053
 Understanding Internet Downloads . 1053

 An Overview of the Download Manager. 1054

 The Download Class. 1055

 The Download Variables . 1058

 The Download Constructor . 1059

 The download() Method . 1059

 The run() Method . 1059

 The stateChanged() Method . 1062

 Action and Accessor Methods. 1063

 The ProgressRenderer Class . 1063

 The DownloadsTableModel Class . 1064

 The addDownload() Method. 1066

 The clearDownload() Method. 1066

 The getColumnClass() Method. 1067

 The getValueAt() Method . 1067

 The update() Method . 1067

 The DownloadManager Class . 1068

 The DownloadManager Variables. 1073

 The DownloadManager Constructor . 1074

 The verifyUrl() Method . 1074

 The tableSelectionChanged() Method . 1075

 The updateButtons() Method . 1075

 Handling Action Events . 1076

 Compiling and Running the Download Manager 1076

 Enhancing the Download Manager . 1077

 Appendix Using Java’s Documentation Comments .1079
 The javadoc Tags . 1079

 @author . 1080

 {@code} . 1080

 @deprecated . 1080

 {@docRoot}. 1081

 @exception. 1081

 {@inheritDoc}. 1081

 {@link}. 1081

 {@linkplain} . 1081

 {@literal} . 1081

 @param . 1081

 @return . 1082

 @see . 1082

 @serial . 1082

xxviii Java: The Complete Reference, Eighth Edition

 @serialData. 1082

 @serialField . 1082

 @since. 1082

 @throws . 1083

 {@value} . 1083

 @version . 1083

 The General Form of a Documentation Comment 1083

 What javadoc Outputs . 1083

 An Example that Uses Documentation Comments 1084

 Index .1087

 xxix

Preface

J
ava is one of the world’s most important and widely used computer languages.

Furthermore, it has held that distinction for many years. Unlike some other computer

languages whose influence has waned with the passage of time, Java’s has grown

 stronger. Java leapt to the forefront of Internet programming with its first release. Each

subsequent version has solidified that position. Today, it is still the first and best choice for

developing web-based applications. Java is also part of the smartphone revolution because

it is used for Android programming. Simply put: much of the modern world runs on Java

code. Java really is that important.

A key reason for Java’s success is its agility. Since its original 1.0 release, Java has

continually adapted to changes in the programming environment and to changes in the

way that programmers program. Most importantly, it has not just followed the trends, it has
helped create them. Java’s ability to accommodate the fast rate of change in the computing

world is a crucial part of why it has been and continues to be so successful.

Since this book was first published in 1996, it has gone through several editions, each

reflecting the ongoing evolution of Java. This is the Eighth edition, and it has been updated

for Java SE 7. As a result, it contains a substantial amount of new material. For example, it

includes coverage of the Project Coin language enhancements, the expanded features of

NIO (NIO.2), and the Fork/Join Framework. In general, discussions of the new features

are integrated into existing chapters, but because of the many additions to NIO, it is now

discussed in its own chapter. However, the overall structure of the book remains the same.

This means that if you are familiar with the previous edition, you will feel right at home

with this version.

A Book for All Programmers
This book is for all programmers, whether you are a novice or an experienced pro. The

beginner will find its carefully paced discussions and many examples especially helpful. Its

in-depth coverage of Java’s more advanced features and libraries will appeal to the pro. For

both, it offers a lasting resource and handy reference.

xxx Java: The Complete Reference, Eighth Edition

What’s Inside
This book is a comprehensive guide to the Java language, describing its syntax, keywords,

and fundamental programming principles. Significant portions of the Java API library are

also examined. The book is divided into four parts, each focusing on a different aspect of

the Java programming environment.

Part I presents an in-depth tutorial of the Java language. It begins with the basics,

including such things as data types, operators, control statements, and classes. It then

moves on to inheritance, packages, interfaces, exception handling, and multithreading.

The final chapters in Part I describe annotations, enumerations, autoboxing, and generics.

I/O and applets are also introduced.

Part II examines key aspects of Java’s standard API library. Topics include strings, I/O,

networking, the standard utilities, the Collections Framework, applets, GUI-based controls,

imaging, and concurrency (including the new Fork/Join Framework).

Part III looks at three important Java technologies: Java Beans, servlets, and Swing.

Part IV contains two chapters that show examples of Java in action. The first chapter

develops several applets that perform various popular financial calculations, such as

computing the regular payment on a loan or the minimum investment needed to withdraw

a desired monthly annuity. This chapter also shows how to convert those applets into

servlets. The second chapter develops a download manager that oversees the downloading

of files. It includes the ability to start, stop, and resume a transfer. Both chapters are adapted

from my book The Art of Java, which I co-authored with James Holmes.

Don’t Forget: Code on the Web
Remember, the source code for all of the examples in this book is available free-of-charge

on the Web at www.oraclepressbooks.com.

Special Thanks
I want to give special thanks to Patrick Naughton, Joe O’Neil, James Holmes, and Danny

Coward.

Patrick Naughton was one of the creators of the Java language. He also helped write

the first edition of this book. For example, among many other contributions, much of the

material in Chapters 19, 21, and 26 was initially provided by Patrick. His insights, expertise,

and energy contributed greatly to the success of that book.

During the preparation of the second and third editions of this book, Joe O’Neil

provided initial drafts for the material now found in Chapters 28, 29, 31, and 32 of this

edition. Joe helped on several of my books and his input has always been top-notch.

James Holmes provided Chapter 34. James is an extraordinary programmer and author.

He was my co-author on The Art of Java and is the author of Struts: The Complete Reference™,

and a co-author of JSF: The Complete Reference™.

Danny Coward is the technical editor for this edition of the book. His advice, insights,

and suggestions were of great value and much appreciated.

HERBERT SCHILDT

www.oraclepressbooks.com

For Further Study
Java: The Complete Reference™ is your gateway to the Herb Schildt series of programming

books. Here are some others that you will find of interest.

To learn more about Java programming, we recommend the following:

Herb Schildt’s Java Programming Cookbook

Java: A Beginner’s Guide

Swing: A Beginner’s Guide

The Art Of Java

To learn about C++, you will find these books especially helpful:

C++: The Complete Reference™

Herb Schildt’s C++ Programming Cookbook

C++: A Beginner’s Guide

The Art of C++

C++ From the Ground Up

STL Programming From the Ground Up

To learn about C#, we suggest the following Schildt books:

C#: The Complete Reference™

C#: A Beginner’s Guide

To learn about the C language, the following title will be of interest:

C: The Complete Reference™

When you need solid answers, fast, turn to Herbert Schildt,
the recognized authority on programming.

This page intentionally left blank

The Java Language

PART

I
CHAPTER 1
The History and Evolution

of Java

CHAPTER 2
An Overview of Java

CHAPTER 3
Data Types, Variables,

and Arrays

CHAPTER 4
Operators

CHAPTER 5
Control Statements

CHAPTER 6
Introducing Classes

CHAPTER 7
A Closer Look at Methods

and Classes

CHAPTER 8
Inheritance

CHAPTER 9
Packages and Interfaces

CHAPTER 10
Exception Handling

CHAPTER 11
Multithreaded Programming

CHAPTER 12
Enumerations, Autoboxing,

and Annotations (Metadata)

CHAPTER 13
I/O, Applets, and

Other Topics

CHAPTER 14
Generics

32
CHAPTER

 3

The History and Evolution
of Java1

To fully understand Java, one must understand the reasons behind its creation, the forces

that shaped it, and the legacy that it inherits. Like the successful computer languages that

came before, Java is a blend of the best elements of its rich heritage combined with the

innovative concepts required by its unique mission. While the remaining chapters of

this book describe the practical aspects of Java—including its syntax, key libraries, and

applications—this chapter explains how and why Java came about, what makes it so

important, and how it has evolved over the years.

Although Java has become inseparably linked with the online environment of the

Internet, it is important to remember that Java is first and foremost a programming

language. Computer language innovation and development occurs for two fundamental

reasons:

• To adapt to changing environments and uses

• To implement refinements and improvements in the art of programming

As you will see, the development of Java was driven by both elements in nearly equal

measure.

Java’s Lineage
Java is related to C++, which is a direct descendant of C. Much of the character of Java is

inherited from these two languages. From C, Java derives its syntax. Many of Java’s object-

oriented features were influenced by C++. In fact, several of Java’s defining characteristics

come from—or are responses to—its predecessors. Moreover, the creation of Java was

deeply rooted in the process of refinement and adaptation that has been occurring in

computer programming languages for the past several decades. For these reasons, this

section reviews the sequence of events and forces that led to Java. As you will see, each

innovation in language design was driven by the need to solve a fundamental problem

that the preceding languages could not solve. Java is no exception.

4 PART I The Java Language

The Birth of Modern Programming: C

The C language shook the computer world. Its impact should not be underestimated, because

it fundamentally changed the way programming was approached and thought about. The

creation of C was a direct result of the need for a structured, efficient, high-level language

that could replace assembly code when creating systems programs. As you probably know,

when a computer language is designed, trade-offs are often made, such as the following:

• Ease-of-use versus power

• Safety versus efficiency

• Rigidity versus extensibility

Prior to C, programmers usually had to choose between languages that optimized one

set of traits or the other. For example, although FORTRAN could be used to write fairly

efficient programs for scientific applications, it was not very good for system code. And

while BASIC was easy to learn, it wasn’t very powerful, and its lack of structure made its

usefulness questionable for large programs. Assembly language can be used to produce

highly efficient programs, but it is not easy to learn or use effectively. Further, debugging

assembly code can be quite difficult.

Another compounding problem was that early computer languages such as BASIC,

COBOL, and FORTRAN were not designed around structured principles. Instead, they

relied upon the GOTO as a primary means of program control. As a result, programs

written using these languages tended to produce “spaghetti code”—a mass of tangled

jumps and conditional branches that make a program virtually impossible to understand.

While languages like Pascal are structured, they were not designed for efficiency, and failed

to include certain features necessary to make them applicable to a wide range of programs.

(Specifically, given the standard dialects of Pascal available at the time, it was not practical

to consider using Pascal for systems-level code.)

So, just prior to the invention of C, no one language had reconciled the conflicting

attributes that had dogged earlier efforts. Yet the need for such a language was pressing. By

the early 1970s, the computer revolution was beginning to take hold, and the demand for

software was rapidly outpacing programmers’ ability to produce it. A great deal of effort was

being expended in academic circles in an attempt to create a better computer language.

But, and perhaps most importantly, a secondary force was beginning to be felt. Computer

hardware was finally becoming common enough that a critical mass was being reached. No

longer were computers kept behind locked doors. For the first time, programmers were

gaining virtually unlimited access to their machines. This allowed the freedom to experiment.

It also allowed programmers to begin to create their own tools. On the eve of C’s creation,

the stage was set for a quantum leap forward in computer languages.

Invented and first implemented by Dennis Ritchie on a DEC PDP-11 running the UNIX

operating system, C was the result of a development process that started with an older

language called BCPL, developed by Martin Richards. BCPL influenced a language called

B, invented by Ken Thompson, which led to the development of C in the 1970s. For many

years, the de facto standard for C was the one supplied with the UNIX operating system and

described in The C Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-

Hall, 1978). C was formally standardized in December 1989, when the American National

Standards Institute (ANSI) standard for C was adopted.

 Chapter 1 The History and Evolution of Java 5

P
a

rt
 I

The creation of C is considered by many to have marked the beginning of the modern

age of computer languages. It successfully synthesized the conflicting attributes that had so

troubled earlier languages. The result was a powerful, efficient, structured language that

was relatively easy to learn. It also included one other, nearly intangible aspect: it was a

programmer’s language. Prior to the invention of C, computer languages were generally

designed either as academic exercises or by bureaucratic committees. C is different. It was

designed, implemented, and developed by real, working programmers, reflecting the way

that they approached the job of programming. Its features were honed, tested, thought

about, and rethought by the people who actually used the language. The result was a

language that programmers liked to use. Indeed, C quickly attracted many followers

who had a near-religious zeal for it. As such, it found wide and rapid acceptance in the

programmer community. In short, C is a language designed by and for programmers.

As you will see, Java inherited this legacy.

C++: The Next Step

During the late 1970s and early 1980s, C became the dominant computer programming

language, and it is still widely used today. Since C is a successful and useful language, you

might ask why a need for something else existed. The answer is complexity. Throughout the

history of programming, the increasing complexity of programs has driven the need for

better ways to manage that complexity. C++ is a response to that need. To better understand

why managing program complexity is fundamental to the creation of C++, consider the

following.

Approaches to programming have changed dramatically since the invention of the

computer. For example, when computers were first invented, programming was done by

manually toggling in the binary machine instructions by use of the front panel. As long as

programs were just a few hundred instructions long, this approach worked. As programs grew,

assembly language was invented so that a programmer could deal with larger, increasingly

complex programs by using symbolic representations of the machine instructions. As

programs continued to grow, high-level languages were introduced that gave the programmer

more tools with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was an

impressive first step, it is hardly a language that encourages clear and easy-to-understand

programs. The 1960s gave birth to structured programming. This is the method of programming

championed by languages such as C. The use of structured languages enabled programmers

to write, for the first time, moderately complex programs fairly easily. However, even with

structured programming methods, once a project reaches a certain size, its complexity

exceeds what a programmer can manage. By the early 1980s, many projects were pushing

the structured approach past its limits. To solve this problem, a new way to program was

invented, called object-oriented programming (OOP). Object-oriented programming is discussed

in detail later in this book, but here is a brief definition: OOP is a programming methodology

that helps organize complex programs through the use of inheritance, encapsulation, and

polymorphism.

In the final analysis, although C is one of the world’s great programming languages,

there is a limit to its ability to handle complexity. Once the size of a program exceeds a

certain point, it becomes so complex that it is difficult to grasp as a totality. While the

precise size at which this occurs differs, depending upon both the nature of the program

and the programmer, there is always a threshold at which a program becomes unmanageable.

6 PART I The Java Language

C++ added features that enabled this threshold to be broken, allowing programmers to

comprehend and manage larger programs.

C++ was invented by Bjarne Stroustrup in 1979, while he was working at Bell Laboratories

in Murray Hill, New Jersey. Stroustrup initially called the new language “C with Classes.”

However, in 1983, the name was changed to C++. C++ extends C by adding object-oriented

features. Because C++ is built on the foundation of C, it includes all of C’s features, attributes,

and benefits. This is a crucial reason for the success of C++ as a language. The invention of

C++ was not an attempt to create a completely new programming language. Instead, it was

an enhancement to an already highly successful one.

The Stage Is Set for Java

By the end of the 1980s and the early 1990s, object-oriented programming using C++ took

hold. Indeed, for a brief moment it seemed as if programmers had finally found the perfect

language. Because C++ blended the high efficiency and stylistic elements of C with the

object-oriented paradigm, it was a language that could be used to create a wide range of

programs. However, just as in the past, forces were brewing that would, once again, drive

computer language evolution forward. Within a few years, the World Wide Web and the

Internet would reach critical mass. This event would precipitate another revolution in

programming.

The Creation of Java
Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike

Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first working

version. This language was initially called “Oak,” but was renamed “Java” in 1995. Between

the initial implementation of Oak in the fall of 1992 and the public announcement of Java

in the spring of 1995, many more people contributed to the design and evolution of the

language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lindholm were

key contributors to the maturing of the original prototype.

Somewhat surprisingly, the original impetus for Java was not the Internet! Instead, the

primary motivation was the need for a platform-independent (that is, architecture-neutral)

language that could be used to create software to be embedded in various consumer

electronic devices, such as microwave ovens and remote controls. As you can probably

guess, many different types of CPUs are used as controllers. The trouble with C and C++

(and most other languages) is that they are designed to be compiled for a specific target.

Although it is possible to compile a C++ program for just about any type of CPU, to do so

requires a full C++ compiler targeted for that CPU. The problem is that compilers are

expensive and time-consuming to create. An easier—and more cost-efficient—solution

was needed. In an attempt to find such a solution, Gosling and others began work on a

portable, platform-independent language that could be used to produce code that would

run on a variety of CPUs under differing environments. This effort ultimately led to the

creation of Java.

About the time that the details of Java were being worked out, a second, and ultimately

more important, factor was emerging that would play a crucial role in the future of Java.

This second force was, of course, the World Wide Web. Had the Web not taken shape at

about the same time that Java was being implemented, Java might have remained a useful

but obscure language for programming consumer electronics. However, with the emergence

 Chapter 1 The History and Evolution of Java 7

P
a

rt
 I

of the World Wide Web, Java was propelled to the forefront of computer language design,

because the Web, too, demanded portable programs.

Most programmers learn early in their careers that portable programs are as elusive as they

are desirable. While the quest for a way to create efficient, portable (platform-independent)

programs is nearly as old as the discipline of programming itself, it had taken a back seat

to other, more pressing problems. Further, because (at that time) much of the computer

world had divided itself into the three competing camps of Intel, Macintosh, and UNIX,

most programmers stayed within their fortified boundaries, and the urgent need for

portable code was reduced. However, with the advent of the Internet and the Web, the

old problem of portability returned with a vengeance. After all, the Internet consists of a

diverse, distributed universe populated with various types of computers, operating systems,

and CPUs. Even though many kinds of platforms are attached to the Internet, users would

like them all to be able to run the same program. What was once an irritating but low-

priority problem had become a high-profile necessity.

By 1993, it became obvious to members of the Java design team that the problems of

portability frequently encountered when creating code for embedded controllers are also

found when attempting to create code for the Internet. In fact, the same problem that Java

was initially designed to solve on a small scale could also be applied to the Internet on a

large scale. This realization caused the focus of Java to switch from consumer electronics

to Internet programming. So, while the desire for an architecture-neutral programming

language provided the initial spark, the Internet ultimately led to Java’s large-scale success.

As mentioned earlier, Java derives much of its character from C and C++. This is by intent.

The Java designers knew that using the familiar syntax of C and echoing the object-oriented

features of C++ would make their language appealing to the legions of experienced C/C++

programmers. In addition to the surface similarities, Java shares some of the other attributes

that helped make C and C++ successful. First, Java was designed, tested, and refined by real,

working programmers. It is a language grounded in the needs and experiences of the

people who devised it. Thus, Java is a programmer’s language. Second, Java is cohesive and

logically consistent. Third, except for those constraints imposed by the Internet environment,

Java gives you, the programmer, full control. If you program well, your programs reflect it.

If you program poorly, your programs reflect that, too. Put differently, Java is not a language

with training wheels. It is a language for professional programmers.

Because of the similarities between Java and C++, it is tempting to think of Java as

simply the “Internet version of C++.” However, to do so would be a large mistake. Java has

significant practical and philosophical differences. While it is true that Java was influenced

by C++, it is not an enhanced version of C++. For example, Java is neither upwardly nor

downwardly compatible with C++. Of course, the similarities with C++ are significant, and if

you are a C++ programmer, then you will feel right at home with Java. One other point: Java

was not designed to replace C++. Java was designed to solve a certain set of problems. C++

was designed to solve a different set of problems. Both will coexist for many years to come.

As mentioned at the start of this chapter, computer languages evolve for two reasons:

to adapt to changes in environment and to implement advances in the art of programming.

The environmental change that prompted Java was the need for platform-independent

programs destined for distribution on the Internet. However, Java also embodies changes

in the way that people approach the writing of programs. For example, Java enhanced

and refined the object-oriented paradigm used by C++, added integrated support for

multithreading, and provided a library that simplified Internet access. In the final analysis,

8 PART I The Java Language

though, it was not the individual features of Java that made it so remarkable. Rather, it was

the language as a whole. Java was the perfect response to the demands of the then newly

emerging, highly distributed computing universe. Java was to Internet programming what

C was to system programming: a revolutionary force that changed the world.

The C# Connection

The reach and power of Java continues to be felt in the world of computer language

development. Many of its innovative features, constructs, and concepts have become part

of the baseline for any new language. The success of Java is simply too important to ignore.

Perhaps the most important example of Java’s influence is C#. Created by Microsoft to

support the .NET Framework, C# is closely related to Java. For example, both share the

same general syntax, support distributed programming, and utilize the same object model.

There are, of course, differences between Java and C#, but the overall “look and feel” of

these languages is very similar. This “cross-pollination” from Java to C# is the strongest

testimonial to date that Java redefined the way we think about and use a computer language.

How Java Changed the Internet
The Internet helped catapult Java to the forefront of programming, and Java, in turn, had

a profound effect on the Internet. In addition to simplifying web programming in general,

Java innovated a new type of networked program called the applet that changed the way

the online world thought about content. Java also addressed some of the thorniest issues

associated with the Internet: portability and security. Let’s look more closely at each of these.

Java Applets

An applet is a special kind of Java program that is designed to be transmitted over the Internet

and automatically executed by a Java-compatible web browser. Furthermore, an applet is

downloaded on demand, without further interaction with the user. If the user clicks a link

that contains an applet, the applet will be automatically downloaded and run in the browser.

Applets are intended to be small programs. They are typically used to display data provided

by the server, handle user input, or provide simple functions, such as a loan calculator, that

execute locally, rather than on the server. In essence, the applet allows some functionality to

be moved from the server to the client.

The creation of the applet changed Internet programming because it expanded the

universe of objects that can move about freely in cyberspace. In general, there are two very

broad categories of objects that are transmitted between the server and the client: passive

information and dynamic, active programs. For example, when you read your e-mail, you

are viewing passive data. Even when you download a program, the program’s code is still

only passive data until you execute it. By contrast, the applet is a dynamic, self-executing

program. Such a program is an active agent on the client computer, yet it is initiated by

the server.

As desirable as dynamic, networked programs are, they also present serious problems

in the areas of security and portability. Obviously, a program that downloads and executes

automatically on the client computer must be prevented from doing harm. It must also be

able to run in a variety of different environments and under different operating systems.

As you will see, Java solved these problems in an effective and elegant way. Let’s look a bit

more closely at each.

 Chapter 1 The History and Evolution of Java 9

P
a

rt
 I

Security

As you are likely aware, every time you download a “normal” program, you are taking a risk,

because the code you are downloading might contain a virus, Trojan horse, or other harmful

code. At the core of the problem is the fact that malicious code can cause its damage because

it has gained unauthorized access to system resources. For example, a virus program might

gather private information, such as credit card numbers, bank account balances, and

passwords, by searching the contents of your computer’s local file system. In order for Java to

enable applets to be downloaded and executed on the client computer safely, it was necessary

to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment

and not allowing it access to other parts of the computer. (You will see how this is

accomplished shortly.) The ability to download applets with confidence that no harm will

be done and that no security will be breached is considered by many to be the single most

innovative aspect of Java.

Portability

Portability is a major aspect of the Internet because there are many different types of

computers and operating systems connected to it. If a Java program were to be run on

virtually any computer connected to the Internet, there needed to be some way to enable

that program to execute on different systems. For example, in the case of an applet, the

same applet must be able to be downloaded and executed by the wide variety of CPUs,

operating systems, and browsers connected to the Internet. It is not practical to have

different versions of the applet for different computers. The same code must work on all
computers. Therefore, some means of generating portable executable code was needed. As

you will soon see, the same mechanism that helps ensure security also helps create portability.

Java’s Magic: The Bytecode
The key that allows Java to solve both the security and the portability problems just described

is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is
a highly optimized set of instructions designed to be executed by the Java run-time system,

which is called the Java Virtual Machine (JVM). In essence, the original JVM was designed as

an interpreter for bytecode. This may come as a bit of a surprise since many modern languages

are designed to be compiled into executable code because of performance concerns.

However, the fact that a Java program is executed by the JVM helps solve the major

problems associated with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program in

a wide variety of environments because only the JVM needs to be implemented for each

platform. Once the run-time package exists for a given system, any Java program can run

on it. Remember, although the details of the JVM will differ from platform to platform, all

understand the same Java bytecode. If a Java program were compiled to native code, then

different versions of the same program would have to exist for each type of CPU connected

to the Internet. This is, of course, not a feasible solution. Thus, the execution of bytecode

by the JVM is the easiest way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure.

Because the JVM is in control, it can contain the program and prevent it from generating

10 PART I The Java Language

side effects outside of the system. As you will see, safety is also enhanced by certain

restrictions that exist in the Java language.

In general, when a program is compiled to an intermediate form and then interpreted

by a virtual machine, it runs slower than it would run if compiled to executable code.

However, with Java, the differential between the two is not so great. Because bytecode has

been highly optimized, the use of bytecode enables the JVM to execute programs much

faster than you might expect.

Although Java was designed as an interpreted language, there is nothing about Java that

prevents on-the-fly compilation of bytecode into native code in order to boost performance.

For this reason, the HotSpot technology was introduced not long after Java’s initial release.

HotSpot provides a Just-In-Time (JIT) compiler for bytecode. When a JIT compiler is part

of the JVM, selected portions of bytecode are compiled into executable code in real time,

on a piece-by-piece, demand basis. It is important to understand that it is not practical to

compile an entire Java program into executable code all at once, because Java performs

various run-time checks that can be done only at run time. Instead, a JIT compiler compiles

code as it is needed, during execution. Furthermore, not all sequences of bytecode are

compiled—only those that will benefit from compilation. The remaining code is simply

interpreted. However, the just-in-time approach still yields a significant performance boost.

Even when dynamic compilation is applied to bytecode, the portability and safety features

still apply, because the JVM is still in charge of the execution environment.

Servlets: Java on the Server Side
As useful as applets can be, they are just one half of the client/server equation. Not long

after the initial release of Java, it became obvious that Java would also be useful on the

server side. The result was the servlet. A servlet is a small program that executes on the

server. Just as applets dynamically extend the functionality of a web browser, servlets

dynamically extend the functionality of a web server. Thus, with the advent of the servlet,

Java spanned both sides of the client/server connection.

Servlets are used to create dynamically generated content that is then served to the

client. For example, an online store might use a servlet to look up the price for an item in a

database. The price information is then used to dynamically generate a web page that is sent

to the browser. Although dynamically generated content is available through mechanisms

such as CGI (Common Gateway Interface), the servlet offers several advantages, including

increased performance.

Because servlets (like all Java programs) are compiled into bytecode and executed by

the JVM, they are highly portable. Thus, the same servlet can be used in a variety of

different server environments. The only requirements are that the server support the JVM

and a servlet container.

The Java Buzzwords
No discussion of Java’s history is complete without a look at the Java buzzwords. Although

the fundamental forces that necessitated the invention of Java are portability and security,

other factors also played an important role in molding the final form of the language. The

key considerations were summed up by the Java team in the following list of buzzwords:

• Simple

• Secure

 Chapter 1 The History and Evolution of Java 11

P
a

rt
 I

• Portable

• Object-oriented

• Robust

• Multithreaded

• Architecture-neutral

• Interpreted

• High performance

• Distributed

• Dynamic

Two of these buzzwords have already been discussed: secure and portable. Let’s examine

what each of the others implies.

Simple

Java was designed to be easy for the professional programmer to learn and use effectively.

Assuming that you have some programming experience, you will not find Java hard to master.

If you already understand the basic concepts of object-oriented programming, learning Java

will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java will

require very little effort. Because Java inherits the C/C++ syntax and many of the object-

oriented features of C++, most programmers have little trouble learning Java.

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-code compatible

with any other language. This allowed the Java team the freedom to design with a blank

slate. One outcome of this was a clean, usable, pragmatic approach to objects. Borrowing

liberally from many seminal object-software environments of the last few decades, Java

manages to strike a balance between the purist’s “everything is an object” paradigm and

the pragmatist’s “stay out of my way” model. The object model in Java is simple and easy to

extend, while primitive types, such as integers, are kept as high-performance nonobjects.

Robust

The multiplatformed environment of the Web places extraordinary demands on a

program, because the program must execute reliably in a variety of systems. Thus, the

ability to create robust programs was given a high priority in the design of Java. To gain

reliability, Java restricts you in a few key areas to force you to find your mistakes early in

program development. At the same time, Java frees you from having to worry about many

of the most common causes of programming errors. Because Java is a strictly typed

language, it checks your code at compile time. However, it also checks your code at run

time. Many hard-to-track-down bugs that often turn up in hard-to-reproduce run-time

situations are simply impossible to create in Java. Knowing that what you have written

will behave in a predictable way under diverse conditions is a key feature of Java.

To better understand how Java is robust, consider two of the main reasons for program

failure: memory management mistakes and mishandled exceptional conditions (that is,

run-time errors). Memory management can be a difficult, tedious task in traditional

12 PART I The Java Language

programming environments. For example, in C/C++, the programmer must manually allocate

and free all dynamic memory. This sometimes leads to problems, because programmers will

either forget to free memory that has been previously allocated or, worse, try to free some

memory that another part of their code is still using. Java virtually eliminates these problems

by managing memory allocation and deallocation for you. (In fact, deallocation is completely

automatic, because Java provides garbage collection for unused objects.) Exceptional

conditions in traditional environments often arise in situations such as division by zero or

“file not found,” and they must be managed with clumsy and hard-to-read constructs. Java

helps in this area by providing object-oriented exception handling. In a well-written Java

program, all run-time errors can—and should—be managed by your program.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked

programs. To accomplish this, Java supports multithreaded programming, which allows you

to write programs that do many things simultaneously. The Java run-time system comes with

an elegant yet sophisticated solution for multiprocess synchronization that enables you to

construct smoothly running interactive systems. Java’s easy-to-use approach to multithreading

allows you to think about the specific behavior of your program, not the multitasking

subsystem.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. At the time

of Java’s creation, one of the main problems facing programmers was that no guarantee

existed that if you wrote a program today, it would run tomorrow—even on the same

machine. Operating system upgrades, processor upgrades, and changes in core system

resources can all combine to make a program malfunction. The Java designers made

several hard decisions in the Java language and the Java Virtual Machine in an attempt to

alter this situation. Their goal was “write once; run anywhere, any time, forever.” To a great

extent, this goal was accomplished.

Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by compiling into

an intermediate representation called Java bytecode. This code can be executed on any

system that implements the Java Virtual Machine. Most previous attempts at cross-platform

solutions have done so at the expense of performance. As explained earlier, the Java

bytecode was carefully designed so that it would be easy to translate directly into native

machine code for very high performance by using a just-in-time compiler. Java run-time

systems that provide this feature lose none of the benefits of the platform-independent code.

Distributed

Java is designed for the distributed environment of the Internet because it handles TCP/IP

protocols. In fact, accessing a resource using a URL is not much different from accessing a

file. Java also supports Remote Method Invocation (RMI). This feature enables a program to

invoke methods across a network.

 Chapter 1 The History and Evolution of Java 13

P
a

rt
 I

Dynamic

Java programs carry with them substantial amounts of run-time type information that is used

to verify and resolve accesses to objects at run time. This makes it possible to dynamically link

code in a safe and expedient manner. This is crucial to the robustness of the Java environment,

in which small fragments of bytecode may be dynamically updated on a running system.

The Evolution of Java
The initial release of Java was nothing short of revolutionary, but it did not mark the end of

Java’s era of rapid innovation. Unlike most other software systems that usually settle into a

pattern of small, incremental improvements, Java continued to evolve at an explosive pace.

Soon after the release of Java 1.0, the designers of Java had already created Java 1.1. The

features added by Java 1.1 were more significant and substantial than the increase in the

minor revision number would have you think. Java 1.1 added many new library elements,

redefined the way events are handled, and reconfigured many features of the 1.0 library. It

also deprecated (rendered obsolete) several features originally defined by Java 1.0. Thus,

Java 1.1 both added to and subtracted from attributes of its original specification.

The next major release of Java was Java 2, where the “2” indicates “second generation.”

The creation of Java 2 was a watershed event, marking the beginning of Java’s “modern

age.” The first release of Java 2 carried the version number 1.2. It may seem odd that the

first release of Java 2 used the 1.2 version number. The reason is that it originally referred

to the internal version number of the Java libraries, but then was generalized to refer to

the entire release. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform

Standard Edition), and the version numbers began to be applied to that product.

Java 2 added support for a number of new features, such as Swing and the Collections

Framework, and it enhanced the Java Virtual Machine and various programming tools. Java 2

also contained a few deprecations. The most important affected the Thread class in which

the methods suspend(), resume(), and stop() were deprecated.

J2SE 1.3 was the first major upgrade to the original Java 2 release. For the most part,

it added to existing functionality and “tightened up” the development environment. In

general, programs written for version 1.2 and those written for version 1.3 are source-code

compatible. Although version 1.3 contained a smaller set of changes than the preceding

three major releases, it was nevertheless important.

The release of J2SE 1.4 further enhanced Java. This release contained several important

upgrades, enhancements, and additions. For example, it added the new keyword assert,
chained exceptions, and a channel-based I/O subsystem. It also made changes to the

Collections Framework and the networking classes. In addition, numerous small changes

were made throughout. Despite the significant number of new features, version 1.4

maintained nearly 100 percent source-code compatibility with prior versions.

The next release of Java was J2SE 5, and it was revolutionary. Unlike most of the previous

Java upgrades, which offered important, but measured improvements, J2SE 5 fundamentally

expanded the scope, power, and range of the language. To grasp the magnitude of the

changes that J2SE 5 made to Java, consider the following list of its major new features:

• Generics

• Annotations

14 PART I The Java Language

• Autoboxing and auto-unboxing

• Enumerations

• Enhanced, for-each style for loop

• Variable-length arguments (varargs)

• Static import

• Formatted I/O

• Concurrency utilities

This is not a list of minor tweaks or incremental upgrades. Each item in the list represented

a significant addition to the Java language. Some, such as generics, the enhanced for, and

varargs, introduced new syntax elements. Others, such as autoboxing and auto-unboxing,

altered the semantics of the language. Annotations added an entirely new dimension to

programming. In all cases, the impact of these additions went beyond their direct effects.

They changed the very character of Java itself.

The importance of these new features is reflected in the use of the version number “5.”

The next version number for Java would normally have been 1.5. However, the new features

were so significant that a shift from 1.4 to 1.5 just didn’t seem to express the magnitude of

the change. Instead, Sun elected to increase the version number to 5 as a way of emphasizing

that a major event was taking place. Thus, it was named J2SE 5, and the Developer’s Kit was

called JDK 5. However, in order to maintain consistency, Sun decided to use 1.5 as its

internal version number, which is also referred to as the developer version number. The

“5” in J2SE 5 is called the product version number.

The next release of Java was called Java SE 6. Sun once again decided to change the

name of the Java platform. First, notice that the “2” was dropped. Thus, the platform was

now named Java SE, and the official product name was Java Platform, Standard Edition 6.

The Java Developer’s Kit was called JDK 6. As with J2SE 5, the 6 in Java SE 6 is the product

version number. The internal, developer version number is 1.6.

Java SE 6 built on the base of J2SE 5, adding incremental improvements. Java SE 6 added

no major features to the Java language proper, but it did enhance the API libraries, added

several new packages, and offered improvements to the runtime. It also went through several

updates during its (in Java terms) long life cycle, with several upgrades added along the way.

In general, Java SE 6 served to further solidify the advances made by J2SE 5.

Java SE 7

The newest release of Java is called Java SE 7, with the Java Developer’s Kit being called JDK 7,

and an internal version number of 1.7. Java SE 7 is the first major release of Java since Sun

Microsystems was acquired by Oracle (a process that began in April 2009 and that was

completed in January 2010). Java SE 7 contains many new features, including significant

additions to the language and the API libraries. Upgrades to the Java run-time system that

support non-Java languages are also included, but it is the language and library additions

that are of most interest to Java programmers.

 Chapter 1 The History and Evolution of Java 15

P
a

rt
 I

The new language features were developed as part of Project Coin. The purpose of

Project Coin was to identify a number of small changes to the Java language that would be

incorporated into JDK 7. Although these new features are collectively referred to as “small,”

the effects of these changes are quite large in terms of the code they impact. In fact, for

many programmers, these changes may well be the most important new features in Java

SE 7. Here is a list of the new language features:

• A String can now control a switch statement.

• Binary integer literals.

• Underscores in numeric literals.

• An expanded try statement, called try-with-resources, that supports automatic resource

management. (For example, streams can now be closed automatically when they are

no longer needed.)

• Type inference (via the diamond operator) when constructing a generic instance.

• Enhanced exception handling in which two or more exceptions can be caught by a

single catch (multi-catch) and better type checking for exceptions that are rethrown.

• Although not a syntax change, the compiler warnings associated with some types of

varargs methods have been improved, and you have more control over the warnings.

As you can see, even though the Project Coin features were considered small changes to

the language, their benefits will be much larger than the qualifier “small” would suggest. In

particular, the try-with-resources statement will profoundly affect the way that stream-based

code is written. Also, the ability to now use a String to control a switch statement is a

long-desired improvement that will simplify coding in many situations.

Java SE 7 makes several additions to the Java API library. Two of the most important are

the enhancements to the NIO Framework and the addition of the Fork/Join Framework.

NIO (which originally stood for New I/O) was added to Java in version 1.4. However, the

changes proposed for Java SE 7 fundamentally expand its capabilities. So significant are

the changes, that the term NIO.2 is often used.

The Fork/Join Framework provides important support for parallel programming. Parallel

programming is the name commonly given to the techniques that make effective use of

computers that contain more than one processor, including multicore systems. The

advantage that multicore environments offer is the prospect of significantly increased

program performance. The Fork/Join Framework addresses parallel programming by

• Simplifying the creation and use of tasks that can execute concurrently

• Automatically making use of multiple processors

Therefore, by using the Fork/Join Framework, you can easily create scaleable

applications that automatically take advantage of the processors available in the execution

environment. Of course, not all algorithms lend themselves to parallelization, but for those

that do, a significant improvement in execution speed can be obtained.

16 PART I The Java Language

The material in this book has been updated to reflect Java SE 7, with many new

features, updates, and additions indicated throughout.

A Culture of Innovation
Since the beginning, Java has been at the center of a culture of innovation. Its original release

redefined programming for the Internet. The Java Virtual Machine (JVM) and bytecode

changed the way we think about security and portability. The applet (and then the servlet)

made the Web come alive. The Java Community Process (JCP) redefined the way that new

ideas are assimilated into the language. Because Java is used for Android programming, Java

is part of the smartphone revolution. The world of Java has never stood still for very long.

Java SE 7 is the latest release in Java’s ongoing, dynamic history.

2
CHAPTER

 17

An Overview of Java

As in all other computer languages, the elements of Java do not exist in isolation. Rather,

they work together to form the language as a whole. However, this interrelatedness can

make it difficult to describe one aspect of Java without involving several others. Often a

discussion of one feature implies prior knowledge of another. For this reason, this chapter

presents a quick overview of several key features of Java. The material described here will

give you a foothold that will allow you to write and understand simple programs. Most of

the topics discussed will be examined in greater detail in the remaining chapters of Part I.

Object-Oriented Programming
Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to

at least some extent object-oriented. OOP is so integral to Java that it is best to understand

its basic principles before you begin writing even simple Java programs. Therefore, this

chapter begins with a discussion of the theoretical aspects of OOP.

Two Paradigms

All computer programs consist of two elements: code and data. Furthermore, a program

can be conceptually organized around its code or around its data. That is, some programs

are written around “what is happening” and others are written around “who is being

affected.” These are the two paradigms that govern how a program is constructed. The first

way is called the process-oriented model. This approach characterizes a program as a series of

linear steps (that is, code). The process-oriented model can be thought of as code acting on
data. Procedural languages such as C employ this model to considerable success. However,

as mentioned in Chapter 1, problems with this approach appear as programs grow larger

and more complex.

To manage increasing complexity, the second approach, called object-oriented programming,

was conceived. Object-oriented programming organizes a program around its data (that is,

objects) and a set of well-defined interfaces to that data. An object-oriented program can

be characterized as data controlling access to code. As you will see, by switching the controlling

entity to data, you can achieve several organizational benefits.

18 PART I The Java Language

Abstraction

An essential element of object-oriented programming is abstraction. Humans manage

complexity through abstraction. For example, people do not think of a car as a set of tens

of thousands of individual parts. They think of it as a well-defined object with its own

unique behavior. This abstraction allows people to use a car to drive to the grocery store

without being overwhelmed by the complexity of the parts that form the car. They can

ignore the details of how the engine, transmission, and braking systems work. Instead,

they are free to utilize the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications.

This allows you to layer the semantics of complex systems, breaking them into more

manageable pieces. From the outside, the car is a single object. Once inside, you see that

the car consists of several subsystems: steering, brakes, sound system, seat belts, heating,

cellular phone, and so on. In turn, each of these subsystems is made up of more specialized

units. For instance, the sound system consists of a radio, a CD player, and/or a tape player.

The point is that you manage the complexity of the car (or any other complex system)

through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs.

The data from a traditional process-oriented program can be transformed by abstraction

into its component objects. A sequence of process steps can become a collection of messages

between these objects. Thus, each of these objects describes its own unique behavior. You

can treat these objects as concrete entities that respond to messages telling them to do
something. This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human

understanding. It is important that you understand how these concepts translate into

programs. As you will see, object-oriented programming is a powerful and natural paradigm

for creating programs that survive the inevitable changes accompanying the life cycle of any

major software project, including conception, growth, and aging. For example, once you

have well-defined objects and clean, reliable interfaces to those objects, you can gracefully

decommission or replace parts of an older system without fear.

The Three OOP Principles

All object-oriented programming languages provide mechanisms that help you implement

the object-oriented model. They are encapsulation, inheritance, and polymorphism. Let’s

take a look at these concepts now.

Encapsulation
Encapsulation is the mechanism that binds together code and the data it manipulates, and

keeps both safe from outside interference and misuse. One way to think about encapsulation

is as a protective wrapper that prevents the code and data from being arbitrarily accessed by

other code defined outside the wrapper. Access to the code and data inside the wrapper is

tightly controlled through a well-defined interface. To relate this to the real world, consider

the automatic transmission on an automobile. It encapsulates hundreds of bits of information

about your engine, such as how much you are accelerating, the pitch of the surface you are

on, and the position of the shift lever. You, as the user, have only one method of affecting

this complex encapsulation: by moving the gear-shift lever. You can’t affect the transmission

by using the turn signal or windshield wipers, for example. Thus, the gear-shift lever is a

well-defined (indeed, unique) interface to the transmission. Further, what occurs inside the

 Chapter 2 An Overview of Java 19

P
a

rt
 I

transmission does not affect objects outside the transmission. For example, shifting gears

does not turn on the headlights! Because an automatic transmission is encapsulated, dozens

of car manufacturers can implement one in any way they please. However, from the driver’s

point of view, they all work the same. This same idea can be applied to programming. The

power of encapsulated code is that everyone knows how to access it and thus can use it

regardless of the implementation details—and without fear of unexpected side effects.

In Java, the basis of encapsulation is the class. Although the class will be examined in

great detail later in this book, the following brief discussion will be helpful now. A class defines

the structure and behavior (data and code) that will be shared by a set of objects. Each object

of a given class contains the structure and behavior defined by the class, as if it were stamped

out by a mold in the shape of the class. For this reason, objects are sometimes referred to as

instances of a class. Thus, a class is a logical construct; an object has physical reality.

When you create a class, you will specify the code and data that constitute that class.

Collectively, these elements are called members of the class. Specifically, the data defined by

the class are referred to as member variables or instance variables. The code that operates on

that data is referred to as member methods or just methods. (If you are familiar with C/C++, it

may help to know that what a Java programmer calls a method, a C/C++ programmer calls a

function.) In properly written Java programs, the methods define how the member variables

can be used. This means that the behavior and interface of a class are defined by the methods

that operate on its instance data.

Since the purpose of a class is to encapsulate complexity, there are mechanisms for

hiding the complexity of the implementation inside the class. Each method or variable in a

class may be marked private or public. The public interface of a class represents everything

that external users of the class need to know, or may know. The private methods and data

can only be accessed by code that is a member of the class. Therefore, any other code that

is not a member of the class cannot access a private method or variable. Since the private

members of a class may only be accessed by other parts of your program through the class’

public methods, you can ensure that no improper actions take place. Of course, this means

that the public interface should be carefully designed not to expose too much of the inner

workings of a class (see Figure 2-1).

Inheritance
Inheritance is the process by which one object acquires the properties of another object. This

is important because it supports the concept of hierarchical classification. As mentioned

earlier, most knowledge is made manageable by hierarchical (that is, top-down) classifications.

For example, a Golden Retriever is part of the classification dog, which in turn is part of the

mammal class, which is under the larger class animal. Without the use of hierarchies, each

object would need to define all of its characteristics explicitly. However, by use of inheritance,

an object need only define those qualities that make it unique within its class. It can inherit

its general attributes from its parent. Thus, it is the inheritance mechanism that makes it

possible for one object to be a specific instance of a more general case. Let’s take a closer

look at this process.

Most people naturally view the world as made up of objects that are related to each

other in a hierarchical way, such as animals, mammals, and dogs. If you wanted to describe

animals in an abstract way, you would say they have some attributes, such as size, intelligence,

and type of skeletal system. Animals also have certain behavioral aspects; they eat, breathe,

and sleep. This description of attributes and behavior is the class definition for animals.

20 PART I The Java Language

If you wanted to describe a more specific class of animals, such as mammals, they would

have more specific attributes, such as type of teeth and mammary glands. This is known as a

subclass of animals, where animals are referred to as mammals’ superclass.
Since mammals are simply more precisely specified animals, they inherit all of the

attributes from animals. A deeply inherited subclass inherits all of the attributes from each

of its ancestors in the class hierarchy.
Inheritance interacts with encapsulation as well. If a given class encapsulates some

attributes, then any subclass will have the same attributes plus any that it adds as part of its

specialization (see Figure 2-2). This is a key concept that lets object-oriented programs grow

in complexity linearly rather than geometrically. A new subclass inherits all of the attributes

of all of its ancestors. It does not have unpredictable interactions with the majority of the

rest of the code in the system.

Figure 2-1 Encapsulation: public methods can be used to protect private data.

 Chapter 2 An Overview of Java 21

P
a

rt
 I

Polymorphism
Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface to

be used for a general class of actions. The specific action is determined by the exact nature

of the situation. Consider a stack (which is a last-in, first-out list). You might have a program

that requires three types of stacks. One stack is used for integer values, one for floating-

point values, and one for characters. The algorithm that implements each stack is the same,

even though the data being stored differs. In a non–object-oriented language, you would be

required to create three different sets of stack routines, with each set using different names.

However, because of polymorphism, in Java you can specify a general set of stack routines

that all share the same names.

Figure 2-2 Labrador inherits the encapsulation of all its superclasses.

22 PART I The Java Language

More generally, the concept of polymorphism is often expressed by the phrase “one

interface, multiple methods.” This means that it is possible to design a generic interface to a

group of related activities. This helps reduce complexity by allowing the same interface to

be used to specify a general class of action. It is the compiler’s job to select the specific action

(that is, method) as it applies to each situation. You, the programmer, do not need to make

this selection manually. You need only remember and utilize the general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells a

cat, it will bark and run after it. If the dog smells its food, it will salivate and run to its bowl.

The same sense of smell is at work in both situations. The difference is what is being smelled,

that is, the type of data being operated upon by the dog’s nose! This same general concept

can be implemented in Java as it applies to methods within a Java program.

Polymorphism, Encapsulation, and Inheritance Work Together
When properly applied, polymorphism, encapsulation, and inheritance combine to produce

a programming environment that supports the development of far more robust and scaleable

programs than does the process-oriented model. A well-designed hierarchy of classes is the

basis for reusing the code in which you have invested time and effort developing and testing.

Encapsulation allows you to migrate your implementations over time without breaking the

code that depends on the public interface of your classes. Polymorphism allows you to create

clean, sensible, readable, and resilient code.

Of the two real-world examples, the automobile more completely illustrates the power

of object-oriented design. Dogs are fun to think about from an inheritance standpoint, but

cars are more like programs. All drivers rely on inheritance to drive different types (subclasses)

of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche, or the family

minivan, drivers can all more or less find and operate the steering wheel, the brakes, and

the accelerator. After a bit of gear grinding, most people can even manage the difference

between a stick shift and an automatic, because they fundamentally understand their

common superclass, the transmission.

People interface with encapsulated features on cars all the time. The brake and gas

pedals hide an incredible array of complexity with an interface so simple you can operate

them with your feet! The implementation of the engine, the style of brakes, and the size of

the tires have no effect on how you interface with the class definition of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers

to offer a wide array of options on basically the same vehicle. For example, you can get an

antilock braking system or traditional brakes, power or rack-and-pinion steering, and 4-, 6-,

or 8-cylinder engines. Either way, you will still press the brake pedal to stop, turn the steering

wheel to change direction, and press the accelerator when you want to move. The same

interface can be used to control a number of different implementations.

As you can see, it is through the application of encapsulation, inheritance, and

polymorphism that the individual parts are transformed into the object known as a car.

The same is also true of computer programs. By the application of object-oriented

principles, the various parts of a complex program can be brought together to form a

cohesive, robust, maintainable whole.

As mentioned at the start of this section, every Java program is object-oriented. Or, put

more precisely, every Java program involves encapsulation, inheritance, and polymorphism.

Although the short example programs shown in the rest of this chapter and in the next few

chapters may not seem to exhibit all of these features, they are nevertheless present. As you

 Chapter 2 An Overview of Java 23

P
a

rt
 I

will see, many of the features supplied by Java are part of its built-in class libraries, which do

make extensive use of encapsulation, inheritance, and polymorphism.

A First Simple Program
Now that the basic object-oriented underpinning of Java has been discussed, let’s look at

some actual Java programs. Let’s start by compiling and running the short sample program

shown here. As you will see, this involves a little more work than you might imagine.

/*
 This is a simple Java program.
 Call this file "Example.java".
*/
class Example {
 // Your program begins with a call to main().
 public static void main(String args[]) {
 System.out.println("This is a simple Java program.");
 }
}

NOTE The descriptions that follow use the standard Java SE 7 Development Kit (JDK 7), which is available
from Oracle. If you are using a different Java development environment, then you may need to follow a
different procedure for compiling and executing Java programs. In this case, consult your compiler’s
documentation for details.

Entering the Program

For most computer languages, the name of the file that holds the source code to a program

is immaterial. However, this is not the case with Java. The first thing that you must learn

about Java is that the name you give to a source file is very important. For this example,

the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains

(among other things) one or more class definitions. (For now, we will be using source files

that contain only one class.) The Java compiler requires that a source file use the .java

filename extension.

As you can see by looking at the program, the name of the class defined by the program

is also Example. This is not a coincidence. In Java, all code must reside inside a class. By

convention, the name of the main class should match the name of the file that holds the

program. You should also make sure that the capitalization of the filename matches the

class name. The reason for this is that Java is case-sensitive. At this point, the convention

that filenames correspond to class names may seem arbitrary. However, this convention

makes it easier to maintain and organize your programs.

Compiling the Program

To compile the Example program, execute the compiler, javac, specifying the name of the

source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of

the program. As discussed earlier, the Java bytecode is the intermediate representation of

24 PART I The Java Language

your program that contains instructions the Java Virtual Machine will execute. Thus, the

output of javac is not code that can be directly executed.

To actually run the program, you must use the Java application launcher called java. To

do so, pass the class name Example as a command-line argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

 This is a simple Java program.

When Java source code is compiled, each individual class is put into its own output file

named after the class and using the .class extension. This is why it is a good idea to give

your Java source files the same name as the class they contain—the name of the source file

will match the name of the .class file. When you execute java as just shown, you are actually

specifying the name of the class that you want to execute. It will automatically search for a

file by that name that has the .class extension. If it finds the file, it will execute the code

contained in the specified class.

A Closer Look at the First Sample Program

Although Example.java is quite short, it includes several key features that are common to

all Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

/*
 This is a simple Java program.
 Call this file "Example.java".
*/

This is a comment. Like most other programming languages, Java lets you enter a remark

into a program’s source file. The contents of a comment are ignored by the compiler.

Instead, a comment describes or explains the operation of the program to anyone who is

reading its source code. In this case, the comment describes the program and reminds you

that the source file should be called Example.java. Of course, in real applications, comments

generally explain how some part of the program works or what a specific feature does.

Java supports three styles of comments. The one shown at the top of the program is

called a multiline comment. This type of comment must begin with /* and end with */.

Anything between these two comment symbols is ignored by the compiler. As the name

suggests, a multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. Example

is an identifier that is the name of the class. The entire class definition, including all of its

members, will be between the opening curly brace ({) and the closing curly brace (}). For

the moment, don’t worry too much about the details of a class except to note that in Java,

all program activity occurs within one. This is one reason why all Java programs are (at least

a little bit) object-oriented.

 Chapter 2 An Overview of Java 25

P
a

rt
 I

The next line in the program is the single-line comment, shown here:

// Your program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment begins with

a // and ends at the end of the line. As a general rule, programmers use multiline comments

for longer remarks and single-line comments for brief, line-by-line descriptions. The third

type of comment, a documentation comment, will be discussed in the “Comments” section

later in this chapter.

The next line of code is shown here:

public static void main(String args[]) {

This line begins the main() method. As the comment preceding it suggests, this is the line

at which the program will begin executing. All Java applications begin execution by calling

main(). The full meaning of each part of this line cannot be given now, since it involves a

detailed understanding of Java’s approach to encapsulation. However, since most of the

examples in the first part of this book will use this line of code, let’s take a brief look at

each part now.

The public keyword is an access modifier, which allows the programmer to control the

visibility of class members. When a class member is preceded by public, then that member

may be accessed by code outside the class in which it is declared. (The opposite of public is

private, which prevents a member from being used by code defined outside of its class.) In

this case, main() must be declared as public, since it must be called by code outside of its

class when the program is started. The keyword static allows main() to be called without

having to instantiate a particular instance of the class. This is necessary since main() is
called by the Java Virtual Machine before any objects are made. The keyword void simply

tells the compiler that main() does not return a value. As you will see, methods may also

return values. If all this seems a bit confusing, don’t worry. All of these concepts will be

discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Keep in mind

that Java is case-sensitive. Thus, Main is different from main. It is important to understand

that the Java compiler will compile classes that do not contain a main() method. But java

has no way to run these classes. So, if you had typed Main instead of main, the compiler

would still compile your program. However, java would report an error because it would be

unable to find the main() method.

Any information that you need to pass to a method is received by variables specified

within the set of parentheses that follow the name of the method. These variables are called

parameters. If there are no parameters required for a given method, you still need to include

the empty parentheses. In main(), there is only one parameter, albeit a complicated one.

String args[] declares a parameter named args, which is an array of instances of the class

String. (Arrays are collections of similar objects.) Objects of type String store character

strings. In this case, args receives any command-line arguments present when the program

is executed. This program does not make use of this information, but other programs

shown later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All of the

code that comprises a method will occur between the method’s opening curly brace and its

closing curly brace.

26 PART I The Java Language

One other point: main() is simply a starting place for your program. A complex

program will have dozens of classes, only one of which will need to have a main() method

to get things started. Furthermore, in some cases, you won’t need main() at all. For example,

when creating applets—Java programs that are embedded in web browsers—you won’t use

main() since the web browser uses a different means of starting the execution of applets.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("This is a simple Java program.");

This line outputs the string "This is a simple Java program." followed by a new line on the

screen. Output is actually accomplished by the built-in println() method. In this case, println()
displays the string which is passed to it. As you will see, println() can be used to display other

types of information, too. The line begins with System.out. While too complicated to explain

in detail at this time, briefly, System is a predefined class that provides access to the system,

and out is the output stream that is connected to the console.

As you have probably guessed, console output (and input) is not used frequently in most

real-world Java applications. Since most modern computing environments are windowed and

graphical in nature, console I/O is used mostly for simple utility programs, demonstration

programs, and server-side code. Later in this book, you will learn other ways to generate

output using Java. But for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java end

with a semicolon. The reason that the other lines in the program do not end in a semicolon

is that they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class definition.

A Second Short Program
Perhaps no other concept is more fundamental to a programming language than that of a

variable. As you probably know, a variable is a named memory location that may be assigned

a value by your program. The value of a variable may be changed during the execution of

the program. The next program shows how a variable is declared and how it is assigned a

value. The program also illustrates some new aspects of console output. As the comments

at the top of the program state, you should call this file Example2.java.

/*
 Here is another short example.
 Call this file "Example2.java".
*/

class Example2 {
 public static void main(String args []) {
 int num; // this declares a variable called num

 num = 100; // this assigns num the value 100

 System.out.println("This is num: " + num);

 num = num * 2;

 System.out.print("The value of num * 2 is ");

 Chapter 2 An Overview of Java 27

P
a

rt
 I

 System.out.println(num);
 }
}

When you run this program, you will see the following output:

 This is num: 100
 The value of num * 2 is 200

Let’s take a close look at why this output is generated. The first new line in the program

is shown here:

int num; // this declares a variable called num

This line declares an integer variable called num. Java (like most other languages) requires

that variables be declared before they are used.

Following is the general form of a variable declaration:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the

variable. If you want to declare more than one variable of the specified type, you may use a

comma-separated list of variable names. Java defines several data types, including integer,

character, and floating-point. The keyword int specifies an integer type.

In the program, the line

num = 100; // this assigns num the value 100

assigns to num the value 100. In Java, the assignment operator is a single equal sign.

The next line of code outputs the value of num preceded by the string "This is num:".

System.out.println("This is num: " + num);

In this statement, the plus sign causes the value of num to be appended to the string that

precedes it, and then the resulting string is output. (Actually, num is first converted from an

integer into its string equivalent and then concatenated with the string that precedes it. This

process is described in detail later in this book.) This approach can be generalized. Using

the + operator, you can join together as many items as you want within a single println()
statement.

The next line of code assigns num the value of num times 2. Like most other languages,

Java uses the * operator to indicate multiplication. After this line executes, num will contain

the value 200.

Here are the next two lines in the program:

System.out.print ("The value of num * 2 is ");
System.out.println (num);

Several new things are occurring here. First, the built-in method print() is used to

display the string "The value of num * 2 is ". This string is not followed by a newline. This

means that when the next output is generated, it will start on the same line. The print()
method is just like println(), except that it does not output a newline character after each

call. Now look at the call to println(). Notice that num is used by itself. Both print() and

println() can be used to output values of any of Java’s built-in types.

28 PART I The Java Language

Two Control Statements
Although Chapter 5 will look closely at control statements, two are briefly introduced here

so that they can be used in example programs in Chapters 3 and 4. They will also help

illustrate an important aspect of Java: blocks of code.

The if Statement

The Java if statement works much like the IF statement in any other language. Further, it is

syntactically identical to the if statements in C, C++, and C#. Its simplest form is shown here:

if(condition) statement;

Here, condition is a Boolean expression. If condition is true, then the statement is executed.

If condition is false, then the statement is bypassed. Here is an example:

if(num < 100) System.out.println("num is less than 100");

In this case, if num contains a value that is less than 100, the conditional expression is

true, and println() will execute. If num contains a value greater than or equal to 100, then

the println() method is bypassed.

As you will see in Chapter 4, Java defines a full complement of relational operators

which may be used in a conditional expression. Here are a few:

Operator Meaning

< Less than

> Greater than

== Equal to

Notice that the test for equality is the double equal sign.

Here is a program that illustrates the if statement:

/*
 Demonstrate the if.

 Call this file "IfSample.java".
*/
class IfSample {
 public static void main(String args[]) {
 int x, y;

 x = 10;
 y = 20;

 if(x < y) System.out.println("x is less than y");

 x = x * 2;
 if(x == y) System.out.println("x now equal to y");

 Chapter 2 An Overview of Java 29

P
a

rt
 I

 x = x * 2;
 if(x > y) System.out.println("x now greater than y");

 // this won't display anything
 if(x == y) System.out.println("you won't see this");
 }
}

The output generated by this program is shown here:

 x is less than y
 x now equal to y
 x now greater than y

Notice one other thing in this program. The line

int x, y;

declares two variables, x and y, by use of a comma-separated list.

The for Loop

As you may know from your previous programming experience, loop statements are an

important part of nearly any programming language. Java is no exception. In fact, as you

will see in Chapter 5, Java supplies a powerful assortment of loop constructs. Perhaps the

most versatile is the for loop. The simplest form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control

variable to an initial value. The condition is a Boolean expression that tests the loop control

variable. If the outcome of that test is true, the for loop continues to iterate. If it is false,

the loop terminates. The iteration expression determines how the loop control variable is

changed each time the loop iterates. Here is a short program that illustrates the for loop:

/*
 Demonstrate the for loop.

 Call this file "ForTest.java".
*/
class ForTest {
 public static void main(String args[]) {
 int x;

 for(x = 0; x<10; x = x+1)
 System.out.println("This is x: " + x);
 }
}

This program generates the following output:

 This is x: 0
 This is x: 1
 This is x: 2
 This is x: 3

30 PART I The Java Language

 This is x: 4
 This is x: 5
 This is x: 6
 This is x: 7
 This is x: 8
 This is x: 9

In this example, x is the loop control variable. It is initialized to zero in the initialization

portion of the for. At the start of each iteration (including the first one), the conditional

test x < 10 is performed. If the outcome of this test is true, the println() statement is

executed, and then the iteration portion of the loop is executed. This process continues

until the conditional test is false.

As a point of interest, in professionally written Java programs you will almost never see

the iteration portion of the loop written as shown in the preceding program. That is, you

will seldom see statements like this:

x = x + 1;

The reason is that Java includes a special increment operator which performs this operation

more efficiently. The increment operator is ++. (That is, two plus signs back to back.) The

increment operator increases its operand by one. By use of the increment operator, the

preceding statement can be written like this:

x++;

Thus, the for in the preceding program will usually be written like this:

for(x = 0; x<10; x++)

You might want to try this. As you will see, the loop still runs exactly the same as it did

before.

Java also provides a decrement operator, which is specified as – –. This operator

decreases its operand by one.

Using Blocks of Code
Java allows two or more statements to be grouped into blocks of code, also called code blocks.
This is done by enclosing the statements between opening and closing curly braces. Once a

block of code has been created, it becomes a logical unit that can be used any place that a

single statement can. For example, a block can be a target for Java’s if and for statements.

Consider this if statement:

if(x < y) { // begin a block
 x = y;
 y = 0;
} // end of block

Here, if x is less than y, then both statements inside the block will be executed. Thus, the

two statements inside the block form a logical unit, and one statement cannot execute

without the other also executing. The key point here is that whenever you need to logically

link two or more statements, you do so by creating a block.

 Chapter 2 An Overview of Java 31

P
a

rt
 I

Let’s look at another example. The following program uses a block of code as the target

of a for loop.

/*
 Demonstrate a block of code.

 Call this file "BlockTest.java"
*/
class BlockTest {
 public static void main(String args[]) {
 int x, y;

 y = 20;

 // the target of this loop is a block
 for(x = 0; x<10; x++) {
 System.out.println("This is x: " + x);
 System.out.println("This is y: " + y);
 y = y - 2;
 }
 }
}

The output generated by this program is shown here:

 This is x: 0
 This is y: 20
 This is x: 1
 This is y: 18
 This is x: 2
 This is y: 16
 This is x: 3
 This is y: 14
 This is x: 4
 This is y: 12
 This is x: 5
 This is y: 10
 This is x: 6
 This is y: 8
 This is x: 7
 This is y: 6
 This is x: 8
 This is y: 4
 This is x: 9
 This is y: 2

In this case, the target of the for loop is a block of code and not just a single statement.

Thus, each time the loop iterates, the three statements inside the block will be executed.

This fact is, of course, evidenced by the output generated by the program.

As you will see later in this book, blocks of code have additional properties and uses.

However, the main reason for their existence is to create logically inseparable units of code.

32 PART I The Java Language

Lexical Issues
Now that you have seen several short Java programs, it is time to more formally describe the

atomic elements of Java. Java programs are a collection of whitespace, identifiers, literals,

comments, operators, separators, and keywords. The operators are described in the next

chapter. The others are described next.

Whitespace

Java is a free-form language. This means that you do not need to follow any special

indentation rules. For instance, the Example program could have been written all on one

line or in any other strange way you felt like typing it, as long as there was at least one

whitespace character between each token that was not already delineated by an operator

or separator. In Java, whitespace is a space, tab, or newline.

Identifiers

Identifiers are used to name things, such as classes, variables, and methods. An identifier

may be any descriptive sequence of uppercase and lowercase letters, numbers, or the

underscore and dollar-sign characters. (The dollar-sign character is not intended for

general use.) They must not begin with a number, lest they be confused with a numeric

literal. Again, Java is case-sensitive, so VALUE is a different identifier than Value. Some

examples of valid identifiers are

AvgTemp count a4 $test this_is_ok

Invalid identifier names include these:

2count high-temp Not/ok

Literals

A constant value in Java is created by using a literal representation of it. For example, here

are some literals:

100 98.6 ‘X’ “This is a test”

Left to right, the first literal specifies an integer, the next is a floating-point value, the third

is a character constant, and the last is a string. A literal can be used anywhere a value of its

type is allowed.

Comments

As mentioned, there are three types of comments defined by Java. You have already seen

two: single-line and multiline. The third type is called a documentation comment. This type

of comment is used to produce an HTML file that documents your program. The

documentation comment begins with a /** and ends with a */. Documentation comments

are explained in the Appendix.

 Chapter 2 An Overview of Java 33

P
a

rt
 I

Separators

In Java, there are a few characters that are used as separators. The most commonly used

separator in Java is the semicolon. As you have seen, it is used to terminate statements. The

separators are shown in the following table:

Symbol Name Purpose

() Parentheses Used to contain lists of parameters in method definition and

invocation. Also used for defining precedence in expressions,

containing expressions in control statements, and surrounding

cast types.

{ } Braces Used to contain the values of automatically initialized arrays.

Also used to define a block of code, for classes, methods, and

local scopes.

[] Brackets Used to declare array types. Also used when dereferencing array

values.

; Semicolon Terminates statements.

, Comma Separates consecutive identifiers in a variable declaration. Also

used to chain statements together inside a for statement.

. Period Used to separate package names from subpackages and classes. Also

used to separate a variable or method from a reference variable.

The Java Keywords

There are 50 keywords currently defined in the Java language (see Table 2-1). These

keywords, combined with the syntax of the operators and separators, form the foundation

of the Java language. These keywords cannot be used as identifiers. Thus, they cannot be

used as names for a variable, class, or method.

The keywords const and goto are reserved but not used. In the early days of Java, several

other keywords were reserved for possible future use. However, the current specification for

Java defines only the keywords shown in Table 2-1.

Table 2-1 Java Keywords

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

34 PART I The Java Language

In addition to the keywords, Java reserves the following: true, false, and null. These are

values defined by Java. You may not use these words for the names of variables, classes, and

so on.

The Java Class Libraries
The sample programs shown in this chapter make use of two of Java’s built-in methods:

println() and print(). As mentioned, these methods are members of the System class,

which is a class predefined by Java that is automatically included in your programs. In the

larger view, the Java environment relies on several built-in class libraries that contain many

built-in methods that provide support for such things as I/O, string handling, networking,

and graphics. The standard classes also provide support for windowed output. Thus, Java as

a totality is a combination of the Java language itself, plus its standard classes. As you will

see, the class libraries provide much of the functionality that comes with Java. Indeed, part

of becoming a Java programmer is learning to use the standard Java classes. Throughout

Part I of this book, various elements of the standard library classes and methods are

described as needed. In Part II, the class libraries are described in detail.

3
CHAPTER

 35

Data Types, Variables,
and Arrays

This chapter examines three of Java’s most fundamental elements: data types, variables, and

arrays. As with all modern programming languages, Java supports several types of data. You

may use these types to declare variables and to create arrays. As you will see, Java’s approach

to these items is clean, efficient, and cohesive.

Java Is a Strongly Typed Language
It is important to state at the outset that Java is a strongly typed language. Indeed, part

of Java’s safety and robustness comes from this fact. Let’s see what this means. First, every

variable has a type, every expression has a type, and every type is strictly defined. Second,

all assignments, whether explicit or via parameter passing in method calls, are checked for

type compatibility. There are no automatic coercions or conversions of conflicting types as

in some languages. The Java compiler checks all expressions and parameters to ensure that

the types are compatible. Any type mismatches are errors that must be corrected before the

compiler will finish compiling the class.

The Primitive Types
Java defines eight primitive types of data: byte, short, int, long, char, float, double, and

boolean. The primitive types are also commonly referred to as simple types, and both

terms will be used in this book. These can be put in four groups:

• Integers This group includes byte, short, int, and long, which are for whole-valued

signed numbers.

• Floating-point numbers This group includes float and double, which represent

numbers with fractional precision.

• Characters This group includes char, which represents symbols in a character set,

like letters and numbers.

• Boolean This group includes boolean, which is a special type for representing

true/false values.

36 PART I The Java Language

You can use these types as-is, or to construct arrays or your own class types. Thus, they

form the basis for all other types of data that you can create.

The primitive types represent single values—not complex objects. Although Java is

otherwise completely object-oriented, the primitive types are not. They are analogous to

the simple types found in most other non–object-oriented languages. The reason for this

is efficiency. Making the primitive types into objects would have degraded performance

too much.

The primitive types are defined to have an explicit range and mathematical behavior.

Languages such as C and C++ allow the size of an integer to vary based upon the dictates

of the execution environment. However, Java is different. Because of Java’s portability

requirement, all data types have a strictly defined range. For example, an int is always 32 bits,

regardless of the particular platform. This allows programs to be written that are guaranteed

to run without porting on any machine architecture. While strictly specifying the size of an

integer may cause a small loss of performance in some environments, it is necessary in

order to achieve portability.

Let’s look at each type of data in turn.

Integers
Java defines four integer types: byte, short, int, and long. All of these are signed, positive

and negative values. Java does not support unsigned, positive-only integers. Many other

computer languages support both signed and unsigned integers. However, Java’s designers

felt that unsigned integers were unnecessary. Specifically, they felt that the concept of

unsigned was used mostly to specify the behavior of the high-order bit, which defines the sign

of an integer value. As you will see in Chapter 4, Java manages the meaning of the high-

order bit differently, by adding a special “unsigned right shift” operator. Thus, the need for

an unsigned integer type was eliminated.

The width of an integer type should not be thought of as the amount of storage it

consumes, but rather as the behavior it defines for variables and expressions of that type.

The Java run-time environment is free to use whatever size it wants, as long as the types

behave as you declared them. The width and ranges of these integer types vary widely, as

shown in this table:

Name Width Range

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

Let’s look at each type of integer.

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range from –128 to

127. Variables of type byte are especially useful when you’re working with a stream of data

from a network or file. They are also useful when you’re working with raw binary data that

may not be directly compatible with Java’s other built-in types.

 Chapter 3 Data Types, Variables, and Arrays 37

P
a

rt
 I

Byte variables are declared by use of the byte keyword. For example, the following

declares two byte variables called b and c:

byte b, c;

short

short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the least-

used Java type. Here are some examples of short variable declarations:

short s;
short t;

int

The most commonly used integer type is int. It is a signed 32-bit type that has a range

from –2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are

commonly employed to control loops and to index arrays. Although you might think that

using a byte or short would be more efficient than using an int in situations in which the

larger range of an int is not needed, this may not be the case. The reason is that when byte

and short values are used in an expression they are promoted to int when the expression is

evaluated. (Type promotion is described later in this chapter.) Therefore, int is often the

best choice when an integer is needed.

long

long is a signed 64-bit type and is useful for those occasions where an int type is not large

enough to hold the desired value. The range of a long is quite large. This makes it useful

when big, whole numbers are needed. For example, here is a program that computes the

number of miles that light will travel in a specified number of days:

// Compute distance light travels using long variables.
class Light {
 public static void main(String args[]) {
 int lightspeed;
 long days;
 long seconds;
 long distance;

 // approximate speed of light in miles per second
 lightspeed = 186000;

 days = 1000; // specify number of days here

 seconds = days * 24 * 60 * 60; // convert to seconds

 distance = lightspeed * seconds; // compute distance

 System.out.print("In " + days);
 System.out.print(" days light will travel about ");
 System.out.println(distance + " miles.");
 }
}

38 PART I The Java Language

This program generates the following output:

 In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

Floating-Point Types
Floating-point numbers, also known as real numbers, are used when evaluating expressions

that require fractional precision. For example, calculations such as square root, or

transcendentals such as sine and cosine, result in a value whose precision requires a floating-

point type. Java implements the standard (IEEE–754) set of floating-point types and

operators. There are two kinds of floating-point types, float and double, which represent

single- and double-precision numbers, respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e–045 to 3.4e+038

Each of these floating-point types is examined next.

float

The type float specifies a single-precision value that uses 32 bits of storage. Single precision is

faster on some processors and takes half as much space as double precision, but will become

imprecise when the values are either very large or very small. Variables of type float are

useful when you need a fractional component, but don’t require a large degree of precision.

For example, float can be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp, lowtemp;

double

Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double

precision is actually faster than single precision on some modern processors that have been

optimized for high-speed mathematical calculations. All transcendental math functions,

such as sin(), cos(), and sqrt(), return double values. When you need to maintain accuracy

over many iterative calculations, or are manipulating large-valued numbers, double is the

best choice.

Here is a short program that uses double variables to compute the area of a circle:

// Compute the area of a circle.
class Area {
 public static void main(String args[]) {
 double pi, r, a;

 r = 10.8; // radius of circle
 pi = 3.1416; // pi, approximately

 Chapter 3 Data Types, Variables, and Arrays 39

P
a

rt
 I

 a = pi * r * r; // compute area

 System.out.println("Area of circle is " + a);
 }
}

Characters
In Java, the data type used to store characters is char. However, C/C++ programmers

beware: char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This

is not the case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a

fully international character set that can represent all of the characters found in all human

languages. It is a unification of dozens of character sets, such as Latin, Greek, Arabic,

Cyrillic, Hebrew, Katakana, Hangul, and many more. For this purpose, it requires 16 bits.

Thus, in Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no negative

chars. The standard set of characters known as ASCII still ranges from 0 to 127 as always,

and the extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255. Since Java is

designed to allow programs to be written for worldwide use, it makes sense that it would use

Unicode to represent characters. Of course, the use of Unicode is somewhat inefficient for

languages such as English, German, Spanish, or French, whose characters can easily be

contained within 8 bits. But such is the price that must be paid for global portability.

NOTE More information about Unicode can be found at http://www.unicode.org.

Here is a program that demonstrates char variables:

// Demonstrate char data type.
class CharDemo {
 public static void main(String args[]) {
 char ch1, ch2;

 ch1 = 88; // code for X
 ch2 = 'Y';

 System.out.print("ch1 and ch2: ");
 System.out.println(ch1 + " " + ch2);
 }
}

This program displays the following output:

 ch1 and ch2: X Y

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode) value that

corresponds to the letter X. As mentioned, the ASCII character set occupies the first 127

values in the Unicode character set. For this reason, all the “old tricks” that you may have

used with characters in other languages will work in Java, too.

Although char is designed to hold Unicode characters, it can also be used as an integer

type on which you can perform arithmetic operations. For example, you can add two

http://www.unicode.org

40 PART I The Java Language

characters together, or increment the value of a character variable. Consider the following

program:

// char variables behave like integers.
class CharDemo2 {
 public static void main(String args[]) {
 char ch1;

 ch1 = 'X';
 System.out.println("ch1 contains " + ch1);

 ch1++; // increment ch1
 System.out.println("ch1 is now " + ch1);
 }
}

The output generated by this program is shown here:

 ch1 contains X
 ch1 is now Y

In the program, ch1 is first given the value X. Next, ch1 is incremented. This results in ch1

containing Y, the next character in the ASCII (and Unicode) sequence.

NOTE In the formal specification for Java, char is referred to as an integral type, which means that it is
in the same general category as int, short, long, and byte. However, because its principal use is for
representing Unicode characters, char is commonly considered to be in a category of its own.

Booleans
Java has a primitive type, called boolean, for logical values. It can have only one of two

possible values, true or false. This is the type returned by all relational operators, as in the

case of a < b. boolean is also the type required by the conditional expressions that govern the

control statements such as if and for.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.
class BoolTest {
 public static void main(String args[]) {
 boolean b;

 b = false;
 System.out.println("b is " + b);
 b = true;
 System.out.println("b is " + b);

 // a boolean value can control the if statement
 if(b) System.out.println("This is executed.");

 b = false;
 if(b) System.out.println("This is not executed.");

 Chapter 3 Data Types, Variables, and Arrays 41

P
a

rt
 I

 // outcome of a relational operator is a boolean value
 System.out.println("10 > 9 is " + (10 > 9));
 }
}

The output generated by this program is shown here:

 b is false
 b is true
 This is executed.
 10 > 9 is true

There are three interesting things to notice about this program. First, as you can see,

when a boolean value is output by println(), "true" or "false" is displayed. Second, the value

of a boolean variable is sufficient, by itself, to control the if statement. There is no need to

write an if statement like this:

if(b == true) …

Third, the outcome of a relational operator, such as <, is a boolean value. This is why the

expression 10>9 displays the value "true." Further, the extra set of parentheses around 10>9
is necessary because the + operator has a higher precedence than the >.

A Closer Look at Literals
Literals were mentioned briefly in Chapter 2. Now that the built-in types have been formally

described, let’s take a closer look at them.

Integer Literals

Integers are probably the most commonly used type in the typical program. Any whole

number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal values,

meaning they are describing a base 10 number. There are two other bases which can be used

in integer literals, octal (base eight) and hexadecimal (base 16). Octal values are denoted in

Java by a leading zero. Normal decimal numbers cannot have a leading zero. Thus, the

seemingly valid value 09 will produce an error from the compiler, since 9 is outside of octal’s

0 to 7 range. A more common base for numbers used by programmers is hexadecimal,

which matches cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits. You signify a

hexadecimal constant with a leading zero-x, (0x or 0X). The range of a hexadecimal digit is

0 to 15, so A through F (or a through f) are substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. Since Java is

strongly typed, you might be wondering how it is possible to assign an integer literal to one

of Java’s other integer types, such as byte or long, without causing a type mismatch error.

Fortunately, such situations are easily handled. When a literal value is assigned to a byte or

short variable, no error is generated if the literal value is within the range of the target type.

An integer literal can always be assigned to a long variable. However, to specify a long

literal, you will need to explicitly tell the compiler that the literal value is of type long. You

do this by appending an upper- or lowercase L to the literal. For example, 0x7ffffffffffffffL

or 9223372036854775807L is the largest long. An integer can also be assigned to a char as

long as it is within range.

42 PART I The Java Language

Beginning with JDK 7, you can also specify integer literals using binary. To do so, prefix

the value with 0b or 0B. For example, this specifies the decimal value 10 using a binary

literal:

int x = 0b1010;

Among other uses, the addition of binary literals makes it easier to enter values used as

bitmasks. In such a case, the decimal (or hexadecimal) representation of the value does not

visually convey its meaning relative to its use. The binary literal does.

Also beginning with JDK 7, you can embed one or more underscores in an integer

literal. Doing so makes it easier to read large integer literals. When the literal is compiled,

the underscores are discarded. For example, given

int x = 123_456_789;

the value given to x will be 123,456,789. The underscores will be ignored. Underscores can

only be used to separate digits. They cannot come at the beginning or the end of a literal. It

is, however, permissible for more than one underscore to be used between two digits. For

example, this is valid:

int x = 123___456___789;

The use of underscores in an integer literal is especially useful when encoding such

things as telephone numbers, customer ID numbers, part numbers, and so on. They are

also useful for providing visual groupings when specifying binary literals. For example,

binary values are often visually grouped in four-digits units, as shown here:

int x = 0b1101_0101_0001_1010;

Floating-Point Literals

Floating-point numbers represent decimal values with a fractional component. They can be

expressed in either standard or scientific notation. Standard notation consists of a whole

number component followed by a decimal point followed by a fractional component. For

example, 2.0, 3.14159, and 0.6667 represent valid standard-notation floating-point

numbers. Scientific notation uses a standard-notation, floating-point number plus a suffix that

specifies a power of 10 by which the number is to be multiplied. The exponent is indicated

by an E or e followed by a decimal number, which can be positive or negative. Examples

include 6.022E23, 314159E–05, and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal, you

must append an F or f to the constant. You can also explicitly specify a double literal by

appending a D or d. Doing so is, of course, redundant. The default double type consumes

64 bits of storage, while the smaller float type requires only 32 bits.

Hexadecimal floating-point literals are also supported, but they are rarely used. They

must be in a form similar to scientific notation, but a P or p, rather than an E or e, is used.

For example, 0x12.2P2 is a valid floating-point literal. The value following the P, called the

binary exponent, indicates the power-of-two by which the number is multiplied. Therefore,

0x12.2P2 represents 72.5.

 Chapter 3 Data Types, Variables, and Arrays 43

P
a

rt
 I

Beginning with JDK 7, you can embed one or more underscores in a floating-point

literal. This feature works the same as it does for integer literals, which were just described.

Its purpose is to make it easier to read large floating-point literals. When the literal is

compiled, the underscores are discarded. For example, given

double num = 9_423_497_862.0;

the value given to num will be 9,423,497,862.0. The underscores will be ignored. As is the

case with integer literals, underscores can only be used to separate digits. They cannot

come at the beginning or the end of a literal. It is, however, permissible for more than one

underscore to be used between two digits. It is also permissible to use underscores in the

fractional portion of the number. For example,

double num = 9_423_497.1_0_9;

is legal. In this case, the fractional part is .109.

Boolean Literals

Boolean literals are simple. There are only two logical values that a boolean value can have,

true and false. The values of true and false do not convert into any numerical representation.

The true literal in Java does not equal 1, nor does the false literal equal 0. In Java, the

Boolean literals can only be assigned to variables declared as boolean or used in expressions

with Boolean operators.

Character Literals

Characters in Java are indices into the Unicode character set. They are 16-bit values that

can be converted into integers and manipulated with the integer operators, such as the

addition and subtraction operators. A literal character is represented inside a pair of single

quotes. All of the visible ASCII characters can be directly entered inside the quotes, such as

'a', 'z', and '@'. For characters that are impossible to enter directly, there are several escape

sequences that allow you to enter the character you need, such as ' \" for the single-quote

character itself and ' \n' for the newline character. There is also a mechanism for directly

entering the value of a character in octal or hexadecimal. For octal notation, use the

backslash followed by the three-digit number. For example, ' \141' is the letter 'a'. For

hexadecimal, you enter a backslash-u (\u), then exactly four hexadecimal digits. For

example, ' \u0061' is the ISO-Latin-1 'a' because the top byte is zero. ' \ua432 ' is a Japanese

Katakana character. Table 3-1 shows the character escape sequences.

String Literals

String literals in Java are specified like they are in most other languages—by enclosing a

sequence of characters between a pair of double quotes. Examples of string literals are

"Hello World"

"two\nlines"

" \"This is in quotes\""

44 PART I The Java Language

The escape sequences and octal/hexadecimal notations that were defined for character

literals work the same way inside of string literals. One important thing to note about Java

strings is that they must begin and end on the same line. There is no line-continuation

escape sequence as there is in some other languages.

NOTE As you may know, in some other languages, including C/C++, strings are implemented as arrays of
characters. However, this is not the case in Java. Strings are actually object types. As you will see later
in this book, because Java implements strings as objects, Java includes extensive string-handling
capabilities that are both powerful and easy to use.

Variables
The variable is the basic unit of storage in a Java program. A variable is defined by the

combination of an identifier, a type, and an optional initializer. In addition, all variables have

a scope, which defines their visibility, and a lifetime. These elements are examined next.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a variable

declaration is shown here:

type identifier [= value][, identifier [= value] …];

The type is one of Java’s atomic types, or the name of a class or interface. (Class and

interface types are discussed later in Part I of this book.) The identifier is the name of the

variable. You can initialize the variable by specifying an equal sign and a value. Keep in

mind that the initialization expression must result in a value of the same (or compatible)

type as that specified for the variable. To declare more than one variable of the specified type,

use a comma-separated list.

Here are several examples of variable declarations of various types. Note that some

include an initialization.

Table 3-1 Character Escape Sequences

Escape Sequence Description

\ddd Octal character (ddd)

\uxxxx Hexadecimal Unicode character (xxxx)

\' Single quote

\" Double quote

\\ Backslash

\r Carriage return

\n New line (also known as line feed)

\f Form feed

\t Tab

\b Backspace

 Chapter 3 Data Types, Variables, and Arrays 45

P
a

rt
 I

int a, b, c; // declares three ints, a, b, and c.
int d = 3, e, f = 5; // declares three more ints, initializing
 // d and f.
byte z = 22; // initializes z.
double pi = 3.14159; // declares an approximation of pi.
char x = 'x'; // the variable x has the value 'x'.

The identifiers that you choose have nothing intrinsic in their names that indicates

their type. Java allows any properly formed identifier to have any declared type.

Dynamic Initialization

Although the preceding examples have used only constants as initializers, Java allows

variables to be initialized dynamically, using any expression valid at the time the variable

is declared.

For example, here is a short program that computes the length of the hypotenuse of a

right triangle given the lengths of its two opposing sides:

// Demonstrate dynamic initialization.
class DynInit {
 public static void main(String args[]) {
 double a = 3.0, b = 4.0;

 // c is dynamically initialized
 double c = Math.sqrt(a * a + b * b);

 System.out.println("Hypotenuse is " + c);
 }
}

Here, three local variables—a, b, and c—are declared. The first two, a and b, are initialized

by constants. However, c is initialized dynamically to the length of the hypotenuse (using

the Pythagorean theorem). The program uses another of Java’s built-in methods, sqrt(),
which is a member of the Math class, to compute the square root of its argument. The key

point here is that the initialization expression may use any element valid at the time of the

initialization, including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables

So far, all of the variables used have been declared at the start of the main() method.

However, Java allows variables to be declared within any block. As explained in Chapter 2,

a block is begun with an opening curly brace and ended by a closing curly brace. A block

defines a scope. Thus, each time you start a new block, you are creating a new scope. A scope

determines what objects are visible to other parts of your program. It also determines the

lifetime of those objects.

Many other computer languages define two general categories of scopes: global and

local. However, these traditional scopes do not fit well with Java’s strict, object-oriented

model. While it is possible to create what amounts to being a global scope, it is by far the

exception, not the rule. In Java, the two major scopes are those defined by a class and those

defined by a method. Even this distinction is somewhat artificial. However, since the class

scope has several unique properties and attributes that do not apply to the scope defined

46 PART I The Java Language

by a method, this distinction makes some sense. Because of the differences, a discussion of

class scope (and variables declared within it) is deferred until Chapter 6, when classes are

described. For now, we will only examine the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if that

method has parameters, they too are included within the method’s scope. Although this

book will look more closely at parameters in Chapter 6, for the sake of this discussion, they

work the same as any other method variable.

As a general rule, variables declared inside a scope are not visible (that is, accessible)

to code that is defined outside that scope. Thus, when you declare a variable within a

scope, you are localizing that variable and protecting it from unauthorized access and/or

modification. Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are

creating a new, nested scope. When this occurs, the outer scope encloses the inner scope.

This means that objects declared in the outer scope will be visible to code within the inner

scope. However, the reverse is not true. Objects declared within the inner scope will not be

visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.
class Scope {
 public static void main(String args[]) {
 int x; // known to all code within main

 x = 10;
 if(x == 10) { // start new scope
 int y = 20; // known only to this block

 // x and y both known here.
 System.out.println("x and y: " + x + " " + y);
 x = y * 2;
 }
 // y = 100; // Error! y not known here

 // x is still known here.
 System.out.println("x is " + x);
 }
}

As the comments indicate, the variable x is declared at the start of main()’s scope and is

accessible to all subsequent code within main(). Within the if block, y is declared. Since a

block defines a scope, y is only visible to other code within its block. This is why outside of

its block, the line y = 100; is commented out. If you remove the leading comment symbol,

a compile-time error will occur, because y is not visible outside of its block. Within the if

block, x can be used because code within a block (that is, a nested scope) has access to

variables declared by an enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they are

declared. Thus, if you define a variable at the start of a method, it is available to all of the

code within that method. Conversely, if you declare a variable at the end of a block, it is

effectively useless, because no code will have access to it. For example, this fragment is

invalid because count cannot be used prior to its declaration:

 Chapter 3 Data Types, Variables, and Arrays 47

P
a

rt
 I

// This fragment is wrong!
count = 100; // oops! cannot use count before it is declared!
int count;

Here is another important point to remember: variables are created when their scope is

entered, and destroyed when their scope is left. This means that a variable will not hold its

value once it has gone out of scope. Therefore, variables declared within a method will not

hold their values between calls to that method. Also, a variable declared within a block will

lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, then that variable will be reinitialized

each time the block in which it is declared is entered. For example, consider the next

program:

// Demonstrate lifetime of a variable.
class LifeTime {
 public static void main(String args[]) {
 int x;

 for(x = 0; x < 3; x++) {
 int y = -1; // y is initialized each time block is entered
 System.out.println("y is: " + y); // this always prints -1
 y = 100;
 System.out.println("y is now: " + y);
 }
 }
}

The output generated by this program is shown here:

 y is: -1
 y is now: 100
 y is: -1
 y is now: 100
 y is: -1
 y is now: 100

As you can see, y is reinitialized to –1 each time the inner for loop is entered. Even though

it is subsequently assigned the value 100, this value is lost.

One last point: Although blocks can be nested, you cannot declare a variable to have

the same name as one in an outer scope. For example, the following program is illegal:

// This program will not compile
class ScopeErr {
 public static void main(String args[]) {
 int bar = 1;
 { // creates a new scope
 int bar = 2; // Compile-time error – bar already defined!
 }
 }
}

48 PART I The Java Language

Type Conversion and Casting
If you have previous programming experience, then you already know that it is fairly common

to assign a value of one type to a variable of another type. If the two types are compatible,

then Java will perform the conversion automatically. For example, it is always possible to

assign an int value to a long variable. However, not all types are compatible, and thus, not

all type conversions are implicitly allowed. For instance, there is no automatic conversion

defined from double to byte. Fortunately, it is still possible to obtain a conversion between

incompatible types. To do so, you must use a cast, which performs an explicit conversion

between incompatible types. Let’s look at both automatic type conversions and casting.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type conversion
will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the

int type is always large enough to hold all valid byte values, so no explicit cast statement is

required.

For widening conversions, the numeric types, including integer and floating-point types,

are compatible with each other. However, there are no automatic conversions from the

numeric types to char or boolean. Also, char and boolean are not compatible with each other.

As mentioned earlier, Java also performs an automatic type conversion when storing a

literal integer constant into variables of type byte, short, long, or char.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all needs. For

example, what if you want to assign an int value to a byte variable? This conversion will not

be performed automatically, because a byte is smaller than an int. This kind of conversion

is sometimes called a narrowing conversion, since you are explicitly making the value narrower

so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is
simply an explicit type conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For example, the

following fragment casts an int to a byte. If the integer’s value is larger than the range of a

byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range.

int a;
byte b;
// …
b = (byte) a;

 Chapter 3 Data Types, Variables, and Arrays 49

P
a

rt
 I

A different type of conversion will occur when a floating-point value is assigned to an

integer type: truncation. As you know, integers do not have fractional components. Thus,

when a floating-point value is assigned to an integer type, the fractional component is lost.

For example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.

The 0.23 will have been truncated. Of course, if the size of the whole number component is

too large to fit into the target integer type, then that value will be reduced modulo the

target type’s range.

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.
class Conversion {
 public static void main(String args[]) {
 byte b;
 int i = 257;
 double d = 323.142;

 System.out.println("\nConversion of int to byte.");
 b = (byte) i;
 System.out.println("i and b " + i + " " + b);

 System.out.println("\nConversion of double to int.");
 i = (int) d;
 System.out.println("d and i " + d + " " + i);

 System.out.println("\nConversion of double to byte.");
 b = (byte) d;
 System.out.println("d and b " + d + " " + b);
 }
}

This program generates the following output:

 Conversion of int to byte.
 i and b 257 1

 Conversion of double to int.
 d and i 323.142 323

 Conversion of double to byte.
 d and b 323.142 67

Let’s look at each conversion. When the value 257 is cast into a byte variable, the result is the

remainder of the division of 257 by 256 (the range of a byte), which is 1 in this case. When

the d is converted to an int, its fractional component is lost. When d is converted to a byte, its

fractional component is lost, and the value is reduced modulo 256, which in this case is 67.

Automatic Type Promotion in Expressions
In addition to assignments, there is another place where certain type conversions may

occur: in expressions. To see why, consider the following. In an expression, the precision

50 PART I The Java Language

required of an intermediate value will sometimes exceed the range of either operand. For

example, examine the following expression:

byte a = 40;
byte b = 50;
byte c = 100;
int d = a * b / c;

The result of the intermediate term a * b easily exceeds the range of either of its byte

operands. To handle this kind of problem, Java automatically promotes each byte, short,
or char operand to int when evaluating an expression. This means that the subexpression

a*b is performed using integers—not bytes. Thus, 2,000, the result of the intermediate

expression, 50 * 40, is legal even though a and b are both specified as type byte.

As useful as the automatic promotions are, they can cause confusing compile-time

errors. For example, this seemingly correct code causes a problem:

byte b = 50;
b = b * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte

variable. However, because the operands were automatically promoted to int when the

expression was evaluated, the result has also been promoted to int. Thus, the result of the

expression is now of type int, which cannot be assigned to a byte without the use of a cast.

This is true even if, as in this particular case, the value being assigned would still fit in the

target type.

In cases where you understand the consequences of overflow, you should use an explicit

cast, such as

byte b = 50;
b = (byte)(b * 2);

which yields the correct value of 100.

The Type Promotion Rules

Java defines several type promotion rules that apply to expressions. They are as follows: First,

all byte, short, and char values are promoted to int, as just described. Then, if one operand

is a long, the whole expression is promoted to long. If one operand is a float, the entire

expression is promoted to float. If any of the operands are double, the result is double.

The following program demonstrates how each value in the expression gets promoted

to match the second argument to each binary operator:

class Promote {
 public static void main(String args[]) {
 byte b = 42;
 char c = 'a';
 short s = 1024;
 int i = 50000;
 float f = 5.67f;
 double d = .1234;
 double result = (f * b) + (i / c) - (d * s);

 Chapter 3 Data Types, Variables, and Arrays 51

P
a

rt
 I

 System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));
 System.out.println("result = " + result);
 }
}

Let’s look closely at the type promotions that occur in this line from the program:

double result = (f * b) + (i / c) - (d * s);

In the first subexpression, f * b, b is promoted to a float and the result of the subexpression

is float. Next, in the subexpression i/c, c is promoted to int, and the result is of type int.
Then, in d * s, the value of s is promoted to double, and the type of the subexpression is

double. Finally, these three intermediate values, float, int, and double, are considered. The

outcome of float plus an int is a float. Then the resultant float minus the last double is

promoted to double, which is the type for the final result of the expression.

Arrays
An array is a group of like-typed variables that are referred to by a common name. Arrays of

any type can be created and may have one or more dimensions. A specific element in an

array is accessed by its index. Arrays offer a convenient means of grouping related

information.

NOTE If you are familiar with C/C++, be careful. Arrays in Java work differently than they do in those
languages.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you first

must create an array variable of the desired type. The general form of a one-dimensional

array declaration is

type var-name[];

Here, type declares the element type (also called the base type) of the array. The element type

determines the data type of each element that comprises the array. Thus, the element

type for the array determines what type of data the array will hold. For example, the

following declares an array named month_days with the type “array of int”:

int month_days[];

Although this declaration establishes the fact that month_days is an array variable, no

array actually exists. In fact, the value of month_days is set to null, which represents an array

with no value. To link month_days with an actual, physical array of integers, you must allocate

one using new and assign it to month_days. new is a special operator that allocates memory.

You will look more closely at new in a later chapter, but you need to use it now to

allocate memory for arrays. The general form of new as it applies to one-dimensional

arrays appears as follows:

array-var = new type [size];

52 PART I The Java Language

Here, type specifies the type of data being allocated, size specifies the number of elements in

the array, and array-var is the array variable that is linked to the array. That is, to use new to

allocate an array, you must specify the type and number of elements to allocate. The elements

in the array allocated by new will automatically be initialized to zero (for numeric types), false

(for boolean), or null (for reference types, which are described in a later chapter). This

example allocates a 12-element array of integers and links them to month_days:

month_days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further, all

elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must declare a variable

of the desired array type. Second, you must allocate the memory that will hold the array,

using new, and assign it to the array variable. Thus, in Java all arrays are dynamically

allocated. If the concept of dynamic allocation is unfamiliar to you, don’t worry. It will

be described at length later in this book.

Once you have allocated an array, you can access a specific element in the array by

specifying its index within square brackets. All array indexes start at zero. For example,

this statement assigns the value 28 to the second element of month_days:

month_days[1] = 28;

The next line displays the value stored at index 3:

System.out.println(month_days[3]);

Putting together all the pieces, here is a program that creates an array of the number of

days in each month:

// Demonstrate a one-dimensional array.
class Array {
 public static void main(String args[]) {
 int month_days[];
 month_days = new int[12];
 month_days[0] = 31;
 month_days[1] = 28;
 month_days[2] = 31;
 month_days[3] = 30;
 month_days[4] = 31;
 month_days[5] = 30;
 month_days[6] = 31;
 month_days[7] = 31;
 month_days[8] = 30;
 month_days[9] = 31;
 month_days[10] = 30;
 month_days[11] = 31;
 System.out.println("April has " + month_days[3] + " days.");
 }
}

 Chapter 3 Data Types, Variables, and Arrays 53

P
a

rt
 I

When you run this program, it prints the number of days in April. As mentioned, Java array

indexes start with zero, so the number of days in April is month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation of the

array itself, as shown here:

int month_days[] = new int[12];

This is the way that you will normally see it done in professionally written Java programs.

Arrays can be initialized when they are declared. The process is much the same as that

used to initialize the simple types. An array initializer is a list of comma-separated expressions

surrounded by curly braces. The commas separate the values of the array elements. The

array will automatically be created large enough to hold the number of elements you specify

in the array initializer. There is no need to use new. For example, to store the number of

days in each month, the following code creates an initialized array of integers:

// An improved version of the previous program.
class AutoArray {
 public static void main(String args[]) {

 int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
 30, 31 };
 System.out.println("April has " + month_days[3] + " days.");
 }
}

When you run this program, you see the same output as that generated by the previous

version.

Java strictly checks to make sure you do not accidentally try to store or reference values

outside of the range of the array. The Java run-time system will check to be sure that all

array indexes are in the correct range. For example, the run-time system will check the

value of each index into month_days to make sure that it is between 0 and 11 inclusive. If

you try to access elements outside the range of the array (negative numbers or numbers

greater than the length of the array), you will cause a run-time error.

Here is one more example that uses a one-dimensional array. It finds the average of a

set of numbers.

// Average an array of values.
class Average {
 public static void main(String args[]) {
 double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
 double result = 0;
 int i;

 for(i=0; i<5; i++)
 result = result + nums[i];
 System.out.println("Average is " + result / 5);
 }
}

54 PART I The Java Language

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you might expect, look

and act like regular multidimensional arrays. However, as you will see, there are a couple

of subtle differences. To declare a multidimensional array variable, specify each additional

index using another set of square brackets. For example, the following declares a two-

dimensional array variable called twoD:

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as

an array of arrays of int. Conceptually, this array will look like the one shown in Figure 3-1.

The following program numbers each element in the array from left to right, top to

bottom, and then displays these values:

// Demonstrate a two-dimensional array.
class TwoDArray {
 public static void main(String args[]) {
 int twoD[][]= new int[4][5];
 int i, j, k = 0;

 for(i=0; i<4; i++)
 for(j=0; j<5; j++) {
 twoD[i][j] = k;
 k++;
 }

 for(i=0; i<4; i++) {
 for(j=0; j<5; j++)
 System.out.print(twoD[i][j] + " ");
 System.out.println();
 }
 }
}

This program generates the following output:

 0 1 2 3 4
 5 6 7 8 9
 10 11 12 13 14
 15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the

memory for the first (leftmost) dimension. You can allocate the remaining dimensions

separately. For example, this following code allocates memory for the first dimension of

twoD when it is declared. It allocates the second dimension manually.

int twoD[][] = new int[4][];
twoD[0] = new int[5];
twoD[1] = new int[5];
twoD[2] = new int[5];
twoD[3] = new int[5];

 Chapter 3 Data Types, Variables, and Arrays 55

P
a

rt
 I

While there is no advantage to individually allocating the second dimension arrays in

this situation, there may be in others. For example, when you allocate dimensions manually,

you do not need to allocate the same number of elements for each dimension. As stated

earlier, since multidimensional arrays are actually arrays of arrays, the length of each array

is under your control. For example, the following program creates a two-dimensional array

in which the sizes of the second dimension are unequal:

// Manually allocate differing size second dimensions.
class TwoDAgain {
 public static void main(String args[]) {
 int twoD[][] = new int[4][];
 twoD[0] = new int[1];
 twoD[1] = new int[2];
 twoD[2] = new int[3];
 twoD[3] = new int[4];

 int i, j, k = 0;

 for(i=0; i<4; i++)
 for(j=0; j<i+1; j++) {
 twoD[i][j] = k;
 k++;
 }

 for(i=0; i<4; i++) {
 for(j=0; j<i+1; j++)
 System.out.print(twoD[i][j] + " ");
 System.out.println();
 }
 }
}

Figure 3-1 A conceptual view of a 4 by 5, two-dimensional array

56 PART I The Java Language

This program generates the following output:

0
1 2
3 4 5
6 7 8 9

The array created by this program looks like this:

The use of uneven (or irregular) multidimensional arrays may not be appropriate

for many applications, because it runs contrary to what people expect to find when a

multidimensional array is encountered. However, irregular arrays can be used effectively in

some situations. For example, if you need a very large two-dimensional array that is sparsely

populated (that is, one in which not all of the elements will be used), then an irregular

array might be a perfect solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose each

dimension’s initializer within its own set of curly braces. The following program creates

a matrix where each element contains the product of the row and column indexes. Also

notice that you can use expressions as well as literal values inside of array initializers.

// Initialize a two-dimensional array.
class Matrix {
 public static void main(String args[]) {
 double m[][] = {
 { 0*0, 1*0, 2*0, 3*0 },
 { 0*1, 1*1, 2*1, 3*1 },
 { 0*2, 1*2, 2*2, 3*2 },
 { 0*3, 1*3, 2*3, 3*3 }
 };
 int i, j;

 for(i=0; i<4; i++) {
 for(j=0; j<4; j++)
 System.out.print(m[i][j] + " ");
 System.out.println();
 }
 }
}

 Chapter 3 Data Types, Variables, and Arrays 57

P
a

rt
 I

When you run this program, you will get the following output:

 0.0 0.0 0.0 0.0
 0.0 1.0 2.0 3.0
 0.0 2.0 4.0 6.0
 0.0 3.0 6.0 9.0

As you can see, each row in the array is initialized as specified in the initialization lists.

Let’s look at one more example that uses a multidimensional array. The following

program creates a 3 by 4 by 5, three-dimensional array. It then loads each element with

the product of its indexes. Finally, it displays these products.

// Demonstrate a three-dimensional array.
class ThreeDMatrix {
 public static void main(String args[]) {
 int threeD[][][] = new int[3][4][5];
 int i, j, k;

 for(i=0; i<3; i++)
 for(j=0; j<4; j++)
 for(k=0; k<5; k++)
 threeD[i][j][k] = i * j * k;

 for(i=0; i<3; i++) {
 for(j=0; j<4; j++) {
 for(k=0; k<5; k++)
 System.out.print(threeD[i][j][k] + " ");
 System.out.println();
 }
 System.out.println();
 }
 }
}

This program generates the following output:

 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0

 0 0 0 0 0
 0 1 2 3 4
 0 2 4 6 8
 0 3 6 9 12

 0 0 0 0 0
 0 2 4 6 8
 0 4 8 12 16
 0 6 12 18 24

58 PART I The Java Language

Alternative Array Declaration Syntax

There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the array variable.

For example, the following two declarations are equivalent:

int al[] = new int[3];
int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];
char[][] twod2 = new char[3][4];

This alternative declaration form offers convenience when declaring several arrays at the

same time. For example,

int[] nums, nums2, nums3; // create three arrays

creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a return type for

a method. Both forms are used in this book.

A Few Words About Strings
As you may have noticed, in the preceding discussion of data types and arrays there has

been no mention of strings or a string data type. This is not because Java does not support

such a type—it does. It is just that Java’s string type, called String, is not a primitive type.

Nor is it simply an array of characters. Rather, String defines an object, and a full description

of it requires an understanding of several object-related features. As such, it will be covered

later in this book, after objects are described. However, so that you can use simple strings in

example programs, the following brief introduction is in order.

The String type is used to declare string variables. You can also declare arrays of strings.

A quoted string constant can be assigned to a String variable. A variable of type String can

be assigned to another variable of type String. You can use an object of type String as an

argument to println(). For example, consider the following fragment:

String str = "this is a test";
System.out.println(str);

Here, str is an object of type String. It is assigned the string "this is a test". This string is

displayed by the println() statement.

As you will see later, String objects have many special features and attributes that make

them quite powerful and easy to use. However, for the next few chapters, you will be using

them only in their simplest form.

 Chapter 3 Data Types, Variables, and Arrays 59

P
a

rt
 I

A Note to C/C++ Programmers About Pointers
If you are an experienced C/C++ programmer, then you know that these languages provide

support for pointers. However, no mention of pointers has been made in this chapter. The

reason for this is simple: Java does not support or allow pointers. (Or more properly, Java

does not support pointers that can be accessed and/or modified by the programmer.) Java

cannot allow pointers, because doing so would allow Java programs to breach the firewall

between the Java execution environment and the host computer. (Remember, a pointer can

be given any address in memory—even addresses that might be outside the Java run-time

system.) Since C/C++ make extensive use of pointers, you might be thinking that their loss

is a significant disadvantage to Java. However, this is not true. Java is designed in such a way

that as long as you stay within the confines of the execution environment, you will never

need to use a pointer, nor would there be any benefit in using one.

This page intentionally left blank

4
CHAPTER

 61

Operators

Java provides a rich operator environment. Most of its operators can be divided into the

following four groups: arithmetic, bitwise, relational, and logical. Java also defines some

additional operators that handle certain special situations. This chapter describes all of

Java’s operators except for the type comparison operator instanceof, which is examined

in Chapter 13.

Arithmetic Operators
Arithmetic operators are used in mathematical expressions in the same way that they are

used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition (also unary plus)

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

– = Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

– – Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot use

them on boolean types, but you can use them on char types, since the char type in Java is,

essentially, a subset of int.

62 PART I The Java Language

The Basic Arithmetic Operators

The basic arithmetic operations—addition, subtraction, multiplication, and division—all

behave as you would expect for all numeric types. The unary minus operator negates its

single operand. The unary plus operator simply returns the value of its operand. Remember

that when the division operator is applied to an integer type, there will be no fractional

component attached to the result.

The following simple example program demonstrates the arithmetic operators. It also

illustrates the difference between floating-point division and integer division.

// Demonstrate the basic arithmetic operators.
class BasicMath {
 public static void main(String args[]) {
 // arithmetic using integers
 System.out.println("Integer Arithmetic");
 int a = 1 + 1;
 int b = a * 3;
 int c = b / 4;
 int d = c - a;
 int e = -d;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 System.out.println("d = " + d);
 System.out.println("e = " + e);

 // arithmetic using doubles
 System.out.println("\nFloating Point Arithmetic");
 double da = 1 + 1;
 double db = da * 3;
 double dc = db / 4;
 double dd = dc - a;
 double de = -dd;
 System.out.println("da = " + da);
 System.out.println("db = " + db);
 System.out.println("dc = " + dc);
 System.out.println("dd = " + dd);
 System.out.println("de = " + de);
 }
}

When you run this program, you will see the following output:

 Integer Arithmetic
 a = 2
 b = 6
 c = 1
 d = -1
 e = 1

 Floating Point Arithmetic
 da = 2.0
 db = 6.0

 Chapter 4 Operators 63

P
a

rt
 I

 dc = 1.5
 dd = -0.5
 de = 0.5

The Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can be

applied to floating-point types as well as integer types. The following example program

demonstrates the %:

// Demonstrate the % operator.
class Modulus {
 public static void main(String args[]) {
 int x = 42;
 double y = 42.25;

 System.out.println("x mod 10 = " + x % 10);
 System.out.println("y mod 10 = " + y % 10);
 }
}

When you run this program, you will get the following output:

 x mod 10 = 2
 y mod 10 = 2.25

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation with

an assignment. As you probably know, statements like the following are quite common in

programming:

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

This version uses the += compound assignment operator. Both statements perform the same

action: they increase the value of a by 4.

Here is another example,

a = a % 2;

which can be expressed as

a %= 2;

In this case, the %= obtains the remainder of a /2 and puts that result back into a.

There are compound assignment operators for all of the arithmetic, binary operators.

Thus, any statement of the form

var = var op expression;

64 PART I The Java Language

can be rewritten as

var op= expression;

The compound assignment operators provide two benefits. First, they save you a bit

of typing, because they are “shorthand” for their equivalent long forms. Second, they are

implemented more efficiently by the Java run-time system than are their equivalent long

forms. For these reasons, you will often see the compound assignment operators used in

professionally written Java programs.

Here is a sample program that shows several op= assignments in action:

// Demonstrate several assignment operators.
class OpEquals {
 public static void main(String args[]) {
 int a = 1;
 int b = 2;
 int c = 3;

 a += 5;
 b *= 4;
 c += a * b;
 c %= 6;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 }
}

The output of this program is shown here:

 a = 6
 b = 8
 c = 3

Increment and Decrement

The ++ and the – – are Java’s increment and decrement operators. They were introduced

in Chapter 2. Here they will be discussed in detail. As you will see, they have some special

properties that make them quite interesting. Let’s begin by reviewing precisely what the

increment and decrement operators do.

The increment operator increases its operand by one. The decrement operator

decreases its operand by one. For example, this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

Similarly, this statement:

x = x - 1;

 Chapter 4 Operators 65

P
a

rt
 I

is equivalent to

x--;

These operators are unique in that they can appear both in postfix form, where they

follow the operand as just shown, and prefix form, where they precede the operand. In the

foregoing examples, there is no difference between the prefix and postfix forms. However,

when the increment and/or decrement operators are part of a larger expression, then a

subtle, yet powerful, difference between these two forms appears. In the prefix form,

the operand is incremented or decremented before the value is obtained for use in the

expression. In postfix form, the previous value is obtained for use in the expression, and

then the operand is modified. For example:

x = 42;
y = ++x;

In this case, y is set to 43 as you would expect, because the increment occurs before x is

assigned to y. Thus, the line y = ++x; is the equivalent of these two statements:

x = x + 1;
y = x;

However, when written like this,

x = 42;
y = x++;

the value of x is obtained before the increment operator is executed, so the value of y is 42.

Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent of these two

statements:

y = x;
x = x + 1;

The following program demonstrates the increment operator.

// Demonstrate ++.
class IncDec {
 public static void main(String args[]) {
 int a = 1;
 int b = 2;
 int c;
 int d;
 c = ++b;
 d = a++;
 c++;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 System.out.println("d = " + d);
 }
}

66 PART I The Java Language

The output of this program follows:

 a = 2
 b = 3
 c = 4
 d = 1

The Bitwise Operators
Java defines several bitwise operators that can be applied to the integer types, long, int, short,
char, and byte. These operators act upon the individual bits of their operands. They are

summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Since the bitwise operators manipulate the bits within an integer, it is important to

understand what effects such manipulations may have on a value. Specifically, it is useful

to know how Java stores integer values and how it represents negative numbers. So, before

continuing, let’s briefly review these two topics.

All of the integer types are represented by binary numbers of varying bit widths. For

example, the byte value for 42 in binary is 00101010, where each position represents a

power of two, starting with 20 at the rightmost bit. The next bit position to the left would be

21, or 2, continuing toward the left with 22, or 4, then 8, 16, 32, and so on. So 42 has 1 bits

set at positions 1, 3, and 5 (counting from 0 at the right); thus, 42 is the sum of 21 + 23 + 25,

which is 2 + 8 + 32.

All of the integer types (except char) are signed integers. This means that they can

represent negative values as well as positive ones. Java uses an encoding known as two’s
complement, which means that negative numbers are represented by inverting (changing 1’s

to 0’s and vice versa) all of the bits in a value, then adding 1 to the result. For example, –42

is represented by inverting all of the bits in 42, or 00101010, which yields 11010101, then

adding 1, which results in 11010110, or –42. To decode a negative number, first invert all

 Chapter 4 Operators 67

P
a

rt
 I

of the bits, then add 1. For example, –42, or 11010110 inverted, yields 00101001, or 41, so

when you add 1 you get 42.

The reason Java (and most other computer languages) uses two’s complement is easy to

see when you consider the issue of zero crossing. Assuming a byte value, zero is represented

by 00000000. In one’s complement, simply inverting all of the bits creates 11111111, which

creates negative zero. The trouble is that negative zero is invalid in integer math. This

problem is solved by using two’s complement to represent negative values. When using

two’s complement, 1 is added to the complement, producing 100000000. This produces a 1

bit too far to the left to fit back into the byte value, resulting in the desired behavior, where

–0 is the same as 0, and 11111111 is the encoding for –1. Although we used a byte value in

the preceding example, the same basic principle applies to all of Java’s integer types.

Because Java uses two’s complement to store negative numbers—and because all

integers are signed values in Java—applying the bitwise operators can easily produce

unexpected results. For example, turning on the high-order bit will cause the resulting

value to be interpreted as a negative number, whether this is what you intended or not. To

avoid unpleasant surprises, just remember that the high-order bit determines the sign of an

integer no matter how that high-order bit gets set.

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of

each operation. In the discussion that follows, keep in mind that the bitwise operators are

applied to each individual bit within each operand.

A B A | B A & B A ^ B ~A

0 0 0 0 0 1

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0

The Bitwise NOT
Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its

operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The Bitwise AND
The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in

all other cases. Here is an example:

 00101010 42

&00001111 15

 00001010 10

68 PART I The Java Language

The Bitwise OR
The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then

the resultant bit is a 1, as shown here:

 00101010 42

| 00001111 15

 00101111 47

The Bitwise XOR
The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result

is 1. Otherwise, the result is zero. The following example shows the effect of the ^. This

example also demonstrates a useful attribute of the XOR operation. Notice how the bit

pattern of 42 is inverted wherever the second operand has a 1 bit. Wherever the second

operand has a 0 bit, the first operand is unchanged. You will find this property useful when

performing some types of bit manipulations.

 00101010 42

^ 00001111 15

 00100101 37

Using the Bitwise Logical Operators
The following program demonstrates the bitwise logical operators:

// Demonstrate the bitwise logical operators.
class BitLogic {
 public static void main(String args[]) {
 String binary[] = {
 "0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111",
 "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"
 };
 int a = 3; // 0 + 2 + 1 or 0011 in binary
 int b = 6; // 4 + 2 + 0 or 0110 in binary
 int c = a | b;
 int d = a & b;
 int e = a ^ b;
 int f = (~a & b)|(a & ~b);
 int g = ~a & 0x0f;

 System.out.println(" a = " + binary[a]);
 System.out.println(" b = " + binary[b]);
 System.out.println(" a|b = " + binary[c]);
 System.out.println(" a&b = " + binary[d]);
 System.out.println(" a^b = " + binary[e]);
 System.out.println("~a&b|a&~b = " + binary[f]);
 System.out.println(" ~a = " + binary[g]);
 }
}

In this example, a and b have bit patterns that present all four possibilities for two

binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and & operate on each bit by the

 Chapter 4 Operators 69

P
a

rt
 I

results in c and d. The values assigned to e and f are the same and illustrate how the ^ works.

The string array named binary holds the human-readable, binary representation of the

numbers 0 through 15. In this example, the array is indexed to show the binary representation

of each result. The array is constructed such that the correct string representation of a

binary value n is stored in binary[n]. The value of ~a is ANDed with 0x0f (0000 1111 in

binary) in order to reduce its value to less than 16, so it can be printed by use of the binary

array. Here is the output from this program:

 a = 0011
 b = 0110
 a|b = 0111
 a&b = 0010
 a^b = 0101
 ~a&b|a&~b = 0101
 ~a = 1100

The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of

times. It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the

<< moves all of the bits in the specified value to the left by the number of bit positions

specified by num. For each shift left, the high-order bit is shifted out (and lost), and a zero

is brought in on the right. This means that when a left shift is applied to an int operand,

bits are lost once they are shifted past bit position 31. If the operand is a long, then bits are

lost after bit position 63.

Java’s automatic type promotions produce unexpected results when you are shifting

byte and short values. As you know, byte and short values are promoted to int when an

expression is evaluated. Furthermore, the result of such an expression is also an int. This

means that the outcome of a left shift on a byte or short value will be an int, and the bits

shifted left will not be lost until they shift past bit position 31. Furthermore, a negative byte

or short value will be sign-extended when it is promoted to int. Thus, the high-order bits

will be filled with 1’s. For these reasons, to perform a left shift on a byte or short implies

that you must discard the high-order bytes of the int result. For example, if you left-shift a

byte value, that value will first be promoted to int and then shifted. This means that you

must discard the top three bytes of the result if what you want is the result of a shifted byte

value. The easiest way to do this is to simply cast the result back into a byte. The following

program demonstrates this concept:

// Left shifting a byte value.
class ByteShift {
 public static void main(String args[]) {
 byte a = 64, b;
 int i;

 i = a << 2;
 b = (byte) (a << 2);

70 PART I The Java Language

 System.out.println("Original value of a: " + a);
 System.out.println("i and b: " + i + " " + b);
 }
}

The output generated by this program is shown here:

 Original value of a: 64
 i and b: 256 0

Since a is promoted to int for the purposes of evaluation, left-shifting the value 64

(0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value

in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has been

shifted out.

Since each left shift has the effect of doubling the original value, programmers

frequently use this fact as an efficient alternative to multiplying by 2. But you need to watch

out. If you shift a 1 bit into the high-order position (bit 31 or 63), the value will become

negative. The following program illustrates this point:

// Left shifting as a quick way to multiply by 2.
class MultByTwo {
 public static void main(String args[]) {
 int i;
 int num = 0xFFFFFFE;

 for(i=0; i<4; i++) {
 num = num << 1;
 System.out.println(num);
 }
 }
}

The program generates the following output:

 536870908
 1073741816
 2147483632
 -32

The starting value was carefully chosen so that after being shifted left 4 bit positions, it

would produce –32. As you can see, when a 1 bit is shifted into bit 31, the number is

interpreted as negative.

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of

times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That is, the >>

moves all of the bits in the specified value to the right the number of bit positions specified

by num.

 Chapter 4 Operators 71

P
a

rt
 I

The following code fragment shifts the value 32 to the right by two positions, resulting

in a being set to 8:

int a = 32;
a = a >> 2; // a now contains 8

When a value has bits that are “shifted off,” those bits are lost. For example, the next

code fragment shifts the value 35 to the right two positions, which causes the two low-order

bits to be lost, resulting again in a being set to 8:

int a = 35;
a = a >> 2; // a contains 8

Looking at the same operation in binary shows more clearly how this happens:

00100011 35

>> 2

00001000 8

Each time you shift a value to the right, it divides that value by two—and discards any

remainder. You can take advantage of this for high-performance integer division by 2. Of

course, you must be sure that you are not shifting any bits off the right end.

When you are shifting right, the top (leftmost) bits exposed by the right shift are filled

in with the previous contents of the top bit. This is called sign extension and serves to preserve

the sign of negative numbers when you shift them right. For example, –8 >> 1 is –4, which,

in binary, is

11111000 –8

>> 1

11111100 –4

It is interesting to note that if you shift –1 right, the result always remains –1, since sign

extension keeps bringing in more ones in the high-order bits.

Sometimes it is not desirable to sign-extend values when you are shifting them to the

right. For example, the following program converts a byte value to its hexadecimal string

representation. Notice that the shifted value is masked by ANDing it with 0x0f to discard

any sign-extended bits so that the value can be used as an index into the array of

hexadecimal characters.

// Masking sign extension.
class HexByte {
 static public void main(String args[]) {
 char hex[] = {
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
 };

 byte b = (byte) 0xf1;

 System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
 }
}

72 PART I The Java Language

Here is the output of this program:

 b = 0xf1

The Unsigned Right Shift

As you have just seen, the >> operator automatically fills the high-order bit with its previous

contents each time a shift occurs. This preserves the sign of the value. However, sometimes

this is undesirable. For example, if you are shifting something that does not represent a

numeric value, you may not want sign extension to take place. This situation is common

when you are working with pixel-based values and graphics. In these cases, you will

generally want to shift a zero into the high-order bit no matter what its initial value was.

This is known as an unsigned shift. To accomplish this, you will use Java’s unsigned, shift-

right operator, >>>, which always shifts zeros into the high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to –1, which sets all

32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with

zeros, ignoring normal sign extension. This sets a to 255.

int a = -1;
a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int

>>>24

00000000 00000000 00000000 11111111 255 in binary as an int

The >>> operator is often not as useful as you might like, since it is only meaningful

for 32- and 64-bit values. Remember, smaller values are automatically promoted to int in

expressions. This means that sign-extension occurs and that the shift will take place on a

32-bit rather than on an 8- or 16-bit value. That is, one might expect an unsigned right shift

on a byte value to zero-fill beginning at bit 7. But this is not the case, since it is a 32-bit value

that is actually being shifted. The following program demonstrates this effect:

// Unsigned shifting a byte value.
class ByteUShift {
 static public void main(String args[]) {
 char hex[] = {
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
 };
 byte b = (byte) 0xf1;
 byte c = (byte) (b >> 4);
 byte d = (byte) (b >>> 4);
 byte e = (byte) ((b & 0xff) >> 4);

 System.out.println(" b = 0x"
 + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
 System.out.println(" b >> 4 = 0x"
 + hex[(c >> 4) & 0x0f] + hex[c & 0x0f]);
 System.out.println(" b >>> 4 = 0x"
 + hex[(d >> 4) & 0x0f] + hex[d & 0x0f]);

 Chapter 4 Operators 73

P
a

rt
 I

 System.out.println("(b & 0xff) >> 4 = 0x"
 + hex[(e >> 4) & 0x0f] + hex[e & 0x0f]);
 }
}

The following output of this program shows how the >>> operator appears to do nothing

when dealing with bytes. The variable b is set to an arbitrary negative byte value for this

demonstration. Then c is assigned the byte value of b shifted right by four, which is 0xff

because of the expected sign extension. Then d is assigned the byte value of b unsigned

shifted right by four, which you might have expected to be 0x0f, but is actually 0xff because

of the sign extension that happened when b was promoted to int before the shift. The last

expression sets e to the byte value of b masked to 8 bits using the AND operator, then shifted

right by four, which produces the expected value of 0x0f. Notice that the unsigned shift right

operator was not used for d, since the state of the sign bit after the AND was known.

 b = 0xf1
 b >> 4 = 0xff
 b >>> 4 = 0xff
 (b & 0xff) >> 4 = 0x0f

Bitwise Operator Compound Assignments

All of the binary bitwise operators have a compound form similar to that of the algebraic

operators, which combines the assignment with the bitwise operation. For example, the

following two statements, which shift the value in a right by four bits, are equivalent:

a = a >> 4;
a >>= 4;

Likewise, the following two statements, which result in a being assigned the bitwise

expression a OR b, are equivalent:

a = a | b;
a |= b;

The following program creates a few integer variables and then uses compound bitwise

operator assignments to manipulate the variables:

class OpBitEquals {
 public static void main(String args[]) {
 int a = 1;
 int b = 2;
 int c = 3;

 a |= 4;
 b >>= 1;
 c <<= 1;
 a ^= c;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 }
}

74 PART I The Java Language

The output of this program is shown here:

 a = 3
 b = 1
 c = 6

Relational Operators
The relational operators determine the relationship that one operand has to the other.

Specifically, they determine equality and ordering. The relational operators are shown here:

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are most

frequently used in the expressions that control the if statement and the various loop

statements.

Any type in Java, including integers, floating-point numbers, characters, and Booleans

can be compared using the equality test, ==, and the inequality test, !=. Notice that in Java

equality is denoted with two equal signs, not one. (Remember: a single equal sign is the

assignment operator.) Only numeric types can be compared using the ordering operators.

That is, only integer, floating-point, and character operands may be compared to see which

is greater or less than the other.

As stated, the result produced by a relational operator is a boolean value. For example,

the following code fragment is perfectly valid:

int a = 4;
int b = 1;
boolean c = a < b;

In this case, the result of a<b (which is false) is stored in c.

If you are coming from a C/C++ background, please note the following. In C/C++,

these types of statements are very common:

int done;
//...
if(!done)... // Valid in C/C++
if(done)... // but not in Java.

In Java, these statements must be written like this:

if(done == 0)... // This is Java-style.
if(done != 0)...

 Chapter 4 Operators 75

P
a

rt
 I

The reason is that Java does not define true and false in the same way as C/C++. In C/

C++, true is any nonzero value and false is zero. In Java, true and false are nonnumeric

values that do not relate to zero or nonzero. Therefore, to test for zero or nonzero, you

must explicitly employ one or more of the relational operators.

Boolean Logical Operators
The Boolean logical operators shown here operate only on boolean operands. All of the

binary logical operators combine two boolean values to form a resultant boolean value.

Operator Result

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

?: Ternary if-then-else

The logical Boolean operators, &, |, and ^, operate on boolean values in the same way

that they operate on the bits of an integer. The logical ! operator inverts the Boolean state:

!true == false and !false == true. The following table shows the effect of each logical

operation:

A B A | B A & B A ^ B !A

False False False False False True

True False True False True False

False True True False True True

True True True True False False

Here is a program that is almost the same as the BitLogic example shown earlier, but it

operates on boolean logical values instead of binary bits:

// Demonstrate the boolean logical operators.
class BoolLogic {
 public static void main(String args[]) {
 boolean a = true;
 boolean b = false;
 boolean c = a | b;
 boolean d = a & b;

76 PART I The Java Language

 boolean e = a ^ b;
 boolean f = (!a & b) | (a & !b);
 boolean g = !a;
 System.out.println(" a = " + a);
 System.out.println(" b = " + b);
 System.out.println(" a|b = " + c);
 System.out.println(" a&b = " + d);
 System.out.println(" a^b = " + e);
 System.out.println("!a&b|a&!b = " + f);
 System.out.println(" !a = " + g);
 }
}

After running this program, you will see that the same logical rules apply to boolean

values as they did to bits. As you can see from the following output, the string

representation of a Java boolean value is one of the literal values true or false:

 a = true
 b = false
 a|b = true
 a&b = false
 a^b = true
 !a&b|a&!b = true
 !a = false

Short-Circuit Logical Operators

Java provides two interesting Boolean operators not found in many other computer

languages. These are secondary versions of the Boolean AND and OR operators, and are

commonly known as short-circuit logical operators. As you can see from the preceding table,

the OR operator results in true when A is true, no matter what B is. Similarly, the AND

operator results in false when A is false, no matter what B is. If you use the || and && forms,

rather than the | and & forms of these operators, Java will not bother to evaluate the right-

hand operand when the outcome of the expression can be determined by the left operand

alone. This is very useful when the right-hand operand depends on the value of the left one

in order to function properly. For example, the following code fragment shows how you

can take advantage of short-circuit logical evaluation to be sure that a division operation

will be valid before evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time

exception when denom is zero. If this line of code were written using the single & version

of AND, both sides would be evaluated, causing a run-time exception when denom is zero.

It is standard practice to use the short-circuit forms of AND and OR in cases involving

Boolean logic, leaving the single-character versions exclusively for bitwise operations.

However, there are exceptions to this rule. For example, consider the following statement:

if(c==1 & e++ < 100) d = 100;

Here, using a single & ensures that the increment operation will be applied to e whether c

is equal to 1 or not.

 Chapter 4 Operators 77

P
a

rt
 I

NOTE The formal specification for Java refers to the short-circuit operators as the conditional-and and
the conditional-or.

The Assignment Operator
You have been using the assignment operator since Chapter 2. Now it is time to take a

formal look at it. The assignment operator is the single equal sign, =. The assignment operator

works in Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be

familiar with: it allows you to create a chain of assignments. For example, consider this

fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works

because the = is an operator that yields the value of the right-hand expression. Thus, the

value of z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using a

“chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator
Java includes a special ternary (three-way) operator that can replace certain types of if-then-

else statements. This operator is the ?. It can seem somewhat confusing at first, but the ?

can be used very effectively once mastered. The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is

true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ?

operation is that of the expression evaluated. Both expression2 and expression3 are required

to return the same (or compatible) type, which can’t be void.

Here is an example of the way that the ? is employed:

ratio = denom == 0 ? 0 : num / denom;

When Java evaluates this assignment expression, it first looks at the expression to the left of

the question mark. If denom equals zero, then the expression between the question mark

and the colon is evaluated and used as the value of the entire ? expression. If denom does

not equal zero, then the expression after the colon is evaluated and used for the value of the

entire ? expression. The result produced by the ? operator is then assigned to ratio.

Here is a program that demonstrates the ? operator. It uses it to obtain the absolute

value of a variable.

// Demonstrate ?.
class Ternary {
 public static void main(String args[]) {
 int i, k;

78 PART I The Java Language

 i = 10;
 k = i < 0 ? -i : i; // get absolute value of i
 System.out.print("Absolute value of ");
 System.out.println(i + " is " + k);

 i = -10;
 k = i < 0 ? -i : i; // get absolute value of i
 System.out.print("Absolute value of ");
 System.out.println(i + " is " + k);
 }
}

The output generated by the program is shown here:

 Absolute value of 10 is 10
 Absolute value of -10 is 10

Operator Precedence
Table 4-1 shows the order of precedence for Java operators, from highest to lowest.

Operators in the same row are equal in precedence. In binary operations, the order of

evaluation is left to right (except for assignment, which evaluates right to left). Although

they are technically separators, the [], (), and . can also act like operators. In that capacity,

they would have the highest precedence.

Table 4-1 The Precedence of the Java Operators

Highest

++ (postfix) – – (postfix)

++ (prefix) – – (prefix) ~ ! + (unary) – (unary) (type-cast)

* / %

+ –

>> >>> <<

> >= < <= instanceof

== !=

&

^

|

&&

||

?:

= op=

Lowest

 Chapter 4 Operators 79

P
a

rt
 I

Using Parentheses
Parentheses raise the precedence of the operations that are inside them. This is often

necessary to obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this

expression can be rewritten using redundant parentheses like this:

a >> (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that result,

you will need to parenthesize the expression like this:

(a >> b) + 3

In addition to altering the normal precedence of an operator, parentheses can

sometimes be used to help clarify the meaning of an expression. For anyone reading your

code, a complicated expression can be difficult to understand. Adding redundant but

clarifying parentheses to complex expressions can help prevent confusion later. For

example, which of the following expressions is easier to read?

a | 4 + c >> b & 7
(a | (((4 + c) >> b) & 7))

One other point: parentheses (redundant or not) do not degrade the performance

of your program. Therefore, adding parentheses to reduce ambiguity does not negatively

affect your program.

This page intentionally left blank

5
CHAPTER

 81

Control Statements

A programming language uses control statements to cause the flow of execution to advance

and branch based on changes to the state of a program. Java’s program control statements

can be put into the following categories: selection, iteration, and jump. Selection statements

allow your program to choose different paths of execution based upon the outcome of an

expression or the state of a variable. Iteration statements enable program execution to

repeat one or more statements (that is, iteration statements form loops). Jump statements

allow your program to execute in a nonlinear fashion. All of Java’s control statements are

examined here.

Java’s Selection Statements
Java supports two selection statements: if and switch. These statements allow you to control

the flow of your program’s execution based upon conditions known only during run time.

You will be pleasantly surprised by the power and flexibility contained in these two statements.

if

The if statement was introduced in Chapter 2. It is examined in detail here. The if statement

is Java’s conditional branch statement. It can be used to route program execution through

two different paths. Here is the general form of the if statement:

if (condition) statement1;

else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly

braces (that is, a block). The condition is any expression that returns a boolean value. The

else clause is optional.

The if works like this: If the condition is true, then statement1 is executed. Otherwise,

statement2 (if it exists) is executed. In no case will both statements be executed. For example,

consider the following:

int a, b;
//...
if(a < b) a = 0;
else b = 0;

82 PART I The Java Language

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they

both set to zero.

Most often, the expression used to control the if will involve the relational operators.

However, this is not technically necessary. It is possible to control the if using a single boolean

variable, as shown in this code fragment:

boolean dataAvailable;
//...
if (dataAvailable)
 ProcessData();
else
 waitForMoreData();

Remember, only one statement can appear directly after the if or the else. If you want to

include more statements, you’ll need to create a block, as in this fragment:

int bytesAvailable;
// ...
if (bytesAvailable > 0) {
 ProcessData();
 bytesAvailable -= n;
} else
 waitForMoreData();

Here, both statements within the if block will execute if bytesAvailable is greater than zero.

Some programmers find it convenient to include the curly braces when using the if, even

when there is only one statement in each clause. This makes it easy to add another statement

at a later date, and you don’t have to worry about forgetting the braces. In fact, forgetting to

define a block when one is needed is a common cause of errors. For example, consider the

following code fragment:

int bytesAvailable;
// ...
if (bytesAvailable > 0) {
 ProcessData();
 bytesAvailable -= n;
} else
 waitForMoreData();
 bytesAvailable = n;

It seems clear that the statement bytesAvailable = n; was intended to be executed inside the

else clause, because of the indentation level. However, as you recall, whitespace is insignificant

to Java, and there is no way for the compiler to know what was intended. This code will

compile without complaint, but it will behave incorrectly when run. The preceding example

is fixed in the code that follows:

int bytesAvailable;
// ...
if (bytesAvailable > 0) {
 ProcessData();
 bytesAvailable -= n;
} else {

 Chapter 5 Control Statements 83

P
a

rt
 I

 waitForMoreData();
 bytesAvailable = n;
}

Nested ifs
A nested if is an if statement that is the target of another if or else. Nested ifs are very

common in programming. When you nest ifs, the main thing to remember is that an else

statement always refers to the nearest if statement that is within the same block as the else

and that is not already associated with an else. Here is an example:

if(i == 10) {
 if(j < 20) a = b;
 if(k > 100) c = d; // this if is
 else a = c; // associated with this else
}
else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j<20) because it is not in

the same block (even though it is the nearest if without an else). Rather, the final else is

associated with if(i==10). The inner else refers to if(k>100) because it is the closest if within

the same block.

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the if-else-
if ladder. It looks like this:

if(condition)

 statement;
else if(condition)

 statement;
else if(condition)

 statement;
.

.

.

else

 statement;

The if statements are executed from the top down. As soon as one of the conditions

controlling the if is true, the statement associated with that if is executed, and the rest of

the ladder is bypassed. If none of the conditions is true, then the final else statement will be

executed. The final else acts as a default condition; that is, if all other conditional tests fail,

then the last else statement is performed. If there is no final else and all other conditions

are false, then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a particular

month is in.

// Demonstrate if-else-if statements.
class IfElse {
 public static void main(String args[]) {
 int month = 4; // April
 String season;

84 PART I The Java Language

 if(month == 12 || month == 1 || month == 2)
 season = "Winter";
 else if(month == 3 || month == 4 || month == 5)
 season = "Spring";
 else if(month == 6 || month == 7 || month == 8)
 season = "Summer";
 else if(month == 9 || month == 10 || month == 11)
 season = "Autumn";
 else
 season = "Bogus Month";

 System.out.println("April is in the " + season + ".");
 }
}

Here is the output produced by the program:

 April is in the Spring.

You might want to experiment with this program before moving on. As you will find, no

matter what value you give month, one and only one assignment statement within the ladder

will be executed.

switch

The switch statement is Java’s multiway branch statement. It provides an easy way to

dispatch execution to different parts of your code based on the value of an expression. As

such, it often provides a better alternative than a large series of if-else-if statements. Here is

the general form of a switch statement:

switch (expression) {

 case value1:

 // statement sequence

 break;

 case value2:

 // statement sequence

 break;

.

.

.

 case valueN :

 // statement sequence

 break;

 default:

 // default statement sequence

}

For versions of Java prior to JDK 7, expression must be of type byte, short, int, char, or an

enumeration. (Enumerations are described in Chapter 12.) Beginning with JDK 7, expression

 Chapter 5 Control Statements 85

P
a

rt
 I

can also be of type String. Each value specified in the case statements must be a unique

constant expression (such as a literal value). Duplicate case values are not allowed. The type

of each value must be compatible with the type of expression.

The switch statement works like this: The value of the expression is compared with each of

the values in the case statements. If a match is found, the code sequence following that case

statement is executed. If none of the constants matches the value of the expression, then the

default statement is executed. However, the default statement is optional. If no case matches

and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence. When a

break statement is encountered, execution branches to the first line of code that follows the

entire switch statement. This has the effect of “jumping out” of the switch.

Here is a simple example that uses a switch statement:

// A simple example of the switch.
class SampleSwitch {
 public static void main(String args[]) {
 for(int i=0; i<6; i++)
 switch(i) {
 case 0:
 System.out.println("i is zero.");
 break;
 case 1:
 System.out.println("i is one.");
 break;
 case 2:
 System.out.println("i is two.");
 break;
 case 3:
 System.out.println("i is three.");
 break;
 default:
 System.out.println("i is greater than 3.");
 }
 }
}

The output produced by this program is shown here:

 i is zero.
 i is one.
 i is two.
 i is three.
 i is greater than 3.
 i is greater than 3.

As you can see, each time through the loop, the statements associated with the case

constant that matches i are executed. All others are bypassed. After i is greater than 3,

no case statements match, so the default statement is executed.

86 PART I The Java Language

The break statement is optional. If you omit the break, execution will continue on into the

next case. It is sometimes desirable to have multiple cases without break statements between

them. For example, consider the following program:

// In a switch, break statements are optional.
class MissingBreak {
 public static void main(String args[]) {
 for(int i=0; i<12; i++)
 switch(i) {
 case 0:
 case 1:
 case 2:
 case 3:
 case 4:
 System.out.println("i is less than 5");
 break;
 case 5:
 case 6:
 case 7:
 case 8:
 case 9:
 System.out.println("i is less than 10");
 break;
 default:
 System.out.println("i is 10 or more");
 }
 }
}

This program generates the following output:

 i is less than 5
 i is less than 5
 i is less than 5
 i is less than 5
 i is less than 5
 i is less than 10
 i is less than 10
 i is less than 10
 i is less than 10
 i is less than 10
 i is 10 or more
 i is 10 or more

As you can see, execution falls through each case until a break statement (or the end of the

switch) is reached.

While the preceding example is, of course, contrived for the sake of illustration, omitting

the break statement has many practical applications in real programs. To sample its more

realistic usage, consider the following rewrite of the season example shown earlier. This version

uses a switch to provide a more efficient implementation.

// An improved version of the season program.
class Switch {
 public static void main(String args[]) {
 int month = 4;

 Chapter 5 Control Statements 87

P
a

rt
 I

 String season;

 switch (month) {
 case 12:
 case 1:
 case 2:
 season = "Winter";
 break;
 case 3:
 case 4:
 case 5:
 season = "Spring";
 break;
 case 6:
 case 7:
 case 8:
 season = "Summer";
 break;
 case 9:
 case 10:
 case 11:
 season = "Autumn";
 break;
 default:
 season = "Bogus Month";
 }
 System.out.println("April is in the " + season + ".");
 }
}

As mentioned, beginning with JDK 7, you can use a string to control a switch statement.

For example,

// Use a string to control a switch statement.

class StringSwitch {
 public static void main(String args[]) {

 String str = "two";

 switch(str) {
 case "one":
 System.out.println("one");
 break;
 case "two":
 System.out.println("two");
 break;
 case "three":
 System.out.println("three");
 break;
 default:
 System.out.println("no match");
 break;
 }
 }
}

88 PART I The Java Language

As you would expect, the output from the program is

 two

The string contained in str (which is "two" in this program) is tested against the case

constants. When a match is found (as it is in the second case), the code sequence associated

with that sequence is executed.

Being able to use strings in a switch statement streamlines many situations. For example,

using a string-based switch is an improvement over using the equivalent sequence of if/else

statements. However, switching on strings is more expensive than switching on integers.

Therefore, it is best to switch on strings only in cases in which the controlling data is already

in string form. In other words, don’t use strings in a switch unnecessarily.

Nested switch Statements
You can use a switch as part of the statement sequence of an outer switch. This is called a

nested switch. Since a switch statement defines its own block, no conflicts arise between the

case constants in the inner switch and those in the outer switch. For example, the following

fragment is perfectly valid:

switch(count) {
 case 1:
 switch(target) { // nested switch
 case 0:
 System.out.println("target is zero");
 break;
 case 1: // no conflicts with outer switch
 System.out.println("target is one");
 break;
 }
 break;
 case 2: // ...

Here, the case 1: statement in the inner switch does not conflict with the case 1: statement

in the outer switch. The count variable is compared only with the list of cases at the outer

level. If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

• The switch differs from the if in that switch can only test for equality, whereas if can

evaluate any type of Boolean expression. That is, the switch looks only for a match

between the value of the expression and one of its case constants.

• No two case constants in the same switch can have identical values. Of course, a

switch statement and an enclosing outer switch can have case constants in common.

• A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java compiler

works. When it compiles a switch statement, the Java compiler will inspect each of the case

constants and create a “jump table” that it will use for selecting the path of execution

depending on the value of the expression. Therefore, if you need to select among a large

 Chapter 5 Control Statements 89

P
a

rt
 I

group of values, a switch statement will run much faster than the equivalent logic coded using

a sequence of if-elses. The compiler can do this because it knows that the case constants are

all the same type and simply must be compared for equality with the switch expression. The

compiler has no such knowledge of a long list of if expressions.

Iteration Statements
Java’s iteration statements are for, while, and do-while. These statements create what we

commonly call loops. As you probably know, a loop repeatedly executes the same set of

instructions until a termination condition is met. As you will see, Java has a loop to fit any

programming need.

while

The while loop is Java’s most fundamental loop statement. It repeats a statement or block

while its controlling expression is true. Here is its general form:

while(condition) {

 // body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long

as the conditional expression is true. When condition becomes false, control passes to the

next line of code immediately following the loop. The curly braces are unnecessary if only a

single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of "tick":

// Demonstrate the while loop.
class While {
 public static void main(String args[]) {
 int n = 10;

 while(n > 0) {
 System.out.println("tick " + n);
 n--;
 }
 }
}

When you run this program, it will “tick” ten times:

 tick 10
 tick 9
 tick 8
 tick 7
 tick 6
 tick 5
 tick 4
 tick 3
 tick 2
 tick 1

90 PART I The Java Language

Since the while loop evaluates its conditional expression at the top of the loop, the body of

the loop will not execute even once if the condition is false to begin with. For example, in the

following fragment, the call to println() is never executed:

int a = 10, b = 20;

while(a > b)
 System.out.println("This will not be displayed");

The body of the while (or any other of Java’s loops) can be empty. This is because a null
statement (one that consists only of a semicolon) is syntactically valid in Java. For example,

consider the following program:

// The target of a loop can be empty.
class NoBody {
 public static void main(String args[]) {
 int i, j;

 i = 100;
 j = 200;

 // find midpoint between i and j
 while(++i < --j); // no body in this loop

 System.out.println("Midpoint is " + i);
 }
}

This program finds the midpoint between i and j. It generates the following output:

 Midpoint is 150

Here is how this while loop works. The value of i is incremented, and the value of j is
decremented. These values are then compared with one another. If the new value of i is still
less than the new value of j, then the loop repeats. If i is equal to or greater than j, the loop

stops. Upon exit from the loop, i will hold a value that is midway between the original values of

i and j. (Of course, this procedure only works when i is less than j to begin with.) As you can

see, there is no need for a loop body; all of the action occurs within the conditional expression,

itself. In professionally written Java code, short loops are frequently coded without bodies

when the controlling expression can handle all of the details itself.

do-while

As you just saw, if the conditional expression controlling a while loop is initially false, then

the body of the loop will not be executed at all. However, sometimes it is desirable to

execute the body of a loop at least once, even if the conditional expression is false to begin

with. In other words, there are times when you would like to test the termination expression

at the end of the loop rather than at the beginning. Fortunately, Java supplies a loop that

does just that: the do-while. The do-while loop always executes its body at least once,

because its conditional expression is at the bottom of the loop. Its general form is

 Chapter 5 Control Statements 91

P
a

rt
 I

do {

 // body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates

the conditional expression. If this expression is true, the loop will repeat. Otherwise, the

loop terminates. As with all of Java’s loops, condition must be a Boolean expression.

Here is a reworked version of the “tick” program that demonstrates the do-while loop. It

generates the same output as before.

// Demonstrate the do-while loop.
class DoWhile {
 public static void main(String args[]) {
 int n = 10;

 do {
 System.out.println("tick " + n);
 n--;
 } while(n > 0);
 }
}

The loop in the preceding program, while technically correct, can be written more

efficiently as follows:

do {
 System.out.println("tick " + n);
} while(--n > 0);

In this example, the expression (– –n > 0) combines the decrement of n and the test for zero

into one expression. Here is how it works. First, the – –n statement executes, decrementing

n and returning the new value of n. This value is then compared with zero. If it is greater

than zero, the loop continues; otherwise, it terminates.

The do-while loop is especially useful when you process a menu selection, because you will

usually want the body of a menu loop to execute at least once. Consider the following program,

which implements a very simple help system for Java’s selection and iteration statements:

// Using a do-while to process a menu selection
class Menu {
 public static void main(String args[])
 throws java.io.IOException {
 char choice;

 do {
 System.out.println("Help on: ");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. while");
 System.out.println(" 4. do-while");
 System.out.println(" 5. for\n");
 System.out.println("Choose one:");

92 PART I The Java Language

 choice = (char) System.in.read();
 } while(choice < '1' || choice > '5');

 System.out.println("\n");

 switch(choice) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" //...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '4':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
 case '5':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 }
 }
}

Here is a sample run produced by this program:

 Help on:
 1. if
 2. switch
 3. while
 4. do-while
 5. for
 Choose one:
 4
 The do-while:
 do {
 statement;
 } while (condition);

 Chapter 5 Control Statements 93

P
a

rt
 I

In the program, the do-while loop is used to verify that the user has entered a valid choice.

If not, then the user is reprompted. Since the menu must be displayed at least once, the

do-while is the perfect loop to accomplish this.

A few other points about this example: Notice that characters are read from the keyboard

by calling System.in.read(). This is one of Java’s console input functions. Although Java’s

console I/O methods won’t be discussed in detail until Chapter 13, System.in.read() is used

here to obtain the user’s choice. It reads characters from standard input (returned as integers,

which is why the return value was cast to char). By default, standard input is line buffered, so

you must press enter before any characters that you type will be sent to your program.

Java’s console input can be a bit awkward to work with. Further, most real-world Java

programs will be graphical and window-based. For these reasons, not much use of console

input has been made in this book. However, it is useful in this context. One other point

to consider: Because System.in.read() is being used, the program must specify the

throws java.io.IOException clause. This line is necessary to handle input errors. It is

part of Java’s exception handling features, which are discussed in Chapter 10.

for

You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is a

powerful and versatile construct.

Beginning with JDK 5, there are two forms of the for loop. The first is the traditional form

that has been in use since the original version of Java. The second is the new “for-each” form.

Both types of for loops are discussed here, beginning with the traditional form.

Here is the general form of the traditional for statement:

for(initialization; condition; iteration) {

 // body

}

If only one statement is being repeated, there is no need for the curly braces.

The for loop operates as follows. When the loop first starts, the initialization portion of the

loop is executed. Generally, this is an expression that sets the value of the loop control variable,
which acts as a counter that controls the loop. It is important to understand that the initialization

expression is executed only once. Next, condition is evaluated. This must be a Boolean expression.

It usually tests the loop control variable against a target value. If this expression is true, then the

body of the loop is executed. If it is false, the loop terminates. Next, the iteration portion of the

loop is executed. This is usually an expression that increments or decrements the loop control

variable. The loop then iterates, first evaluating the conditional expression, then executing the

body of the loop, and then executing the iteration expression with each pass. This process

repeats until the controlling expression is false.

Here is a version of the “tick” program that uses a for loop:

// Demonstrate the for loop.
class ForTick {
 public static void main(String args[]) {
 int n;

 for(n=10; n>0; n--)

94 PART I The Java Language

 System.out.println("tick " + n);
 }
}

Declaring Loop Control Variables Inside the for Loop
Often the variable that controls a for loop is needed only for the purposes of the loop and

is not used elsewhere. When this is the case, it is possible to declare the variable inside the

initialization portion of the for. For example, here is the preceding program recoded so

that the loop control variable n is declared as an int inside the for:

// Declare a loop control variable inside the for.
class ForTick {
 public static void main(String args[]) {

 // here, n is declared inside of the for loop
 for(int n=10; n>0; n--)
 System.out.println("tick " + n);
 }
}

When you declare a variable inside a for loop, there is one important point to remember:

the scope of that variable ends when the for statement does. (That is, the scope of the variable

is limited to the for loop.) Outside the for loop, the variable will cease to exist. If you need to

use the loop control variable elsewhere in your program, you will not be able to declare it

inside the for loop.

When the loop control variable will not be needed elsewhere, most Java programmers

declare it inside the for. For example, here is a simple program that tests for prime numbers.

Notice that the loop control variable, i, is declared inside the for since it is not needed

elsewhere.

// Test for primes.
class FindPrime {
 public static void main(String args[]) {
 int num;
 boolean isPrime;

 num = 14;

 if(num < 2) isPrime = false;
 else isPrime = true;

 for(int i=2; i <= num/i; i++) {
 if((num % i) == 0) {
 isPrime = false;
 break;
 }
 }

 if(isPrime) System.out.println("Prime");
 else System.out.println("Not Prime");
 }
}

 Chapter 5 Control Statements 95

P
a

rt
 I

Using the Comma
There will be times when you will want to include more than one statement in the

initialization and iteration portions of the for loop. For example, consider the loop in the

following program:

class Sample {
 public static void main(String args[]) {
 int a, b;

 b = 4;
 for(a=1; a<b; a++) {
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 b--;
 }
 }
}

As you can see, the loop is controlled by the interaction of two variables. Since the loop is

governed by two variables, it would be useful if both could be included in the for statement,

itself, instead of b being handled manually. Fortunately, Java provides a way to accomplish

this. To allow two or more variables to control a for loop, Java permits you to include

multiple statements in both the initialization and iteration portions of the for. Each

statement is separated from the next by a comma.

Using the comma, the preceding for loop can be more efficiently coded, as shown here:

// Using the comma.
class Comma {
 public static void main(String args[]) {
 int a, b;

 for(a=1, b=4; a<b; a++, b--) {
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 }
 }
}

In this example, the initialization portion sets the values of both a and b. The two comma-

separated statements in the iteration portion are executed each time the loop repeats. The

program generates the following output:

 a = 1
 b = 4
 a = 2
 b = 3

NOTE If you are familiar with C/C++, then you know that in those languages the comma is an operator
that can be used in any valid expression. However, this is not the case with Java. In Java, the comma
is a separator.

96 PART I The Java Language

Some for Loop Variations
The for loop supports a number of variations that increase its power and applicability. The

reason it is so flexible is that its three parts—the initialization, the conditional test, and

the iteration—do not need to be used for only those purposes. In fact, the three sections of the

for can be used for any purpose you desire. Let’s look at some examples.

One of the most common variations involves the conditional expression. Specifically, this

expression does not need to test the loop control variable against some target value. In fact,

the condition controlling the for can be any Boolean expression. For example, consider the

following fragment:

boolean done = false;

for(int i=1; !done; i++) {
 // ...
 if(interrupted()) done = true;
}

In this example, the for loop continues to run until the boolean variable done is set to true.

It does not test the value of i.
Here is another interesting for loop variation. Either the initialization or the iteration

expression or both may be absent, as in this next program:

// Parts of the for loop can be empty.
class ForVar {
 public static void main(String args[]) {
 int i;
 boolean done = false;

 i = 0;
 for(; !done;) {
 System.out.println("i is " + i);
 if(i == 10) done = true;
 i++;
 }
 }
}

Here, the initialization and iteration expressions have been moved out of the for. Thus,

parts of the for are empty. While this is of no value in this simple example—indeed, it

would be considered quite poor style—there can be times when this type of approach

makes sense. For example, if the initial condition is set through a complex expression

elsewhere in the program or if the loop control variable changes in a nonsequential

manner determined by actions that occur within the body of the loop, it may be

appropriate to leave these parts of the for empty.

Here is one more for loop variation. You can intentionally create an infinite loop (a loop

that never terminates) if you leave all three parts of the for empty. For example:

for(; ;) {
 // ...
}

 Chapter 5 Control Statements 97

P
a

rt
 I

This loop will run forever because there is no condition under which it will terminate.

Although there are some programs, such as operating system command processors, that

require an infinite loop, most “infinite loops” are really just loops with special termination

requirements. As you will soon see, there is a way to terminate a loop—even an infinite loop

like the one shown—that does not make use of the normal loop conditional expression.

The For-Each Version of the for Loop

Beginning with JDK 5, a second form of for was defined that implements a “for-each” style

loop. As you may know, contemporary language theory has embraced the for-each concept,

and it is quickly becoming a standard feature that programmers have come to expect. A for-

each style loop is designed to cycle through a collection of objects, such as an array, in

strictly sequential fashion, from start to finish. Unlike some languages, such as C#, that

implement a for-each loop by using the keyword foreach, Java adds the for-each capability

by enhancing the for statement. The advantage of this approach is that no new keyword is

required, and no preexisting code is broken. The for-each style of for is also referred to as

the enhanced for loop.

The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will

receive the elements from a collection, one at a time, from beginning to end. The collection

being cycled through is specified by collection. There are various types of collections that can be

used with the for, but the only type used in this chapter is the array. (Other types of collections

that can be used with the for, such as those defined by the Collections Framework, are

discussed later in this book.) With each iteration of the loop, the next element in the

collection is retrieved and stored in itr-var. The loop repeats until all elements in the collection

have been obtained.

Because the iteration variable receives values from the collection, type must be the same as

(or compatible with) the elements stored in the collection. Thus, when iterating over arrays,

type must be compatible with the element type of the array.

To understand the motivation behind a for-each style loop, consider the type of for loop

that it is designed to replace. The following fragment uses a traditional for loop to compute

the sum of the values in an array:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int i=0; i < 10; i++) sum += nums[i];

To compute the sum, each element in nums is read, in order, from start to finish. Thus, the

entire array is read in strictly sequential order. This is accomplished by manually indexing the

nums array by i, the loop control variable.

The for-each style for automates the preceding loop. Specifically, it eliminates the need to

establish a loop counter, specify a starting and ending value, and manually index the array.

Instead, it automatically cycles through the entire array, obtaining one element at a time, in

98 PART I The Java Language

sequence, from beginning to end. For example, here is the preceding fragment rewritten

using a for-each version of the for:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int x: nums) sum += x;

With each pass through the loop, x is automatically given a value equal to the next element

in nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so

on. Not only is the syntax streamlined, but it also prevents boundary errors.

Here is an entire program that demonstrates the for-each version of the for just described:

// Use a for-each style for loop.
class ForEach {
 public static void main(String args[]) {
 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 int sum = 0;

 // use for-each style for to display and sum the values
 for(int x : nums) {
 System.out.println("Value is: " + x);
 sum += x;
 }

 System.out.println("Summation: " + sum);
 }
}

The output from the program is shown here:

 Value is: 1
 Value is: 2
 Value is: 3
 Value is: 4
 Value is: 5
 Value is: 6
 Value is: 7
 Value is: 8
 Value is: 9
 Value is: 10
 Summation: 55

As this output shows, the for-each style for automatically cycles through an array in

sequence from the lowest index to the highest.

Although the for-each for loop iterates until all elements in an array have been examined,

it is possible to terminate the loop early by using a break statement. For example, this program

sums only the first five elements of nums:

// Use break with a for-each style for.
class ForEach2 {
 public static void main(String args[]) {
 int sum = 0;

 Chapter 5 Control Statements 99

P
a

rt
 I

 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // use for to display and sum the values
 for(int x : nums) {
 System.out.println("Value is: " + x);
 sum += x;
 if(x == 5) break; // stop the loop when 5 is obtained
 }
 System.out.println("Summation of first 5 elements: " + sum);
 }
}

This is the output produced:

 Value is: 1
 Value is: 2
 Value is: 3
 Value is: 4
 Value is: 5
 Summation of first 5 elements: 15

As is evident, the for loop stops after the fifth element has been obtained. The break

statement can also be used with Java’s other loops, and it is discussed in detail later in this

chapter.

There is one important point to understand about the for-each style loop. Its iteration

variable is “read-only” as it relates to the underlying array. An assignment to the iteration

variable has no effect on the underlying array. In other words, you can’t change the contents of

the array by assigning the iteration variable a new value. For example, consider this program:

// The for-each loop is essentially read-only.
class NoChange {
 public static void main(String args[]) {
 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 for(int x: nums) {
 System.out.print(x + " ");
 x = x * 10; // no effect on nums
 }

 System.out.println();

 for(int x : nums)
 System.out.print(x + " ");

 System.out.println();
 }
}

The first for loop increases the value of the iteration variable by a factor of 10. However,

this assignment has no effect on the underlying array nums, as the second for loop illustrates.

The output, shown here, proves this point:

 1 2 3 4 5 6 7 8 9 10
 1 2 3 4 5 6 7 8 9 10

100 PART I The Java Language

Iterating Over Multidimensional Arrays
The enhanced version of the for also works on multidimensional arrays. Remember,

however, that in Java, multidimensional arrays consist of arrays of arrays. (For example,

a two-dimensional array is an array of one-dimensional arrays.) This is important when

iterating over a multidimensional array, because each iteration obtains the next array, not an

individual element. Furthermore, the iteration variable in the for loop must be compatible

with the type of array being obtained. For example, in the case of a two-dimensional array,

the iteration variable must be a reference to a one-dimensional array. In general, when

using the for-each for to iterate over an array of N dimensions, the objects obtained will be

arrays of N–1 dimensions. To understand the implications of this, consider the following

program. It uses nested for loops to obtain the elements of a two-dimensional array in row-

order, from first to last.

// Use for-each style for on a two-dimensional array.
class ForEach3 {
 public static void main(String args[]) {
 int sum = 0;
 int nums[][] = new int[3][5];

 // give nums some values
 for(int i = 0; i < 3; i++)
 for(int j = 0; j < 5; j++)
 nums[i][j] = (i+1)*(j+1);

 // use for-each for to display and sum the values
 for(int x[] : nums) {
 for(int y : x) {
 System.out.println("Value is: " + y);
 sum += y;
 }
 }
 System.out.println("Summation: " + sum);
 }
}

The output from this program is shown here:

 Value is: 1
 Value is: 2
 Value is: 3
 Value is: 4
 Value is: 5
 Value is: 2
 Value is: 4
 Value is: 6
 Value is: 8
 Value is: 10
 Value is: 3
 Value is: 6
 Value is: 9

 Chapter 5 Control Statements 101

P
a

rt
 I

 Value is: 12
 Value is: 15
 Summation: 90

In the program, pay special attention to this line:

for(int x[]: nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers. This is

necessary because each iteration of the for obtains the next array in nums, beginning with

the array specified by nums[0]. The inner for loop then cycles through each of these arrays,

displaying the values of each element.

Applying the Enhanced for
Since the for-each style for can only cycle through an array sequentially, from start to finish,

you might think that its use is limited, but this is not true. A large number of algorithms

require exactly this mechanism. One of the most common is searching. For example, the

following program uses a for loop to search an unsorted array for a value. It stops if the

value is found.

// Search an array using for-each style for.
class Search {
 public static void main(String args[]) {
 int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };
 int val = 5;
 boolean found = false;

 // use for-each style for to search nums for val
 for(int x : nums) {
 if(x == val) {
 found = true;
 break;
 }
 }

 if(found)
 System.out.println("Value found!");
 }
}

The for-each style for is an excellent choice in this application because searching an

unsorted array involves examining each element in sequence. (Of course, if the array were

sorted, a binary search could be used, which would require a different style loop.) Other types

of applications that benefit from for-each style loops include computing an average, finding

the minimum or maximum of a set, looking for duplicates, and so on.

Although we have been using arrays in the examples in this chapter, the for-each style for is
especially useful when operating on collections defined by the Collections Framework, which is

described in Part II. More generally, the for can cycle through the elements of any collection

of objects, as long as that collection satisfies a certain set of constraints, which are described in

Chapter 17.

102 PART I The Java Language

Nested Loops

Like all other programming languages, Java allows loops to be nested. That is, one loop

may be inside another. For example, here is a program that nests for loops:

// Loops may be nested.
class Nested {
 public static void main(String args[]) {
 int i, j;

 for(i=0; i<10; i++) {
 for(j=i; j<10; j++)
 System.out.print(".");
 System.out.println();
 }
 }
}

The output produced by this program is shown here:

 ...
 ..
 .

Jump Statements
Java supports three jump statements: break, continue, and return. These statements transfer

control to another part of your program. Each is examined here.

NOTE In addition to the jump statements discussed here, Java supports one other way that you can
change your program’s flow of execution: through exception handling. Exception handling provides
a structured method by which run-time errors can be trapped and handled by your program. It is
supported by the keywords try, catch, throw, throws, and finally. In essence, the exception handling
mechanism allows your program to perform a nonlocal branch. Since exception handling is a large
topic, it is discussed in its own chapter, Chapter 10.

Using break

In Java, the break statement has three uses. First, as you have seen, it terminates a statement

sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used

as a “civilized” form of goto. The last two uses are explained here.

 Chapter 5 Control Statements 103

P
a

rt
 I

Using break to Exit a Loop
By using break, you can force immediate termination of a loop, bypassing the conditional

expression and any remaining code in the body of the loop. When a break statement is

encountered inside a loop, the loop is terminated and program control resumes at the next

statement following the loop. Here is a simple example:

// Using break to exit a loop.
class BreakLoop {
 public static void main(String args[]) {
 for(int i=0; i<100; i++) {
 if(i == 10) break; // terminate loop if i is 10
 System.out.println("i: " + i);
 }
 System.out.println("Loop complete.");
 }
}

This program generates the following output:

 i: 0
 i: 1
 i: 2
 i: 3
 i: 4
 i: 5
 i: 6
 i: 7
 i: 8
 i: 9
 Loop complete.

As you can see, although the for loop is designed to run from 0 to 99, the break statement

causes it to terminate early, when i equals 10.

The break statement can be used with any of Java’s loops, including intentionally infinite

loops. For example, here is the preceding program coded by use of a while loop. The output

from this program is the same as just shown.

// Using break to exit a while loop.
class BreakLoop2 {
 public static void main(String args[]) {
 int i = 0;

 while(i < 100) {
 if(i == 10) break; // terminate loop if i is 10
 System.out.println("i: " + i);
 i++;
 }
 System.out.println("Loop complete.");
 }
}

104 PART I The Java Language

When used inside a set of nested loops, the break statement will only break out of the

innermost loop. For example:

// Using break with nested loops.
class BreakLoop3 {
 public static void main(String args[]) {
 for(int i=0; i<3; i++) {
 System.out.print("Pass " + i + ": ");
 for(int j=0; j<100; j++) {
 if(j == 10) break; // terminate loop if j is 10
 System.out.print(j + " ");
 }
 System.out.println();
 }
 System.out.println("Loops complete.");
 }
}

This program generates the following output:

 Pass 0: 0 1 2 3 4 5 6 7 8 9
 Pass 1: 0 1 2 3 4 5 6 7 8 9
 Pass 2: 0 1 2 3 4 5 6 7 8 9
 Loops complete.

As you can see, the break statement in the inner loop only causes termination of that loop.

The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break statement

may appear in a loop. However, be careful. Too many break statements have the tendency to

destructure your code. Second, the break that terminates a switch statement affects only that

switch statement and not any enclosing loops.

REMEMBER break was not designed to provide the normal means by which a loop is terminated. The
loop’s conditional expression serves this purpose. The break statement should be used to cancel a
loop only when some sort of special situation occurs.

Using break as a Form of Goto
In addition to its uses with the switch statement and loops, the break statement can also be

employed by itself to provide a “civilized” form of the goto statement. Java does not have a

goto statement because it provides a way to branch in an arbitrary and unstructured

manner. This usually makes goto-ridden code hard to understand and hard to maintain. It

also prohibits certain compiler optimizations. There are, however, a few places where the

goto is a valuable and legitimate construct for flow control. For example, the goto can be

useful when you are exiting from a deeply nested set of loops. To handle such situations,

Java defines an expanded form of the break statement. By using this form of break, you can,

for example, break out of one or more blocks of code. These blocks need not be part of a

loop or a switch. They can be any block. Further, you can specify precisely where execution

will resume, because this form of break works with a label. As you will see, break gives you

the benefits of a goto without its problems.

 Chapter 5 Control Statements 105

P
a

rt
 I

The general form of the labeled break statement is shown here:

break label;

Most often, label is the name of a label that identifies a block of code. This can be a stand-

alone block of code but it can also be a block that is the target of another statement. When

this form of break executes, control is transferred out of the named block. The labeled

block must enclose the break statement, but it does not need to be the immediately

enclosing block. This means, for example, that you can use a labeled break statement to

exit from a set of nested blocks. But you cannot use break to transfer control out of a block

that does not enclose the break statement.

To name a block, put a label at the start of it. A label is any valid Java identifier followed by

a colon. Once you have labeled a block, you can then use this label as the target of a break

statement. Doing so causes execution to resume at the end of the labeled block. For example,

the following program shows three nested blocks, each with its own label. The break statement

causes execution to jump forward, past the end of the block labeled second, skipping the two

println() statements.

// Using break as a civilized form of goto.
class Break {
 public static void main(String args[]) {
 boolean t = true;

 first: {
 second: {
 third: {
 System.out.println("Before the break.");
 if(t) break second; // break out of second block
 System.out.println("This won't execute");
 }
 System.out.println("This won't execute");
 }
 System.out.println("This is after second block.");
 }
 }
}

Running this program generates the following output:

 Before the break.
 This is after second block.

One of the most common uses for a labeled break statement is to exit from nested loops.

For example, in the following program, the outer loop executes only once:

// Using break to exit from nested loops
class BreakLoop4 {
 public static void main(String args[]) {
 outer: for(int i=0; i<3; i++) {
 System.out.print("Pass " + i + ": ");
 for(int j=0; j<100; j++) {
 if(j == 10) break outer; // exit both loops

106 PART I The Java Language

 System.out.print(j + " ");
 }
 System.out.println("This will not print");
 }
 System.out.println("Loops complete.");
 }
}

This program generates the following output:

 Pass 0: 0 1 2 3 4 5 6 7 8 9 Loops complete.

As you can see, when the inner loop breaks to the outer loop, both loops have been

terminated. Notice that this example labels the for statement, which has a block of code as

its target.

Keep in mind that you cannot break to any label which is not defined for an enclosing

block. For example, the following program is invalid and will not compile:

// This program contains an error.
class BreakErr {
 public static void main(String args[]) {

 one: for(int i=0; i<3; i++) {
 System.out.print("Pass " + i + ": ");
 }

 for(int j=0; j<100; j++) {
 if(j == 10) break one; // WRONG
 System.out.print(j + " ");
 }
 }
}

Since the loop labeled one does not enclose the break statement, it is not possible to

transfer control out of that block.

Using continue

Sometimes it is useful to force an early iteration of a loop. That is, you might want to

continue running the loop but stop processing the remainder of the code in its body for

this particular iteration. This is, in effect, a goto just past the body of the loop, to the loop’s

end. The continue statement performs such an action. In while and do-while loops, a

continue statement causes control to be transferred directly to the conditional expression

that controls the loop. In a for loop, control goes first to the iteration portion of the for

statement and then to the conditional expression. For all three loops, any intermediate

code is bypassed.

Here is an example program that uses continue to cause two numbers to be printed on

each line:

// Demonstrate continue.
class Continue {
 public static void main(String args[]) {

 Chapter 5 Control Statements 107

P
a

rt
 I

 for(int i=0; i<10; i++) {
 System.out.print(i + " ");
 if (i%2 == 0) continue;
 System.out.println("");
 }
 }
}

This code uses the % operator to check if i is even. If it is, the loop continues without

printing a newline. Here is the output from this program:

 0 1
 2 3
 4 5
 6 7
 8 9

As with the break statement, continue may specify a label to describe which enclosing

loop to continue. Here is an example program that uses continue to print a triangular

multiplication table for 0 through 9:

// Using continue with a label.
class ContinueLabel {
 public static void main(String args[]) {
outer: for (int i=0; i<10; i++) {
 for(int j=0; j<10; j++) {
 if(j > i) {
 System.out.println();
 continue outer;
 }
 System.out.print(" " + (i * j));
 }
 }
 System.out.println();
 }
}

The continue statement in this example terminates the loop counting j and continues with

the next iteration of the loop counting i. Here is the output of this program:

 0
 0 1
 0 2 4
 0 3 6 9
 0 4 8 12 16
 0 5 10 15 20 25
 0 6 12 18 24 30 36
 0 7 14 21 28 35 42 49
 0 8 16 24 32 40 48 56 64
 0 9 18 27 36 45 54 63 72 81

Good uses of continue are rare. One reason is that Java provides a rich set of loop

statements which fit most applications. However, for those special circumstances in which

early iteration is needed, the continue statement provides a structured way to accomplish it.

108 PART I The Java Language

return
The last control statement is return. The return statement is used to explicitly return from a

method. That is, it causes program control to transfer back to the caller of the method. As

such, it is categorized as a jump statement. Although a full discussion of return must wait

until methods are discussed in Chapter 6, a brief look at return is presented here.

At any time in a method the return statement can be used to cause execution to branch

back to the caller of the method. Thus, the return statement immediately terminates the

method in which it is executed. The following example illustrates this point. Here, return

causes execution to return to the Java run-time system, since it is the run-time system that calls

main():

// Demonstrate return.
class Return {
 public static void main(String args[]) {
 boolean t = true;

 System.out.println("Before the return.");

 if(t) return; // return to caller

 System.out.println("This won't execute.");
 }
}

The output from this program is shown here:

 Before the return.

As you can see, the final println() statement is not executed. As soon as return is executed,

control passes back to the caller.

One last point: In the preceding program, the if(t) statement is necessary. Without it, the

Java compiler would flag an “unreachable code” error because the compiler would know that

the last println() statement would never be executed. To prevent this error, the if statement is

used here to trick the compiler for the sake of this demonstration.

6
CHAPTER

 109

Introducing Classes

The class is at the core of Java. It is the logical construct upon which the entire Java language

is built because it defines the shape and nature of an object. As such, the class forms the

basis for object-oriented programming in Java. Any concept you wish to implement in a Java

program must be encapsulated within a class.

Because the class is so fundamental to Java, this and the next few chapters will be devoted

to it. Here, you will be introduced to the basic elements of a class and learn how a class can be

used to create objects. You will also learn about methods, constructors, and the this keyword.

Class Fundamentals
Classes have been used since the beginning of this book. However, until now, only the most

rudimentary form of a class has been shown. The classes created in the preceding chapters

primarily exist simply to encapsulate the main() method, which has been used to demonstrate

the basics of the Java syntax. As you will see, classes are substantially more powerful than the

limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a new

data type. Once defined, this new type can be used to create objects of that type. Thus, a

class is a template for an object, and an object is an instance of a class. Because an object is an

instance of a class, you will often see the two words object and instance used interchangeably.

The General Form of a Class

When you define a class, you declare its exact form and nature. You do this by specifying

the data that it contains and the code that operates on that data. While very simple classes

may contain only code or only data, most real-world classes contain both. As you will see, a

class’ code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up to

this point are actually very limited examples of its complete form. Classes can (and usually

do) get much more complex. A simplified general form of a class definition is shown here:

class classname {
 type instance-variable1;

110 PART I The Java Language

 type instance-variable2;
 // ...
 type instance-variableN;

 type methodname1(parameter-list) {

 // body of method

 }

 type methodname2(parameter-list) {

 // body of method

 }

 // ...

 type methodnameN(parameter-list) {

 // body of method

 }

}

The data, or variables, defined within a class are called instance variables. The code is

contained within methods. Collectively, the methods and variables defined within a class

are called members of the class. In most classes, the instance variables are acted upon and

accessed by the methods defined for that class. Thus, as a general rule, it is the methods

that determine how a class’ data can be used.

Variables defined within a class are called instance variables because each instance of

the class (that is, each object of the class) contains its own copy of these variables. Thus, the

data for one object is separate and unique from the data for another. We will come back to

this point shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus far.

However, most methods will not be specified as static or public. Notice that the general

form of a class does not specify a main() method. Java classes do not need to have a main()
method. You only specify one if that class is the starting point for your program. Further,

some kinds of Java applications, such as applets, don’t require a main() method at all.

NOTE C++ programmers will notice that the class declaration and the implementation of the methods
are stored in the same place and not defined separately. This sometimes makes for very large .java
files, since any class must be entirely defined in a single source file. This design feature was built into
Java because it was felt that in the long run, having specification, declaration, and implementation all
in one place makes for code that is easier to maintain.

A Simple Class

Let’s begin our study of the class with a simple example. Here is a class called Box that

defines three instance variables: width, height, and depth. Currently, Box does not contain

any methods (but some will be added soon).

class Box {
 double width;
 double height;
 double depth;
}

 Chapter 6 Introducing Classes 111

P
a

rt
 I

As stated, a class defines a new type of data. In this case, the new data type is called Box. You

will use this name to declare objects of type Box. It is important to remember that a class

declaration only creates a template; it does not create an actual object. Thus, the preceding

code does not cause any objects of type Box to come into existence.

To actually create a Box object, you will use a statement like the following:

Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will be an instance of Box. Thus, it will have “physical”

reality. For the moment, don’t worry about the details of this statement.

As mentioned earlier, each time you create an instance of a class, you are creating an

object that contains its own copy of each instance variable defined by the class. Thus, every

Box object will contain its own copies of the instance variables width, height, and depth. To

access these variables, you will use the dot (.) operator. The dot operator links the name of

the object with the name of an instance variable. For example, to assign the width variable

of mybox the value 100, you would use the following statement:

mybox.width = 100;

This statement tells the compiler to assign the copy of width that is contained within the

mybox object the value of 100. In general, you use the dot operator to access both the

instance variables and the methods within an object. One other point: Although commonly

referred to as the dot operator, the formal specification for Java categorizes the . as a separator.

However, since the use of the term “dot operator” is widespread, it is used in this book.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

 Call this file BoxDemo.java
*/
class Box {
 double width;
 double height;
 double depth;
}

// This class declares an object of type Box.
class BoxDemo {
 public static void main(String args[]) {
 Box mybox = new Box();
 double vol;

 // assign values to mybox's instance variables
 mybox.width = 10;
 mybox.height = 20;
 mybox.depth = 15;

 // compute volume of box
 vol = mybox.width * mybox.height * mybox.depth;

 System.out.println("Volume is " + vol);
 }
}

112 PART I The Java Language

You should call the file that contains this program BoxDemo.java, because the main()
method is in the class called BoxDemo, not the class called Box. When you compile this

program, you will find that two .class files have been created, one for Box and one for

BoxDemo. The Java compiler automatically puts each class into its own .class file. It is not

necessary for both the Box and the BoxDemo class to actually be in the same source file.

You could put each class in its own file, called Box.java and BoxDemo.java, respectively.

To run this program, you must execute BoxDemo.class. When you do, you will see the

following output:

 Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This means

that if you have two Box objects, each has its own copy of depth, width, and height. It is
important to understand that changes to the instance variables of one object have no

effect on the instance variables of another. For example, the following program declares

two Box objects:

// This program declares two Box objects.

class Box {
 double width;
 double height;
 double depth;
}

class BoxDemo2 {
 public static void main(String args[]) {
 Box mybox1 = new Box();
 Box mybox2 = new Box();
 double vol;

 // assign values to mybox1's instance variables
 mybox1.width = 10;
 mybox1.height = 20;
 mybox1.depth = 15;

 /* assign different values to mybox2's
 instance variables */
 mybox2.width = 3;
 mybox2.height = 6;
 mybox2.depth = 9;

 // compute volume of first box
 vol = mybox1.width * mybox1.height * mybox1.depth;
 System.out.println("Volume is " + vol);

 // compute volume of second box
 vol = mybox2.width * mybox2.height * mybox2.depth;
 System.out.println("Volume is " + vol);
 }
}

 Chapter 6 Introducing Classes 113

P
a

rt
 I

The output produced by this program is shown here:

 Volume is 3000.0
 Volume is 162.0

As you can see, mybox1’s data is completely separate from the data contained in mybox2.

Declaring Objects
As just explained, when you create a class, you are creating a new data type. You can use this

type to declare objects of that type. However, obtaining objects of a class is a two-step process.

First, you must declare a variable of the class type. This variable does not define an object.

Instead, it is simply a variable that can refer to an object. Second, you must acquire an actual,

physical copy of the object and assign it to that variable. You can do this using the new

operator. The new operator dynamically allocates (that is, allocates at run time) memory

for an object and returns a reference to it. This reference is, more or less, the address in

memory of the object allocated by new. This reference is then stored in the variable. Thus,

in Java, all class objects must be dynamically allocated. Let’s look at the details of this

procedure.

In the preceding sample programs, a line similar to the following is used to declare an

object of type Box:

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to show

each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. After this line

executes, mybox contains the value null, which indicates that it does not yet point to an

actual object. Any attempt to use mybox at this point will result in a compile-time error. The

next line allocates an actual object and assigns a reference to it to mybox. After the second

line executes, you can use mybox as if it were a Box object. But in reality, mybox simply

holds the memory address of the actual Box object. The effect of these two lines of code

is depicted in Figure 6-1.

NOTE Those readers familiar with C/C++ have probably noticed that object references appear to be
similar to pointers. This suspicion is, essentially, correct. An object reference is similar to a memory
pointer. The main difference—and the key to Java’s safety—is that you cannot manipulate references
as you can actual pointers. Thus, you cannot cause an object reference to point to an arbitrary
memory location or manipulate it like an integer.

A Closer Look at new

As just explained, the new operator dynamically allocates memory for an object. It has this

general form:

class-var = new classname ();

114 PART I The Java Language

Here, class-var is a variable of the class type being created. The classname is the name of

the class that is being instantiated. The class name followed by parentheses specifies the

constructor for the class. A constructor defines what occurs when an object of a class is

created. Constructors are an important part of all classes and have many significant

attributes. Most real-world classes explicitly define their own constructors within their

class definition. However, if no explicit constructor is specified, then Java will automatically

supply a default constructor. This is the case with Box. For now, we will use the default

constructor. Soon, you will see how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such things

as integers or characters. The answer is that Java’s primitive types are not implemented as

objects. Rather, they are implemented as “normal” variables. This is done in the interest of

efficiency. As you will see, objects have many features and attributes that require Java to

treat them differently than it treats the primitive types. By not applying the same overhead

to the primitive types that applies to objects, Java can implement the primitive types more

efficiently. Later, you will see object versions of the primitive types that are available for your

use in those situations in which complete objects of these types are needed.

It is important to understand that new allocates memory for an object during run time.

The advantage of this approach is that your program can create as many or as few objects as

it needs during the execution of your program. However, since memory is finite, it is possible

that new will not be able to allocate memory for an object because insufficient memory

exists. If this happens, a run-time exception will occur. (You will learn how to handle

exceptions in Chapter 10.) For the sample programs in this book, you won’t need to worry

about running out of memory, but you will need to consider this possibility in real-world

programs that you write.

Let’s once again review the distinction between a class and an object. A class creates a

new data type that can be used to create objects. That is, a class creates a logical framework

that defines the relationship between its members. When you declare an object of a class,

you are creating an instance of that class. Thus, a class is a logical construct. An object has

physical reality. (That is, an object occupies space in memory.) It is important to keep this

distinction clearly in mind.

Figure 6-1 Declaring an object of type Box

 Chapter 6 Introducing Classes 115

P
a

rt
 I

Assigning Object Reference Variables
Object reference variables act differently than you might expect when an assignment takes

place. For example, what do you think the following fragment does?

Box b1 = new Box();
Box b2 = b1;

You might think that b2 is being assigned a reference to a copy of the object referred to by

b1. That is, you might think that b1 and b2 refer to separate and distinct objects. However,

this would be wrong. Instead, after this fragment executes, b1 and b2 will both refer to the

same object. The assignment of b1 to b2 did not allocate any memory or copy any part of

the original object. It simply makes b2 refer to the same object as does b1. Thus, any

changes made to the object through b2 will affect the object to which b1 is referring, since

they are the same object.

This situation is depicted here:

Although b1 and b2 both refer to the same object, they are not linked in any other way.

For example, a subsequent assignment to b1 will simply unhook b1 from the original object

without affecting the object or affecting b2. For example:

Box b1 = new Box();
Box b2 = b1;
// ...
b1 = null;

Here, b1 has been set to null, but b2 still points to the original object.

REMEMBER When you assign one object reference variable to another object reference variable, you are
not creating a copy of the object, you are only making a copy of the reference.

Introducing Methods
As mentioned at the beginning of this chapter, classes usually consist of two things: instance

variables and methods. The topic of methods is a large one because Java gives them so much

power and flexibility. In fact, much of the next chapter is devoted to methods. However,

there are some fundamentals that you need to learn now so that you can begin to add

methods to your classes.

116 PART I The Java Language

This is the general form of a method:

type name(parameter-list) {

 // body of method

}

Here, type specifies the type of data returned by the method. This can be any valid type,

including class types that you create. If the method does not return a value, its return type

must be void. The name of the method is specified by name. This can be any legal identifier

other than those already used by other items within the current scope. The parameter-list is a

sequence of type and identifier pairs separated by commas. Parameters are essentially

variables that receive the value of the arguments passed to the method when it is called.

If the method has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine

using the following form of the return statement:

return value;

Here, value is the value returned.

In the next few sections, you will see how to create various types of methods, including

those that take parameters and those that return values.

Adding a Method to the Box Class

Although it is perfectly fine to create a class that contains only data, it rarely happens. Most

of the time, you will use methods to access the instance variables defined by the class. In

fact, methods define the interface to most classes. This allows the class implementor to

hide the specific layout of internal data structures behind cleaner method abstractions. In

addition to defining methods that provide access to data, you can also define methods that

are used internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you while

looking at the preceding programs that the computation of a box’s volume was something

that was best handled by the Box class rather than the BoxDemo class. After all, since the

volume of a box is dependent upon the size of the box, it makes sense to have the Box class

compute it. To do this, you must add a method to Box, as shown here:

// This program includes a method inside the box class.

class Box {
 double width;
 double height;
 double depth;

 // display volume of a box
 void volume() {
 System.out.print("Volume is ");
 System.out.println(width * height * depth);
 }
}

class BoxDemo3 {
 public static void main(String args[]) {

 Chapter 6 Introducing Classes 117

P
a

rt
 I

 Box mybox1 = new Box();
 Box mybox2 = new Box();

 // assign values to mybox1's instance variables
 mybox1.width = 10;
 mybox1.height = 20;
 mybox1.depth = 15;

 /* assign different values to mybox2's
 instance variables */
 mybox2.width = 3;
 mybox2.height = 6;
 mybox2.depth = 9;

 // display volume of first box
 mybox1.volume();

 // display volume of second box
 mybox2.volume();
 }
}

This program generates the following output, which is the same as the previous version.

 Volume is 3000.0
 Volume is 162.0

Look closely at the following two lines of code:

mybox1.volume();
mybox2.volume();

The first line here invokes the volume() method on mybox1. That is, it calls volume()
relative to the mybox1 object, using the object’s name followed by the dot operator. Thus,

the call to mybox1.volume() displays the volume of the box defined by mybox1, and the

call to mybox2.volume() displays the volume of the box defined by mybox2. Each time

volume() is invoked, it displays the volume for the specified box.

If you are unfamiliar with the concept of calling a method, the following discussion will

help clear things up. When mybox1.volume() is executed, the Java run-time system transfers

control to the code defined inside volume(). After the statements inside volume() have

executed, control is returned to the calling routine, and execution resumes with the line of

code following the call. In the most general sense, a method is Java’s way of implementing

subroutines.

There is something very important to notice inside the volume() method: the instance

variables width, height, and depth are referred to directly, without preceding them with an

object name or the dot operator. When a method uses an instance variable that is defined

by its class, it does so directly, without explicit reference to an object and without use of the

dot operator. This is easy to understand if you think about it. A method is always invoked

relative to some object of its class. Once this invocation has occurred, the object is known.

Thus, within a method, there is no need to specify the object a second time. This means

that width, height, and depth inside volume() implicitly refer to the copies of those

variables found in the object that invokes volume().

118 PART I The Java Language

Let’s review: When an instance variable is accessed by code that is not part of the class

in which that instance variable is defined, it must be done through an object, by use of the

dot operator. However, when an instance variable is accessed by code that is part of the

same class as the instance variable, that variable can be referred to directly. The same thing

applies to methods.

Returning a Value

While the implementation of volume() does move the computation of a box’s volume

inside the Box class where it belongs, it is not the best way to do it. For example, what if

another part of your program wanted to know the volume of a box, but not display its

value? A better way to implement volume() is to have it compute the volume of the box

and return the result to the caller. The following example, an improved version of the

preceding program, does just that:

// Now, volume() returns the volume of a box.

class Box {
 double width;
 double height;
 double depth;

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

class BoxDemo4 {
 public static void main(String args[]) {
 Box mybox1 = new Box();
 Box mybox2 = new Box();
 double vol;

 // assign values to mybox1's instance variables
 mybox1.width = 10;
 mybox1.height = 20;
 mybox1.depth = 15;

 /* assign different values to mybox2's
 instance variables */
 mybox2.width = 3;
 mybox2.height = 6;
 mybox2.depth = 9;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

 Chapter 6 Introducing Classes 119

P
a

rt
 I

As you can see, when volume() is called, it is put on the right side of an assignment

statement. On the left is a variable, in this case vol, that will receive the value returned by

volume(). Thus, after

vol = mybox1.volume();

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.
There are two important things to understand about returning values:

• The type of data returned by a method must be compatible with the return type

specified by the method. For example, if the return type of some method is

boolean, you could not return an integer.

• The variable receiving the value returned by a method (such as vol, in this case)

must also be compatible with the return type specified for the method.

One more point: The preceding program can be written a bit more efficiently because

there is actually no need for the vol variable. The call to volume() could have been used in

the println() statement directly, as shown here:

System.out.println("Volume is" + mybox1.volume());

In this case, when println() is executed, mybox1.volume() will be called automatically and

its value will be passed to println().

Adding a Method That Takes Parameters

While some methods don’t need parameters, most do. Parameters allow a method to be

generalized. That is, a parameterized method can operate on a variety of data and/or be

used in a number of slightly different situations. To illustrate this point, let’s use a very

simple example. Here is a method that returns the square of the number 10:

int square()
{
 return 10 * 10;
}

While this method does, indeed, return the value of 10 squared, its use is very limited.

However, if you modify the method so that it takes a parameter, as shown next, then you

can make square() much more useful.

int square(int i)
{
 return i * i;
}

Now, square() will return the square of whatever value it is called with. That is, square() is
now a general-purpose method that can compute the square of any integer value, rather

than just 10.

Here is an example:

int x, y;
x = square(5); // x equals 25
x = square(9); // x equals 81

120 PART I The Java Language

y = 2;
x = square(y); // x equals 4

In the first call to square(), the value 5 will be passed into parameter i. In the second call, i
will receive the value 9. The third invocation passes the value of y, which is 2 in this example.

As these examples show, square() is able to return the square of whatever data it is passed.

It is important to keep the two terms parameter and argument straight. A parameter is a

variable defined by a method that receives a value when the method is called. For example,

in square(), i is a parameter. An argument is a value that is passed to a method when it is

invoked. For example, square(100) passes 100 as an argument. Inside square(), the

parameter i receives that value.

You can use a parameterized method to improve the Box class. In the preceding

examples, the dimensions of each box had to be set separately by use of a sequence of

statements, such as:

mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error prone.

For example, it would be easy to forget to set a dimension. Second, in well-designed Java

programs, instance variables should be accessed only through methods defined by their

class. In the future, you can change the behavior of a method, but you can’t change the

behavior of an exposed instance variable.

Thus, a better approach to setting the dimensions of a box is to create a method that

takes the dimensions of a box in its parameters and sets each instance variable

appropriately. This concept is implemented by the following program:

// This program uses a parameterized method.

class Box {
 double width;
 double height;
 double depth;

 // compute and return volume
 double volume() {
 return width * height * depth;
 }

 // sets dimensions of box
 void setDim(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }
}

class BoxDemo5 {

 Chapter 6 Introducing Classes 121

P
a

rt
 I

 public static void main(String args[]) {
 Box mybox1 = new Box();
 Box mybox2 = new Box();
 double vol;

 // initialize each box
 mybox1.setDim(10, 20, 15);
 mybox2.setDim(3, 6, 9);

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

As you can see, the setDim() method is used to set the dimensions of each box. For

example, when

mybox1.setDim(10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d.

Inside setDim() the values of w, h, and d are then assigned to width, height, and depth,

respectively.

For many readers, the concepts presented in the preceding sections will be familiar.

However, if such things as method calls, arguments, and parameters are new to you, then

you might want to take some time to experiment before moving on. The concepts of the

method invocation, parameters, and return values are fundamental to Java programming.

Constructors
It can be tedious to initialize all of the variables in a class each time an instance is created.

Even when you add convenience functions like setDim(), it would be simpler and more

concise to have all of the setup done at the time the object is first created. Because the

requirement for initialization is so common, Java allows objects to initialize themselves

when they are created. This automatic initialization is performed through the use of a

constructor.

A constructor initializes an object immediately upon creation. It has the same name as

the class in which it resides and is syntactically similar to a method. Once defined, the

constructor is automatically called immediately after the object is created, before the new

operator completes. Constructors look a little strange because they have no return type,

not even void. This is because the implicit return type of a class’ constructor is the class type

itself. It is the constructor’s job to initialize the internal state of an object so that the code

creating an instance will have a fully initialized, usable object immediately.

You can rework the Box example so that the dimensions of a box are automatically

initialized when an object is constructed. To do so, replace setDim() with a constructor.

122 PART I The Java Language

Let’s begin by defining a simple constructor that simply sets the dimensions of each box to

the same values. This version is shown here:

/* Here, Box uses a constructor to initialize the
 dimensions of a box.
*/
class Box {
 double width;
 double height;
 double depth;

 // This is the constructor for Box.
 Box() {
 System.out.println("Constructing Box");
 width = 10;
 height = 10;
 depth = 10;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

class BoxDemo6 {
 public static void main(String args[]) {
 // declare, allocate, and initialize Box objects
 Box mybox1 = new Box();
 Box mybox2 = new Box();

 double vol;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

When this program is run, it generates the following results:

 Constructing Box
 Constructing Box
 Volume is 1000.0
 Volume is 1000.0

As you can see, both mybox1 and mybox2 were initialized by the Box() constructor

when they were created. Since the constructor gives all boxes the same dimensions, 10 by

10 by 10, both mybox1 and mybox2 will have the same volume. The println() statement

 Chapter 6 Introducing Classes 123

P
a

rt
 I

inside Box() is for the sake of illustration only. Most constructors will not display anything.

They will simply initialize an object.

Before moving on, let’s reexamine the new operator. As you know, when you allocate an

object, you use the following general form:

class-var = new classname ();

Now you can understand why the parentheses are needed after the class name. What is

actually happening is that the constructor for the class is being called. Thus, in the line

Box mybox1 = new Box();

new Box() is calling the Box() constructor. When you do not explicitly define a constructor

for a class, then Java creates a default constructor for the class. This is why the preceding

line of code worked in earlier versions of Box that did not define a constructor. The default

constructor automatically initializes all instance variables to zero. The default constructor is

often sufficient for simple classes, but it usually won’t do for more sophisticated ones. Once

you define your own constructor, the default constructor is no longer used.

Parameterized Constructors

While the Box() constructor in the preceding example does initialize a Box object, it is not

very useful—all boxes have the same dimensions. What is needed is a way to construct Box

objects of various dimensions. The easy solution is to add parameters to the constructor. As

you can probably guess, this makes it much more useful. For example, the following version

of Box defines a parameterized constructor that sets the dimensions of a box as specified by

those parameters. Pay special attention to how Box objects are created.

/* Here, Box uses a parameterized constructor to
 initialize the dimensions of a box.
*/
class Box {
 double width;
 double height;
 double depth;

 // This is the constructor for Box.
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

class BoxDemo7 {
 public static void main(String args[]) {

124 PART I The Java Language

 // declare, allocate, and initialize Box objects
 Box mybox1 = new Box(10, 20, 15);
 Box mybox2 = new Box(3, 6, 9);

 double vol;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

The output from this program is shown here:

 Volume is 3000.0
 Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its constructor.

For example, in the following line,

Box mybox1 = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the object.

Thus, mybox1’s copy of width, height, and depth will contain the values 10, 20, and 15,

respectively.

The this Keyword
Sometimes a method will need to refer to the object that invoked it. To allow this, Java

defines the this keyword. this can be used inside any method to refer to the current object.

That is, this is always a reference to the object on which the method was invoked. You can

use this anywhere a reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.
Box(double w, double h, double d) {
 this.width = w;
 this.height = h;
 this.depth = d;
}

This version of Box() operates exactly like the earlier version. The use of this is redundant,

but perfectly correct. Inside Box(), this will always refer to the invoking object. While it is

redundant in this case, this is useful in other contexts, one of which is explained in the next

section.

 Chapter 6 Introducing Classes 125

P
a

rt
 I

Instance Variable Hiding

As you know, it is illegal in Java to declare two local variables with the same name inside the

same or enclosing scopes. Interestingly, you can have local variables, including formal

parameters to methods, which overlap with the names of the class’ instance variables. However,

when a local variable has the same name as an instance variable, the local variable hides the

instance variable. This is why width, height, and depth were not used as the names of the

parameters to the Box() constructor inside the Box class. If they had been, then width, for

example, would have referred to the formal parameter, hiding the instance variable width.

While it is usually easier to simply use different names, there is another way around this

situation. Because this lets you refer directly to the object, you can use it to resolve any

namespace collisions that might occur between instance variables and local variables. For

example, here is another version of Box(), which uses width, height, and depth for parameter

names and then uses this to access the instance variables by the same name:

// Use this to resolve name-space collisions.
Box(double width, double height, double depth) {
 this.width = width;
 this.height = height;
 this.depth = depth;
}

A word of caution: The use of this in such a context can sometimes be confusing, and

some programmers are careful not to use local variables and formal parameter names that

hide instance variables. Of course, other programmers believe the contrary—that it is a

good convention to use the same names for clarity, and use this to overcome the instance

variable hiding. It is a matter of taste which approach you adopt.

Garbage Collection
Since objects are dynamically allocated by using the new operator, you might be wondering

how such objects are destroyed and their memory released for later reallocation. In some

languages, such as C++, dynamically allocated objects must be manually released by use of a

delete operator. Java takes a different approach; it handles deallocation for you automatically.

The technique that accomplishes this is called garbage collection. It works like this: when no

references to an object exist, that object is assumed to be no longer needed, and the memory

occupied by the object can be reclaimed. There is no explicit need to destroy objects as in

C++. Garbage collection only occurs sporadically (if at all) during the execution of your

program. It will not occur simply because one or more objects exist that are no longer

used. Furthermore, different Java run-time implementations will take varying approaches to

garbage collection, but for the most part, you should not have to think about it while writing

your programs.

The finalize() Method
Sometimes an object will need to perform some action when it is destroyed. For example,

if an object is holding some non-Java resource such as a file handle or character font, then

you might want to make sure these resources are freed before an object is destroyed. To

126 PART I The Java Language

handle such situations, Java provides a mechanism called finalization. By using finalization,

you can define specific actions that will occur when an object is just about to be reclaimed

by the garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time

calls that method whenever it is about to recycle an object of that class. Inside the finalize()
method, you will specify those actions that must be performed before an object is destroyed.

The garbage collector runs periodically, checking for objects that are no longer referenced

by any running state or indirectly through other referenced objects. Right before an asset is

freed, the Java run time calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

Here, the keyword protected is a specifier that prevents access to finalize() by code defined

outside its class. This and the other access modifiers are explained in Chapter 7.

It is important to understand that finalize() is only called just prior to garbage collection.

It is not called when an object goes out-of-scope, for example. This means that you cannot

know when—or even if—finalize() will be executed. Therefore, your program should

provide other means of releasing system resources, etc., used by the object. It must not

rely on finalize() for normal program operation.

NOTE If you are familiar with C++, then you know that C++ allows you to define a destructor for a class,
which is called when an object goes out-of-scope. Java does not support this idea or provide for
destructors. The finalize() method only approximates the function of a destructor. As you get more
experienced with Java, you will see that the need for destructor functions is minimal because of
Java’s garbage collection subsystem.

A Stack Class
While the Box class is useful to illustrate the essential elements of a class, it is of little

practical value. To show the real power of classes, this chapter will conclude with a more

sophisticated example. As you recall from the discussion of object-oriented programming

(OOP) presented in Chapter 2, one of OOP’s most important benefits is the encapsulation

of data and the code that manipulates that data. As you have seen, the class is the mechanism

by which encapsulation is achieved in Java. By creating a class, you are creating a new data

type that defines both the nature of the data being manipulated and the routines used to

manipulate it. Further, the methods define a consistent and controlled interface to the

class’ data. Thus, you can use the class through its methods without having to worry about

the details of its implementation or how the data is actually managed within the class. In a

sense, a class is like a “data engine.” No knowledge of what goes on inside the engine is

required to use the engine through its controls. In fact, since the details are hidden, its

inner workings can be changed as needed. As long as your code uses the class through

its methods, internal details can change without causing side effects outside the class.

To see a practical application of the preceding discussion, let’s develop one of the

archetypal examples of encapsulation: the stack. A stack stores data using first-in, last-out

 Chapter 6 Introducing Classes 127

P
a

rt
 I

ordering. That is, a stack is like a stack of plates on a table—the first plate put down on the

table is the last plate to be used. Stacks are controlled through two operations traditionally

called push and pop. To put an item on top of the stack, you will use push. To take an item

off the stack, you will use pop. As you will see, it is easy to encapsulate the entire stack

mechanism.

Here is a class called Stack that implements a stack for up to ten integers:

// This class defines an integer stack that can hold 10 values
class Stack {
 int stck[] = new int[10];
 int tos;

 // Initialize top-of-stack
 Stack() {
 tos = -1;
 }

 // Push an item onto the stack
 void push(int item) {
 if(tos==9)
 System.out.println("Stack is full.");
 else
 stck[++tos] = item;
 }

 // Pop an item from the stack
 int pop() {
 if(tos < 0) {
 System.out.println("Stack underflow.");
 return 0;
 }
 else
 return stck[tos--];
 }
}

As you can see, the Stack class defines two data items and three methods. The stack of

integers is held by the array stck. This array is indexed by the variable tos, which always

contains the index of the top of the stack. The Stack() constructor initializes tos to –1,

which indicates an empty stack. The method push() puts an item on the stack. To retrieve

an item, call pop(). Since access to the stack is through push() and pop(), the fact that the

stack is held in an array is actually not relevant to using the stack. For example, the stack

could be held in a more complicated data structure, such as a linked list, yet the interface

defined by push() and pop() would remain the same.

The class TestStack, shown here, demonstrates the Stack class. It creates two integer

stacks, pushes some values onto each, and then pops them off.

class TestStack {
 public static void main(String args[]) {
 Stack mystack1 = new Stack();
 Stack mystack2 = new Stack();

128 PART I The Java Language

 // push some numbers onto the stack
 for(int i=0; i<10; i++) mystack1.push(i);
 for(int i=10; i<20; i++) mystack2.push(i);

 // pop those numbers off the stack
 System.out.println("Stack in mystack1:");
 for(int i=0; i<10; i++)
 System.out.println(mystack1.pop());

 System.out.println("Stack in mystack2:");
 for(int i=0; i<10; i++)
 System.out.println(mystack2.pop());
 }
}

This program generates the following output:

 Stack in mystack1:
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0
 Stack in mystack2:
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10

As you can see, the contents of each stack are separate.

One last point about the Stack class. As it is currently implemented, it is possible for the

array that holds the stack, stck, to be altered by code outside of the Stack class. This leaves

Stack open to misuse or mischief. In the next chapter, you will see how to remedy this

situation.

7
CHAPTER

 129

A Closer Look at Methods
and Classes

This chapter continues the discussion of methods and classes begun in the preceding

chapter. It examines several topics relating to methods, including overloading, parameter

passing, and recursion. The chapter then returns to the class, discussing access control, the

use of the keyword static, and one of Java’s most important built-in classes: String.

Overloading Methods
In Java it is possible to define two or more methods within the same class that share the

same name, as long as their parameter declarations are different. When this is the case,

the methods are said to be overloaded, and the process is referred to as method overloading.

Method overloading is one of the ways that Java supports polymorphism. If you have never

used a language that allows the overloading of methods, then the concept may seem

strange at first. But as you will see, method overloading is one of Java’s most exciting and

useful features.

When an overloaded method is invoked, Java uses the type and/or number of arguments

as its guide to determine which version of the overloaded method to actually call. Thus,

overloaded methods must differ in the type and/or number of their parameters. While

overloaded methods may have different return types, the return type alone is insufficient to

distinguish two versions of a method. When Java encounters a call to an overloaded method,

it simply executes the version of the method whose parameters match the arguments used in

the call.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.
class OverloadDemo {
 void test() {
 System.out.println("No parameters");
 }

 // Overload test for one integer parameter.
 void test(int a) {
 System.out.println("a: " + a);
 }

130 PART I The Java Language

 // Overload test for two integer parameters.
 void test(int a, int b) {
 System.out.println("a and b: " + a + " " + b);
 }

 // Overload test for a double parameter
 double test(double a) {
 System.out.println("double a: " + a);
 return a*a;
 }
}

class Overload {
 public static void main(String args[]) {
 OverloadDemo ob = new OverloadDemo();
 double result;

 // call all versions of test()
 ob.test();
 ob.test(10);
 ob.test(10, 20);
 result = ob.test(123.25);
 System.out.println("Result of ob.test(123.25): " + result);
 }
}

This program generates the following output:

 No parameters
 a: 10
 a and b: 10 20
 double a: 123.25
 Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times. The first version takes no parameters,

the second takes one integer parameter, the third takes two integer parameters, and the

fourth takes one double parameter. The fact that the fourth version of test() also returns a

value is of no consequence relative to overloading, since return types do not play a role in

overload resolution.

When an overloaded method is called, Java looks for a match between the arguments

used to call the method and the method’s parameters. However, this match need not always

be exact. In some cases, Java’s automatic type conversions can play a role in overload

resolution. For example, consider the following program:

// Automatic type conversions apply to overloading.
class OverloadDemo {
 void test() {
 System.out.println("No parameters");
 }

 // Overload test for two integer parameters.
 void test(int a, int b) {
 System.out.println("a and b: " + a + " " + b);

 Chapter 7 A Closer Look at Methods and Classes 131

P
a

rt
 I

 }

 // Overload test for a double parameter
 void test(double a) {
 System.out.println("Inside test(double) a: " + a);
 }
}

class Overload {
 public static void main(String args[]) {
 OverloadDemo ob = new OverloadDemo();
 int i = 88;

 ob.test();
 ob.test(10, 20);

 ob.test(i); // this will invoke test(double)
 ob.test(123.2); // this will invoke test(double)
 }
}

This program generates the following output:

 No parameters
 a and b: 10 20
 Inside test(double) a: 88
 Inside test(double) a: 123.2

As you can see, this version of OverloadDemo does not define test(int). Therefore,

when test() is called with an integer argument inside Overload, no matching method is

found. However, Java can automatically convert an integer into a double, and this conversion

can be used to resolve the call. Therefore, after test(int) is not found, Java elevates i to double

and then calls test(double). Of course, if test(int) had been defined, it would have been

called instead. Java will employ its automatic type conversions only if no exact match is found.

Method overloading supports polymorphism because it is one way that Java implements

the “one interface, multiple methods” paradigm. To understand how, consider the

following. In languages that do not support method overloading, each method must be

given a unique name. However, frequently you will want to implement essentially the same

method for different types of data. Consider the absolute value function. In languages that

do not support overloading, there are usually three or more versions of this function, each

with a slightly different name. For instance, in C, the function abs() returns the absolute

value of an integer, labs() returns the absolute value of a long integer, and fabs() returns

the absolute value of a floating-point value. Since C does not support overloading, each

function has to have its own name, even though all three functions do essentially the same

thing. This makes the situation more complex, conceptually, than it actually is. Although

the underlying concept of each function is the same, you still have three names to

remember. This situation does not occur in Java, because each absolute value method can

use the same name. Indeed, Java’s standard class library includes an absolute value method,

called abs(). This method is overloaded by Java’s Math class to handle all numeric types.

Java determines which version of abs() to call based upon the type of argument.

132 PART I The Java Language

The value of overloading is that it allows related methods to be accessed by use of a

common name. Thus, the name abs represents the general action that is being performed. It

is left to the compiler to choose the right specific version for a particular circumstance. You,

the programmer, need only remember the general operation being performed. Through

the application of polymorphism, several names have been reduced to one. Although this

example is fairly simple, if you expand the concept, you can see how overloading can help

you manage greater complexity.

When you overload a method, each version of that method can perform any activity you

desire. There is no rule stating that overloaded methods must relate to one another. However,

from a stylistic point of view, method overloading implies a relationship. Thus, while you

can use the same name to overload unrelated methods, you should not. For example, you

could use the name sqr to create methods that return the square of an integer and the

square root of a floating-point value. But these two operations are fundamentally different.

Applying method overloading in this manner defeats its original purpose. In practice, you

should only overload closely related operations.

Overloading Constructors

In addition to overloading normal methods, you can also overload constructor methods. In

fact, for most real-world classes that you create, overloaded constructors will be the norm,

not the exception. To understand why, let’s return to the Box class developed in the

preceding chapter. Following is the latest version of Box:

class Box {
 double width;
 double height;
 double depth;

 // This is the constructor for Box.
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

As you can see, the Box() constructor requires three parameters. This means that all

declarations of Box objects must pass three arguments to the Box() constructor. For

example, the following statement is currently invalid:

Box ob = new Box();

Since Box() requires three arguments, it’s an error to call it without them. This raises

some important questions. What if you simply wanted a box and did not care (or know)

what its initial dimensions were? Or, what if you want to be able to initialize a cube by

specifying only one value that would be used for all three dimensions? As the Box class is

currently written, these other options are not available to you.

 Chapter 7 A Closer Look at Methods and Classes 133

P
a

rt
 I

Fortunately, the solution to these problems is quite easy: simply overload the Box

constructor so that it handles the situations just described. Here is a program that contains

an improved version of Box that does just that:

/* Here, Box defines three constructors to initialize
 the dimensions of a box various ways.
*/
class Box {
 double width;
 double height;
 double depth;

 // constructor used when all dimensions specified
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // constructor used when no dimensions specified
 Box() {
 width = -1; // use -1 to indicate
 height = -1; // an uninitialized
 depth = -1; // box
 }

 // constructor used when cube is created
 Box(double len) {
 width = height = depth = len;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

class OverloadCons {
 public static void main(String args[]) {
 // create boxes using the various constructors
 Box mybox1 = new Box(10, 20, 15);
 Box mybox2 = new Box();
 Box mycube = new Box(7);

 double vol;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume of mybox1 is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume of mybox2 is " + vol);

134 PART I The Java Language

 // get volume of cube
 vol = mycube.volume();
 System.out.println("Volume of mycube is " + vol);
 }
}

The output produced by this program is shown here:

 Volume of mybox1 is 3000.0
 Volume of mybox2 is -1.0
 Volume of mycube is 343.0

As you can see, the proper overloaded constructor is called based upon the parameters

specified when new is executed.

Using Objects as Parameters
So far, we have only been using simple types as parameters to methods. However, it is both

correct and common to pass objects to methods. For example, consider the following short

program:

// Objects may be passed to methods.
class Test {
 int a, b;

 Test(int i, int j) {
 a = i;
 b = j;
 }

 // return true if o is equal to the invoking object
 boolean equals(Test o) {
 if(o.a == a && o.b == b) return true;
 else return false;
 }
}

class PassOb {
 public static void main(String args[]) {
 Test ob1 = new Test(100, 22);
 Test ob2 = new Test(100, 22);
 Test ob3 = new Test(-1, -1);

 System.out.println("ob1 == ob2: " + ob1.equals(ob2));
 System.out.println("ob1 == ob3: " + ob1.equals(ob3));
 }
}

This program generates the following output:

 ob1 == ob2: true
 ob1 == ob3: false

 Chapter 7 A Closer Look at Methods and Classes 135

P
a

rt
 I

As you can see, the equals() method inside Test compares two objects for equality and

returns the result. That is, it compares the invoking object with the one that it is passed. If

they contain the same values, then the method returns true. Otherwise, it returns false.

Notice that the parameter o in equals() specifies Test as its type. Although Test is a class

type created by the program, it is used in just the same way as Java’s built-in types.

One of the most common uses of object parameters involves constructors. Frequently,

you will want to construct a new object so that it is initially the same as some existing object.

To do this, you must define a constructor that takes an object of its class as a parameter. For

example, the following version of Box allows one object to initialize another:

// Here, Box allows one object to initialize another.

class Box {
 double width;
 double height;
 double depth;

 // Notice this constructor. It takes an object of type Box.
 Box(Box ob) { // pass object to constructor
 width = ob.width;
 height = ob.height;
 depth = ob.depth;
 }

 // constructor used when all dimensions specified
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // constructor used when no dimensions specified
 Box() {
 width = -1; // use -1 to indicate
 height = -1; // an uninitialized
 depth = -1; // box
 }

 // constructor used when cube is created
 Box(double len) {
 width = height = depth = len;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

class OverloadCons2 {
 public static void main(String args[]) {
 // create boxes using the various constructors

136 PART I The Java Language

 Box mybox1 = new Box(10, 20, 15);
 Box mybox2 = new Box();
 Box mycube = new Box(7);

 Box myclone = new Box(mybox1); // create copy of mybox1

 double vol;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume of mybox1 is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume of mybox2 is " + vol);

 // get volume of cube
 vol = mycube.volume();
 System.out.println("Volume of cube is " + vol);

 // get volume of clone
 vol = myclone.volume();
 System.out.println("Volume of clone is " + vol);
 }
}

As you will see when you begin to create your own classes, providing many forms of

constructors is usually required to allow objects to be constructed in a convenient and

efficient manner.

A Closer Look at Argument Passing
In general, there are two ways that a computer language can pass an argument to a subroutine.

The first way is call-by-value. This approach copies the value of an argument into the formal

parameter of the subroutine. Therefore, changes made to the parameter of the subroutine

have no effect on the argument. The second way an argument can be passed is call-by-reference.
In this approach, a reference to an argument (not the value of the argument) is passed to

the parameter. Inside the subroutine, this reference is used to access the actual argument

specified in the call. This means that changes made to the parameter will affect the

argument used to call the subroutine. As you will see, although Java uses call-by-value

to pass all arguments, the precise effect differs between whether a primitive type or a

reference type is passed.

When you pass a primitive type to a method, it is passed by value. Thus, a copy of the

argument is made, and what occurs to the parameter that receives the argument has no

effect outside the method. For example, consider the following program:

// Primitive types are passed by value.
class Test {
 void meth(int i, int j) {
 i *= 2;
 j /= 2;
 }
}

 Chapter 7 A Closer Look at Methods and Classes 137

P
a

rt
 I

class CallByValue {
 public static void main(String args[]) {
 Test ob = new Test();

 int a = 15, b = 20;

 System.out.println("a and b before call: " +
 a + " " + b);

 ob.meth(a, b);

 System.out.println("a and b after call: " +
 a + " " + b);
 }
}

The output from this program is shown here:

 a and b before call: 15 20
 a and b after call: 15 20

As you can see, the operations that occur inside meth() have no effect on the values of a

and b used in the call; their values here did not change to 30 and 10.

When you pass an object to a method, the situation changes dramatically, because

objects are passed by what is effectively call-by-reference. Keep in mind that when you

create a variable of a class type, you are only creating a reference to an object. Thus, when

you pass this reference to a method, the parameter that receives it will refer to the same

object as that referred to by the argument. This effectively means that objects act as if they

are passed to methods by use of call-by-reference. Changes to the object inside the method

do affect the object used as an argument. For example, consider the following program:

// Objects are passed through their references.

class Test {
 int a, b;

 Test(int i, int j) {
 a = i;
 b = j;
 }

 // pass an object
 void meth(Test o) {
 o.a *= 2;
 o.b /= 2;
 }
}

class PassObjRef {
 public static void main(String args[]) {
 Test ob = new Test(15, 20);

138 PART I The Java Language

 System.out.println("ob.a and ob.b before call: " +
 ob.a + " " + ob.b);

 ob.meth(ob);

 System.out.println("ob.a and ob.b after call: " +
 ob.a + " " + ob.b);
 }
}

This program generates the following output:

 ob.a and ob.b before call: 15 20
 ob.a and ob.b after call: 30 10

As you can see, in this case, the actions inside meth() have affected the object used as an

argument.

REMEMBER When an object reference is passed to a method, the reference itself is passed by use of
call-by-value. However, since the value being passed refers to an object, the copy of that value will
still refer to the same object that its corresponding argument does.

Returning Objects
A method can return any type of data, including class types that you create. For example, in

the following program, the incrByTen() method returns an object in which the value of a is

ten greater than it is in the invoking object.

// Returning an object.
class Test {
 int a;

 Test(int i) {
 a = i;
 }

 Test incrByTen() {
 Test temp = new Test(a+10);
 return temp;
 }
}

class RetOb {
 public static void main(String args[]) {
 Test ob1 = new Test(2);
 Test ob2;

 ob2 = ob1.incrByTen();
 System.out.println("ob1.a: " + ob1.a);
 System.out.println("ob2.a: " + ob2.a);

 Chapter 7 A Closer Look at Methods and Classes 139

P
a

rt
 I

 ob2 = ob2.incrByTen();
 System.out.println("ob2.a after second increase: "
 + ob2.a);
 }
}

The output generated by this program is shown here:

 ob1.a: 2
 ob2.a: 12
 ob2.a after second increase: 22

As you can see, each time incrByTen() is invoked, a new object is created, and a reference

to it is returned to the calling routine.

The preceding program makes another important point: Since all objects are

dynamically allocated using new, you don’t need to worry about an object going out-of-

scope because the method in which it was created terminates. The object will continue to

exist as long as there is a reference to it somewhere in your program. When there are no

references to it, the object will be reclaimed the next time garbage collection takes place.

Recursion
Java supports recursion. Recursion is the process of defining something in terms of itself. As

it relates to Java programming, recursion is the attribute that allows a method to call itself.

A method that calls itself is said to be recursive.
The classic example of recursion is the computation of the factorial of a number. The

factorial of a number N is the product of all the whole numbers between 1 and N. For

example, 3 factorial is 1 × 2 × 3 ×, or 6. Here is how a factorial can be computed by use

of a recursive method:

// A simple example of recursion.
class Factorial {
 // this is a recursive method
 int fact(int n) {
 int result;

 if(n==1) return 1;
 result = fact(n-1) * n;
 return result;
 }
}

class Recursion {
 public static void main(String args[]) {
 Factorial f = new Factorial();

 System.out.println("Factorial of 3 is " + f.fact(3));
 System.out.println("Factorial of 4 is " + f.fact(4));
 System.out.println("Factorial of 5 is " + f.fact(5));
 }
}

140 PART I The Java Language

The output from this program is shown here:

 Factorial of 3 is 6
 Factorial of 4 is 24
 Factorial of 5 is 120

If you are unfamiliar with recursive methods, then the operation of fact() may seem

a bit confusing. Here is how it works. When fact() is called with an argument of 1, the

function returns 1; otherwise, it returns the product of fact(n–1)*n. To evaluate this

expression, fact() is called with n–1. This process repeats until n equals 1 and the calls

to the method begin returning.

To better understand how the fact() method works, let’s go through a short example.

When you compute the factorial of 3, the first call to fact() will cause a second call to be

made with an argument of 2. This invocation will cause fact() to be called a third time with

an argument of 1. This call will return 1, which is then multiplied by 2 (the value of n in the

second invocation). This result (which is 2) is then returned to the original invocation of

fact() and multiplied by 3 (the original value of n). This yields the answer, 6. You might

find it interesting to insert println() statements into fact(), which will show at what level

each call is and what the intermediate answers are.

When a method calls itself, new local variables and parameters are allocated storage on

the stack, and the method code is executed with these new variables from the start. As each

recursive call returns, the old local variables and parameters are removed from the stack,

and execution resumes at the point of the call inside the method. Recursive methods could

be said to “telescope” out and back.

Recursive versions of many routines may execute a bit more slowly than the iterative

equivalent because of the added overhead of the additional function calls. Many recursive

calls to a method could cause a stack overrun. Because storage for parameters and local

variables is on the stack and each new call creates a new copy of these variables, it is possible

that the stack could be exhausted. If this occurs, the Java run-time system will cause an

exception. However, you probably will not have to worry about this unless a recursive

routine runs wild.

The main advantage to recursive methods is that they can be used to create clearer and

simpler versions of several algorithms than can their iterative relatives. For example, the

QuickSort sorting algorithm is quite difficult to implement in an iterative way. Also, some

types of AI-related algorithms are most easily implemented using recursive solutions.

When writing recursive methods, you must have an if statement somewhere to force the

method to return without the recursive call being executed. If you don’t do this, once you

call the method, it will never return. This is a very common error in working with recursion.

Use println() statements liberally during development so that you can watch what is going

on and abort execution if you see that you have made a mistake.

Here is one more example of recursion. The recursive method printArray() prints the

first i elements in the array values.

// Another example that uses recursion.

class RecTest {
 int values[];

 Chapter 7 A Closer Look at Methods and Classes 141

P
a

rt
 I

 RecTest(int i) {
 values = new int[i];
 }

 // display array -- recursively
 void printArray(int i) {
 if(i==0) return;
 else printArray(i-1);
 System.out.println("[" + (i-1) + "] " + values[i-1]);
 }
}

class Recursion2 {
 public static void main(String args[]) {
 RecTest ob = new RecTest(10);
 int i;

 for(i=0; i<10; i++) ob.values[i] = i;

 ob.printArray(10);
 }
}

This program generates the following output:

 [0] 0
 [1] 1
 [2] 2
 [3] 3
 [4] 4
 [5] 5
 [6] 6
 [7] 7
 [8] 8
 [9] 9

Introducing Access Control
As you know, encapsulation links data with the code that manipulates it. However,

encapsulation provides another important attribute: access control. Through encapsulation,

you can control what parts of a program can access the members of a class. By controlling

access, you can prevent misuse. For example, allowing access to data only through a well-

defined set of methods, you can prevent the misuse of that data. Thus, when correctly

implemented, a class creates a “black box” which may be used, but the inner workings of

which are not open to tampering. However, the classes that were presented earlier do not

completely meet this goal. For example, consider the Stack class shown at the end of

Chapter 6. While it is true that the methods push() and pop() do provide a controlled

interface to the stack, this interface is not enforced. That is, it is possible for another part of

the program to bypass these methods and access the stack directly. Of course, in the wrong

hands, this could lead to trouble. In this section, you will be introduced to the mechanism

by which you can precisely control access to the various members of a class.

142 PART I The Java Language

How a member can be accessed is determined by the access modifier attached to its

declaration. Java supplies a rich set of access modifiers. Some aspects of access control are

related mostly to inheritance or packages. (A package is, essentially, a grouping of classes.)

These parts of Java’s access control mechanism will be discussed later. Here, let’s begin by

examining access control as it applies to a single class. Once you understand the

fundamentals of access control, the rest will be easy.

Java’s access modifiers are public, private, and protected. Java also defines a default

access level. protected applies only when inheritance is involved. The other access modifiers

are described next.

Let’s begin by defining public and private. When a member of a class is modified by

public, then that member can be accessed by any other code. When a member of a class is

specified as private, then that member can only be accessed by other members of its class.

Now you can understand why main() has always been preceded by the public modifier. It

is called by code that is outside the program—that is, by the Java run-time system. When

no access modifier is used, then by default the member of a class is public within its own

package, but cannot be accessed outside of its package. (Packages are discussed in the

following chapter.)

In the classes developed so far, all members of a class have used the default access

mode, which is essentially public. However, this is not what you will typically want to be the

case. Usually, you will want to restrict access to the data members of a class—allowing access

only through methods. Also, there will be times when you will want to define methods that

are private to a class.

An access modifier precedes the rest of a member’s type specification. That is, it must

begin a member’s declaration statement. Here is an example:

public int i;
private double j;

private int myMethod(int a, char b) { //...

To understand the effects of public and private access, consider the following program:

/* This program demonstrates the difference between
 public and private.
*/
class Test {
 int a; // default access
 public int b; // public access
 private int c; // private access

 // methods to access c
 void setc(int i) { // set c's value
 c = i;
 }
 int getc() { // get c's value
 return c;
 }
}

 Chapter 7 A Closer Look at Methods and Classes 143

P
a

rt
 I

class AccessTest {
 public static void main(String args[]) {
 Test ob = new Test();

 // These are OK, a and b may be accessed directly
 ob.a = 10;
 ob.b = 20;

 // This is not OK and will cause an error
// ob.c = 100; // Error!

 // You must access c through its methods
 ob.setc(100); // OK
 System.out.println("a, b, and c: " + ob.a + " " +
 ob.b + " " + ob.getc());
 }
}

As you can see, inside the Test class, a uses default access, which for this example is

the same as specifying public. b is explicitly specified as public. Member c is given private

access. This means that it cannot be accessed by code outside of its class. So, inside the

AccessTest class, c cannot be used directly. It must be accessed through its public methods:

setc() and getc(). If you were to remove the comment symbol from the beginning of the

following line,

// ob.c = 100; // Error!

then you would not be able to compile this program because of the access violation.

To see how access control can be applied to a more practical example, consider the

following improved version of the Stack class shown at the end of Chapter 6.

// This class defines an integer stack that can hold 10 values.
class Stack {
 /* Now, both stck and tos are private. This means
 that they cannot be accidentally or maliciously
 altered in a way that would be harmful to the stack.
 */
 private int stck[] = new int[10];
 private int tos;

 // Initialize top-of-stack
 Stack() {
 tos = -1;
 }

 // Push an item onto the stack
 void push(int item) {
 if(tos==9)
 System.out.println("Stack is full.");
 else
 stck[++tos] = item;
 }

144 PART I The Java Language

 // Pop an item from the stack
 int pop() {
 if(tos < 0) {
 System.out.println("Stack underflow.");
 return 0;
 }
 else
 return stck[tos--];
 }
}

As you can see, now both stck, which holds the stack, and tos, which is the index of the

top of the stack, are specified as private. This means that they cannot be accessed or altered

except through push() and pop(). Making tos private, for example, prevents other parts of

your program from inadvertently setting it to a value that is beyond the end of the stck array.

The following program demonstrates the improved Stack class. Try removing the

commented-out lines to prove to yourself that the stck and tos members are, indeed,

inaccessible.

class TestStack {
 public static void main(String args[]) {
 Stack mystack1 = new Stack();
 Stack mystack2 = new Stack();

 // push some numbers onto the stack
 for(int i=0; i<10; i++) mystack1.push(i);
 for(int i=10; i<20; i++) mystack2.push(i);

 // pop those numbers off the stack
 System.out.println("Stack in mystack1:");
 for(int i=0; i<10; i++)
 System.out.println(mystack1.pop());

 System.out.println("Stack in mystack2:");

 for(int i=0; i<10; i++)
 System.out.println(mystack2.pop());

 // these statements are not legal
 // mystack1.tos = -2;
 // mystack2.stck[3] = 100;
 }
}

Although methods will usually provide access to the data defined by a class, this does

not always have to be the case. It is perfectly proper to allow an instance variable to be

public when there is good reason to do so. For example, most of the simple classes in this

book were created with little concern about controlling access to instance variables for the

sake of simplicity. However, in most real-world classes, you will need to allow operations on

data only through methods. The next chapter will return to the topic of access control. As

you will see, it is particularly important when inheritance is involved.

 Chapter 7 A Closer Look at Methods and Classes 145

P
a

rt
 I

Understanding static
There will be times when you will want to define a class member that will be used

independently of any object of that class. Normally, a class member must be accessed only

in conjunction with an object of its class. However, it is possible to create a member that can

be used by itself, without reference to a specific instance. To create such a member, precede

its declaration with the keyword static. When a member is declared static, it can be accessed

before any objects of its class are created, and without reference to any object. You can declare

both methods and variables to be static. The most common example of a static member is

main(). main() is declared as static because it must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects of

its class are declared, no copy of a static variable is made. Instead, all instances of the class

share the same static variable.

Methods declared as static have several restrictions:

• They can only directly call other static methods.

• They can only directly access static data.

• They cannot refer to this or super in any way. (The keyword super relates to

inheritance and is described in the next chapter.)

If you need to do computation in order to initialize your static variables, you can

declare a static block that gets executed exactly once, when the class is first loaded. The

following example shows a class that has a static method, some static variables, and a static

initialization block:

// Demonstrate static variables, methods, and blocks.
class UseStatic {
 static int a = 3;
 static int b;

 static void meth(int x) {
 System.out.println("x = " + x);
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 }

 static {
 System.out.println("Static block initialized.");
 b = a * 4;
 }

 public static void main(String args[]) {
 meth(42);
 }
}

As soon as the UseStatic class is loaded, all of the static statements are run. First, a is

set to 3, then the static block executes, which prints a message and then initializes b to a*4

or 12. Then main() is called, which calls meth(), passing 42 to x. The three println()
statements refer to the two static variables a and b, as well as to the local variable x.

146 PART I The Java Language

Here is the output of the program:

 Static block initialized.
 x = 42
 a = 3
 b = 12

Outside of the class in which they are defined, static methods and variables can be

used independently of any object. To do so, you need only specify the name of their class

followed by the dot operator. For example, if you wish to call a static method from outside

its class, you can do so using the following general form:

classname.method()

Here, classname is the name of the class in which the static method is declared. As you

can see, this format is similar to that used to call non-static methods through object-

reference variables. A static variable can be accessed in the same way—by use of the dot

operator on the name of the class. This is how Java implements a controlled version of

global methods and global variables.

Here is an example. Inside main(), the static method callme() and the static variable b

are accessed through their class name StaticDemo.

class StaticDemo {
 static int a = 42;
 static int b = 99;

 static void callme() {
 System.out.println("a = " + a);
 }
}

class StaticByName {
 public static void main(String args[]) {
 StaticDemo.callme();
 System.out.println("b = " + StaticDemo.b);
 }
}

Here is the output of this program:

 a = 42
 b = 99

Introducing final
A field can be declared as final. Doing so prevents its contents from being modified,

making it, essentially, a constant. This means that you must initialize a final field when

it is declared. You can do this in one of two ways: First, you can give it a value when it is

declared. Second, you can assign it a value within a constructor. The first approach is the

most common. Here is an example:

 Chapter 7 A Closer Look at Methods and Classes 147

P
a

rt
 I

final int FILE_NEW = 1;
final int FILE_OPEN = 2;
final int FILE_SAVE = 3;
final int FILE_SAVEAS = 4;
final int FILE_QUIT = 5;

Subsequent parts of your program can now use FILE_OPEN, etc., as if they were constants,

without fear that a value has been changed. It is a common coding convention to choose all

uppercase identifiers for final fields, as this example shows.

In addition to fields, both method parameters and local variables can be declared final.
Declaring a parameter final prevents it from being changed within the method. Declaring a

local variable final prevents it from being assigned a value more than once.

The keyword final can also be applied to methods, but its meaning is substantially

different than when it is applied to variables. This additional usage of final is described

in the next chapter, when inheritance is described.

Arrays Revisited
Arrays were introduced earlier in this book, before classes had been discussed. Now that

you know about classes, an important point can be made about arrays: they are implemented

as objects. Because of this, there is a special array attribute that you will want to take

advantage of. Specifically, the size of an array—that is, the number of elements that an array

can hold—is found in its length instance variable. All arrays have this variable, and it will

always hold the size of the array. Here is a program that demonstrates this property:

// This program demonstrates the length array member.
class Length {
 public static void main(String args[]) {
 int a1[] = new int[10];
 int a2[] = {3, 5, 7, 1, 8, 99, 44, -10};
 int a3[] = {4, 3, 2, 1};

 System.out.println("length of a1 is " + a1.length);
 System.out.println("length of a2 is " + a2.length);
 System.out.println("length of a3 is " + a3.length);
 }
}

This program displays the following output:

 length of a1 is 10
 length of a2 is 8
 length of a3 is 4

As you can see, the size of each array is displayed. Keep in mind that the value of length

has nothing to do with the number of elements that are actually in use. It only reflects the

number of elements that the array is designed to hold.

You can put the length member to good use in many situations. For example, here is

an improved version of the Stack class. As you might recall, the earlier versions of this class

148 PART I The Java Language

always created a ten-element stack. The following version lets you create stacks of any size.

The value of stck.length is used to prevent the stack from overflowing.

// Improved Stack class that uses the length array member.
class Stack {
 private int stck[];
 private int tos;

 // allocate and initialize stack
 Stack(int size) {
 stck = new int[size];
 tos = -1;
 }

 // Push an item onto the stack
 void push(int item) {
 if(tos==stck.length-1) // use length member
 System.out.println("Stack is full.");
 else
 stck[++tos] = item;
 }

 // Pop an item from the stack
 int pop() {
 if(tos < 0) {
 System.out.println("Stack underflow.");
 return 0;
 }
 else
 return stck[tos--];
 }
}

class TestStack2 {
 public static void main(String args[]) {
 Stack mystack1 = new Stack(5);
 Stack mystack2 = new Stack(8);

 // push some numbers onto the stack
 for(int i=0; i<5; i++) mystack1.push(i);
 for(int i=0; i<8; i++) mystack2.push(i);

 // pop those numbers off the stack
 System.out.println("Stack in mystack1:");
 for(int i=0; i<5; i++)
 System.out.println(mystack1.pop());

 System.out.println("Stack in mystack2:");
 for(int i=0; i<8; i++)
 System.out.println(mystack2.pop());
 }
}

 Chapter 7 A Closer Look at Methods and Classes 149

P
a

rt
 I

Notice that the program creates two stacks: one five elements deep and the other eight

elements deep. As you can see, the fact that arrays maintain their own length information

makes it easy to create stacks of any size.

Introducing Nested and Inner Classes
It is possible to define a class within another class; such classes are known as nested classes.
The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is

defined within class A, then B does not exist independently of A. A nested class has access

to the members, including private members, of the class in which it is nested. However, the

enclosing class does not have access to the members of the nested class. A nested class that

is declared directly within its enclosing class scope is a member of its enclosing class. It is

also possible to declare a nested class that is local to a block.

There are two types of nested classes: static and non-static. A static nested class is one

that has the static modifier applied. Because it is static, it must access the non-static members

of its enclosing class through an object. That is, it cannot refer to non-static members of its

enclosing class directly. Because of this restriction, static nested classes are seldom used.

The most important type of nested class is the inner class. An inner class is a non-static

nested class. It has access to all of the variables and methods of its outer class and may refer

to them directly in the same way that other non-static members of the outer class do.

The following program illustrates how to define and use an inner class. The class named

Outer has one instance variable named outer_x, one instance method named test(), and

defines one inner class called Inner.

// Demonstrate an inner class.
class Outer {
 int outer_x = 100;

 void test() {
 Inner inner = new Inner();
 inner.display();
 }

 // this is an inner class
 class Inner {
 void display() {
 System.out.println("display: outer_x = " + outer_x);
 }
 }
}

class InnerClassDemo {
 public static void main(String args[]) {
 Outer outer = new Outer();
 outer.test();
 }
}

150 PART I The Java Language

Output from this application is shown here:

 display: outer_x = 100

In the program, an inner class named Inner is defined within the scope of class Outer.

Therefore, any code in class Inner can directly access the variable outer_x. An instance

method named display() is defined inside Inner. This method displays outer_x on the

standard output stream. The main() method of InnerClassDemo creates an instance of

class Outer and invokes its test() method. That method creates an instance of class Inner

and the display() method is called.

It is important to realize that an instance of Inner can be created only within the scope

of class Outer. The Java compiler generates an error message if any code outside of class

Outer attempts to instantiate class Inner. In general, an inner class instance must be

created by an enclosing scope.

As explained, an inner class has access to all of the members of its enclosing class, but

the reverse is not true. Members of the inner class are known only within the scope of the

inner class and may not be used by the outer class. For example,

// This program will not compile.
class Outer {
 int outer_x = 100;

 void test() {
 Inner inner = new Inner();
 inner.display();
 }

 // this is an inner class
 class Inner {
 int y = 10; // y is local to Inner

 void display() {
 System.out.println("display: outer_x = " + outer_x);
 }
 }

 void showy() {
 System.out.println(y); // error, y not known here!
 }
}

class InnerClassDemo {
 public static void main(String args[]) {
 Outer outer = new Outer();
 outer.test();
 }
}

Here, y is declared as an instance variable of Inner. Thus, it is not known outside of that

class and it cannot be used by showy().

 Chapter 7 A Closer Look at Methods and Classes 151

P
a

rt
 I

Although we have been focusing on inner classes declared as members within an outer

class scope, it is possible to define inner classes within any block scope. For example, you

can define a nested class within the block defined by a method or even within the body of

a for loop, as this next program shows:

// Define an inner class within a for loop.
class Outer {
 int outer_x = 100;

 void test() {
 for(int i=0; i<10; i++) {
 class Inner {
 void display() {
 System.out.println("display: outer_x = " + outer_x);
 }
 }
 Inner inner = new Inner();
 inner.display();
 }
 }
}

class InnerClassDemo {
 public static void main(String args[]) {
 Outer outer = new Outer();
 outer.test();
 }
}

The output from this version of the program is shown here:

 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100

While nested classes are not applicable to all situations, they are particularly helpful

when handling events. We will return to the topic of nested classes in Chapter 22. There

you will see how inner classes can be used to simplify the code needed to handle certain

types of events. You will also learn about anonymous inner classes, which are inner classes that

don’t have a name.

One final point: Nested classes were not allowed by the original 1.0 specification for

Java. They were added by Java 1.1.

152 PART I The Java Language

Exploring the String Class
Although the String class will be examined in depth in Part II of this book, a short

exploration of it is warranted now, because we will be using strings in some of the example

programs shown toward the end of Part I. String is probably the most commonly used class

in Java’s class library. The obvious reason for this is that strings are a very important part of

programming.

The first thing to understand about strings is that every string you create is actually an

object of type String. Even string constants are actually String objects. For example, in the

statement

System.out.println("This is a String, too");

the string "This is a String, too" is a String object.

The second thing to understand about strings is that objects of type String are immutable;

once a String object is created, its contents cannot be altered. While this may seem like a

serious restriction, it is not, for two reasons:

• If you need to change a string, you can always create a new one that contains the

modifications.

• Java defines a peer class of String, called StringBuffer, which allows strings to

be altered, so all of the normal string manipulations are still available in Java.

(StringBuffer is described in Part II of this book.)

Strings can be constructed in a variety of ways. The easiest is to use a statement like this:

String myString = "this is a test";

Once you have created a String object, you can use it anywhere that a string is allowed.

For example, this statement displays myString:

System.out.println(myString);

Java defines one operator for String objects: +. It is used to concatenate two strings. For

example, this statement

String myString = "I" + " like " + "Java.";

results in myString containing "I like Java."

The following program demonstrates the preceding concepts:

// Demonstrating Strings.
class StringDemo {
 public static void main(String args[]) {
 String strOb1 = "First String";
 String strOb2 = "Second String";
 String strOb3 = strOb1 + " and " + strOb2;

 System.out.println(strOb1);
 System.out.println(strOb2);

 Chapter 7 A Closer Look at Methods and Classes 153

P
a

rt
 I

 System.out.println(strOb3);
 }
}

The output produced by this program is shown here:

 First String
 Second String
 First String and Second String

The String class contains several methods that you can use. Here are a few. You can test

two strings for equality by using equals(). You can obtain the length of a string by calling

the length() method. You can obtain the character at a specified index within a string by

calling charAt(). The general forms of these three methods are shown here:

boolean equals(secondStr)
int length()

char charAt(index)

Here is a program that demonstrates these methods:

// Demonstrating some String methods.
class StringDemo2 {
 public static void main(String args[]) {
 String strOb1 = "First String";
 String strOb2 = "Second String";
 String strOb3 = strOb1;

 System.out.println("Length of strOb1: " +
 strOb1.length());

 System.out.println("Char at index 3 in strOb1: " +
 strOb1.charAt(3));

 if(strOb1.equals(strOb2))
 System.out.println("strOb1 == strOb2");
 else
 System.out.println("strOb1 != strOb2");

 if(strOb1.equals(strOb3))
 System.out.println("strOb1 == strOb3");
 else
 System.out.println("strOb1 != strOb3");
 }
}

This program generates the following output:

 Length of strOb1: 12
 Char at index 3 in strOb1: s
 strOb1 != strOb2
 strOb1 == strOb3

154 PART I The Java Language

Of course, you can have arrays of strings, just like you can have arrays of any other type

of object. For example:

// Demonstrate String arrays.
class StringDemo3 {
 public static void main(String args[]) {
 String str[] = { "one", "two", "three" };

 for(int i=0; i<str.length; i++)
 System.out.println("str[" + i + "]: " +
 str[i]);
 }
}

Here is the output from this program:

 str[0]: one
 str[1]: two
 str[2]: three

As you will see in the following section, string arrays play an important part in many Java

programs.

Using Command-Line Arguments
Sometimes you will want to pass information into a program when you run it. This is

accomplished by passing command-line arguments to main(). A command-line argument is

the information that directly follows the program’s name on the command line when it is

executed. To access the command-line arguments inside a Java program is quite easy—they

are stored as strings in a String array passed to the args parameter of main(). The first

command-line argument is stored at args[0], the second at args[1], and so on. For example,

the following program displays all of the command-line arguments that it is called with:

// Display all command-line arguments.
class CommandLine {
 public static void main(String args[]) {
 for(int i=0; i<args.length; i++)
 System.out.println("args[" + i + "]: " +
 args[i]);
 }
}

Try executing this program, as shown here:

java CommandLine this is a test 100 -1

When you do, you will see the following output:

 args[0]: this
 args[1]: is
 args[2]: a
 args[3]: test
 args[4]: 100
 args[5]: -1

 Chapter 7 A Closer Look at Methods and Classes 155

P
a

rt
 I

REMEMBER All command line arguments are passed as strings. You must convert numeric values to
their internal forms manually, as explained in Chapter 16.

Varargs: Variable-Length Arguments
Beginning with JDK 5, Java has included a feature that simplifies the creation of methods

that need to take a variable number of arguments. This feature is called varargs and it is

short for variable-length arguments. A method that takes a variable number of arguments is

called a variable-arity method, or simply a varargs method.

Situations that require that a variable number of arguments be passed to a method are

not unusual. For example, a method that opens an Internet connection might take a user

name, password, filename, protocol, and so on, but supply defaults if some of this information

is not provided. In this situation, it would be convenient to pass only the arguments to

which the defaults did not apply. Another example is the printf() method that is part of

Java’s I/O library. As you will see in Chapter 19, it takes a variable number of arguments,

which it formats and then outputs.

Prior to JDK 5, variable-length arguments could be handled two ways, neither of which

was particularly pleasing. First, if the maximum number of arguments was small and known,

then you could create overloaded versions of the method, one for each way the method

could be called. Although this works and is suitable for some cases, it applies to only a

narrow class of situations.

In cases where the maximum number of potential arguments was larger, or unknowable,

a second approach was used in which the arguments were put into an array, and then the

array was passed to the method. This approach is illustrated by the following program:

// Use an array to pass a variable number of
// arguments to a method. This is the old-style
// approach to variable-length arguments.
class PassArray {
 static void vaTest(int v[]) {
 System.out.print("Number of args: " + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");
 System.out.println();
 }

 public static void main(String args[])
 {
 // Notice how an array must be created to
 // hold the arguments.
 int n1[] = { 10 };
 int n2[] = { 1, 2, 3 };
 int n3[] = { };

 vaTest(n1); // 1 arg
 vaTest(n2); // 3 args
 vaTest(n3); // no args
 }
}

156 PART I The Java Language

The output from the program is shown here:

 Number of args: 1 Contents: 10
 Number of args: 3 Contents: 1 2 3
 Number of args: 0 Contents:

In the program, the method vaTest() is passed its arguments through the array v. This

old-style approach to variable-length arguments does enable vaTest() to take an arbitrary

number of arguments. However, it requires that these arguments be manually packaged

into an array prior to calling vaTest(). Not only is it tedious to construct an array each time

vaTest() is called, it is potentially error-prone. The varargs feature offers a simpler, better

option.

A variable-length argument is specified by three periods (…). For example, here is how

vaTest() is written using a vararg:

static void vaTest(int ... v) {

This syntax tells the compiler that vaTest() can be called with zero or more arguments. As a

result, v is implicitly declared as an array of type int[]. Thus, inside vaTest(), v is accessed

using the normal array syntax. Here is the preceding program rewritten using a vararg:

// Demonstrate variable-length arguments.
class VarArgs {

 // vaTest() now uses a vararg.
 static void vaTest(int ... v) {
 System.out.print("Number of args: " + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 public static void main(String args[])
 {
 // Notice how vaTest() can be called with a
 // variable number of arguments.
 vaTest(10); // 1 arg
 vaTest(1, 2, 3); // 3 args
 vaTest(); // no args
 }
}

The output from the program is the same as the original version.

There are two important things to notice about this program. First, as explained, inside

vaTest(), v is operated on as an array. This is because v is an array. The … syntax simply tells

the compiler that a variable number of arguments will be used, and that these arguments will

be stored in the array referred to by v. Second, in main(), vaTest() is called with different

numbers of arguments, including no arguments at all. The arguments are automatically put

in an array and passed to v. In the case of no arguments, the length of the array is zero.

 Chapter 7 A Closer Look at Methods and Classes 157

P
a

rt
 I

A method can have “normal” parameters along with a variable-length parameter.

However, the variable-length parameter must be the last parameter declared by the

method. For example, this method declaration is perfectly acceptable:

int doIt(int a, int b, double c, int ... vals) {

In this case, the first three arguments used in a call to doIt() are matched to the first three

parameters. Then, any remaining arguments are assumed to belong to vals.

Remember, the varargs parameter must be last. For example, the following declaration

is incorrect:

int doIt(int a, int b, double c, int ... vals, boolean stopFlag) { // Error!

Here, there is an attempt to declare a regular parameter after the varargs parameter, which

is illegal.

There is one more restriction to be aware of: there must be only one varargs parameter.

For example, this declaration is also invalid:

int doIt(int a, int b, double c, int ... vals, double ... morevals) { // Error!

The attempt to declare the second varargs parameter is illegal.

Here is a reworked version of the vaTest() method that takes a regular argument and a

variable-length argument:

// Use varargs with standard arguments.
class VarArgs2 {

 // Here, msg is a normal parameter and v is a
 // varargs parameter.
 static void vaTest(String msg, int ... v) {
 System.out.print(msg + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 public static void main(String args[])
 {
 vaTest("One vararg: ", 10);
 vaTest("Three varargs: ", 1, 2, 3);
 vaTest("No varargs: ");
 }
}

The output from this program is shown here:

 One vararg: 1 Contents: 10
 Three varargs: 3 Contents: 1 2 3
 No varargs: 0 Contents:

158 PART I The Java Language

Overloading Vararg Methods

You can overload a method that takes a variable-length argument. For example, the

following program overloads vaTest() three times:

// Varargs and overloading.
class VarArgs3 {

 static void vaTest(int ... v) {
 System.out.print("vaTest(int ...): " +
 "Number of args: " + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 static void vaTest(boolean ... v) {
 System.out.print("vaTest(boolean ...) " +
 "Number of args: " + v.length +
 " Contents: ");

 for(boolean x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 static void vaTest(String msg, int ... v) {
 System.out.print("vaTest(String, int ...): " +
 msg + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 public static void main(String args[])
 {
 vaTest(1, 2, 3);
 vaTest("Testing: ", 10, 20);
 vaTest(true, false, false);
 }
}

The output produced by this program is shown here:

 vaTest(int ...): Number of args: 3 Contents: 1 2 3
 vaTest(String, int ...): Testing: 2 Contents: 10 20
 vaTest(boolean ...) Number of args: 3 Contents: true false false

 Chapter 7 A Closer Look at Methods and Classes 159

P
a

rt
 I

This program illustrates both ways that a varargs method can be overloaded. First, the types

of its vararg parameter can differ. This is the case for vaTest(int ...) and vaTest(boolean ...).

Remember, the ... causes the parameter to be treated as an array of the specified type.

Therefore, just as you can overload methods by using different types of array parameters,

you can overload vararg methods by using different types of varargs. In this case, Java uses

the type difference to determine which overloaded method to call.

The second way to overload a varargs method is to add one or more normal parameters.

This is what was done with vaTest(String, int ...). In this case, Java uses both the number of

arguments and the type of the arguments to determine which method to call.

NOTE A varargs method can also be overloaded by a non-varargs method. For example, vaTest(int x)
is a valid overload of vaTest() in the foregoing program. This version is invoked only when one int
argument is present. When two or more int arguments are passed, the varargs version vaTest (int…v)
is used.

Varargs and Ambiguity

Somewhat unexpected errors can result when overloading a method that takes a variable-

length argument. These errors involve ambiguity because it is possible to create an

ambiguous call to an overloaded varargs method. For example, consider the following

program:

// Varargs, overloading, and ambiguity.
//
// This program contains an error and will
// not compile!
class VarArgs4 {

 static void vaTest(int ... v) {
 System.out.print("vaTest(int ...): " +
 "Number of args: " + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 static void vaTest(boolean ... v) {
 System.out.print("vaTest(boolean ...) " +
 "Number of args: " + v.length +
 " Contents: ");

 for(boolean x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 public static void main(String args[])
 {

160 PART I The Java Language

 vaTest(1, 2, 3); // OK
 vaTest(true, false, false); // OK

 vaTest(); // Error: Ambiguous!
 }
}

In this program, the overloading of vaTest() is perfectly correct. However, this program will

not compile because of the following call:

vaTest(); // Error: Ambiguous!

Because the vararg parameter can be empty, this call could be translated into a call to

vaTest(int …) or vaTest(boolean …). Both are equally valid. Thus, the call is inherently

ambiguous.

Here is another example of ambiguity. The following overloaded versions of vaTest()
are inherently ambiguous even though one takes a normal parameter:

static void vaTest(int ... v) { // ...

static void vaTest(int n, int ... v) { // ...

Although the parameter lists of vaTest() differ, there is no way for the compiler to

resolve the following call:

vaTest(1)

Does this translate into a call to vaTest(int …), with one varargs argument, or into a call to

vaTest(int, int …) with no varargs arguments? There is no way for the compiler to answer

this question. Thus, the situation is ambiguous.

Because of ambiguity errors like those just shown, sometimes you will need to forego

overloading and simply use two different method names. Also, in some cases, ambiguity

errors expose a conceptual flaw in your code, which you can remedy by more carefully

crafting a solution.

8
CHAPTER

 161

Inheritance

Inheritance is one of the cornerstones of object-oriented programming because it allows

the creation of hierarchical classifications. Using inheritance, you can create a general class

that defines traits common to a set of related items. This class can then be inherited by

other, more specific classes, each adding those things that are unique to it. In the terminology

of Java, a class that is inherited is called a superclass. The class that does the inheriting is

called a subclass. Therefore, a subclass is a specialized version of a superclass. It inherits

all of the members defined by the superclass and adds its own, unique elements.

Inheritance Basics
To inherit a class, you simply incorporate the definition of one class into another by using

the extends keyword. To see how, let’s begin with a short example. The following program

creates a superclass called A and a subclass called B. Notice how the keyword extends is

used to create a subclass of A.

// A simple example of inheritance.

// Create a superclass.
class A {
 int i, j;

 void showij() {
 System.out.println("i and j: " + i + " " + j);
 }
}

// Create a subclass by extending class A.
class B extends A {
 int k;

 void showk() {
 System.out.println("k: " + k);
 }

162 PART I The Java Language

 void sum() {
 System.out.println("i+j+k: " + (i+j+k));
 }
}

class SimpleInheritance {
 public static void main(String args []) {
 A superOb = new A();
 B subOb = new B();

 // The superclass may be used by itself.
 superOb.i = 10;
 superOb.j = 20;
 System.out.println("Contents of superOb: ");
 superOb.showij();
 System.out.println();

 /* The subclass has access to all public members of
 its superclass. */
 subOb.i = 7;
 subOb.j = 8;
 subOb.k = 9;
 System.out.println("Contents of subOb: ");
 subOb.showij();
 subOb.showk();
 System.out.println();

 System.out.println("Sum of i, j and k in subOb:");
 subOb.sum();
 }
}

The output from this program is shown here:

 Contents of superOb:
 i and j: 10 20

 Contents of subOb:
 i and j: 7 8
 k: 9

 Sum of i, j and k in subOb:
 i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This is

why subOb can access i and j and call showij(). Also, inside sum(), i and j can be referred

to directly, as if they were part of B.

Even though A is a superclass for B, it is also a completely independent, stand-alone

class. Being a superclass for a subclass does not mean that the superclass cannot be used

by itself. Further, a subclass can be a superclass for another subclass.

The general form of a class declaration that inherits a superclass is shown here:

 Chapter 8 Inheritance 163

P
a

rt
 I

class subclass-name extends superclass-name {
 // body of class

}

You can only specify one superclass for any subclass that you create. Java does not

support the inheritance of multiple superclasses into a single subclass. You can, as stated,

create a hierarchy of inheritance in which a subclass becomes a superclass of another

subclass. However, no class can be a superclass of itself.

Member Access and Inheritance

Although a subclass includes all of the members of its superclass, it cannot access those

members of the superclass that have been declared as private. For example, consider the

following simple class hierarchy:

/* In a class hierarchy, private members remain
 private to their class.

 This program contains an error and will not
 compile.
*/

// Create a superclass.
class A {
 int i; // public by default
 private int j; // private to A

 void setij(int x, int y) {
 i = x;
 j = y;
 }
}

// A's j is not accessible here.
class B extends A {
 int total;

 void sum() {
 total = i + j; // ERROR, j is not accessible here
 }
}

class Access {
 public static void main(String args[]) {
 B subOb = new B();

 subOb.setij(10, 12);

 subOb.sum();
 System.out.println("Total is " + subOb.total);
 }
}

164 PART I The Java Language

This program will not compile because the use of j inside the sum() method of B

causes an access violation. Since j is declared as private, it is only accessible by other members

of its own class. Subclasses have no access to it.

REMEMBER A class member that has been declared as private will remain private to its class. It is not
accessible by any code outside its class, including subclasses.

A More Practical Example

Let’s look at a more practical example that will help illustrate the power of inheritance. Here,

the final version of the Box class developed in the preceding chapter will be extended to

include a fourth component called weight. Thus, the new class will contain a box’s width,

height, depth, and weight.

// This program uses inheritance to extend Box.
class Box {
 double width;
 double height;
 double depth;

 // construct clone of an object
 Box(Box ob) { // pass object to constructor
 width = ob.width;
 height = ob.height;
 depth = ob.depth;
 }

 // constructor used when all dimensions specified
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // constructor used when no dimensions specified
 Box() {
 width = -1; // use -1 to indicate
 height = -1; // an uninitialized
 depth = -1; // box
 }

 // constructor used when cube is created
 Box(double len) {
 width = height = depth = len;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

// Here, Box is extended to include weight.
class BoxWeight extends Box {

 Chapter 8 Inheritance 165

P
a

rt
 I

 double weight; // weight of box

 // constructor for BoxWeight
 BoxWeight(double w, double h, double d, double m) {
 width = w;
 height = h;
 depth = d;
 weight = m;
 }
}

class DemoBoxWeight {
 public static void main(String args[]) {
 BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
 BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
 double vol;

 vol = mybox1.volume();
 System.out.println("Volume of mybox1 is " + vol);
 System.out.println("Weight of mybox1 is " + mybox1.weight);
 System.out.println();

 vol = mybox2.volume();
 System.out.println("Volume of mybox2 is " + vol);
 System.out.println("Weight of mybox2 is " + mybox2.weight);
 }
}

The output from this program is shown here:

 Volume of mybox1 is 3000.0
 Weight of mybox1 is 34.3

 Volume of mybox2 is 24.0
 Weight of mybox2 is 0.076

BoxWeight inherits all of the characteristics of Box and adds to them the weight
component. It is not necessary for BoxWeight to re-create all of the features found in

Box. It can simply extend Box to meet its own purposes.

A major advantage of inheritance is that once you have created a superclass that defines

the attributes common to a set of objects, it can be used to create any number of more

specific subclasses. Each subclass can precisely tailor its own classification. For example,

the following class inherits Box and adds a color attribute:

// Here, Box is extended to include color.
class ColorBox extends Box {
 int color; // color of box

 ColorBox(double w, double h, double d, int c) {
 width = w;
 height = h;
 depth = d;
 color = c;
 }
}

166 PART I The Java Language

Remember, once you have created a superclass that defines the general aspects of an

object, that superclass can be inherited to form specialized classes. Each subclass simply

adds its own unique attributes. This is the essence of inheritance.

A Superclass Variable Can Reference a Subclass Object

A reference variable of a superclass can be assigned a reference to any subclass derived

from that superclass. You will find this aspect of inheritance quite useful in a variety of

situations. For example, consider the following:

class RefDemo {
 public static void main(String args[]) {
 BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);
 Box plainbox = new Box();
 double vol;

 vol = weightbox.volume();
 System.out.println("Volume of weightbox is " + vol);
 System.out.println("Weight of weightbox is " +
 weightbox.weight);
 System.out.println();

 // assign BoxWeight reference to Box reference
 plainbox = weightbox;

 vol = plainbox.volume(); // OK, volume() defined in Box
 System.out.println("Volume of plainbox is " + vol);

 /* The following statement is invalid because plainbox
 does not define a weight member. */
// System.out.println("Weight of plainbox is " + plainbox.weight);
 }
}

Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to Box

objects. Since BoxWeight is a subclass of Box, it is permissible to assign plainbox a reference

to the weightbox object.

It is important to understand that it is the type of the reference variable—not the type

of the object that it refers to—that determines what members can be accessed. That is,

when a reference to a subclass object is assigned to a superclass reference variable, you will

have access only to those parts of the object defined by the superclass. This is why plainbox

can’t access weight even when it refers to a BoxWeight object. If you think about it, this

makes sense, because the superclass has no knowledge of what a subclass adds to it. This is

why the last line of code in the preceding fragment is commented out. It is not possible for

a Box reference to access the weight field, because Box does not define one.

Although the preceding may seem a bit esoteric, it has some important practical

applications—two of which are discussed later in this chapter.

 Chapter 8 Inheritance 167

P
a

rt
 I

Using super
In the preceding examples, classes derived from Box were not implemented as efficiently

or as robustly as they could have been. For example, the constructor for BoxWeight
explicitly initializes the width, height, and depth fields of Box. Not only does this duplicate

code found in its superclass, which is inefficient, but it implies that a subclass must be

granted access to these members. However, there will be times when you will want to create

a superclass that keeps the details of its implementation to itself (that is, that keeps its data

members private). In this case, there would be no way for a subclass to directly access or

initialize these variables on its own. Since encapsulation is a primary attribute of OOP, it is

not surprising that Java provides a solution to this problem. Whenever a subclass needs to

refer to its immediate superclass, it can do so by use of the keyword super.

super has two general forms. The first calls the superclass’ constructor. The second is

used to access a member of the superclass that has been hidden by a member of a subclass.

Each use is examined here.

Using super to Call Superclass Constructors

A subclass can call a constructor defined by its superclass by use of the following form of

super:

super(arg-list);

Here, arg-list specifies any arguments needed by the constructor in the superclass. super()
must always be the first statement executed inside a subclass’ constructor.

To see how super() is used, consider this improved version of the BoxWeight class:

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {
 double weight; // weight of box

 // initialize width, height, and depth using super()
 BoxWeight(double w, double h, double d, double m) {
 super(w, h, d); // call superclass constructor
 weight = m;
 }
}

Here, BoxWeight() calls super() with the arguments w, h, and d. This causes the Box
constructor to be called, which initializes width, height, and depth using these values.

BoxWeight no longer initializes these values itself. It only needs to initialize the value

unique to it: weight. This leaves Box free to make these values private if desired.

In the preceding example, super() was called with three arguments. Since constructors

can be overloaded, super() can be called using any form defined by the superclass. The

constructor executed will be the one that matches the arguments. For example, here is a

complete implementation of BoxWeight that provides constructors for the various ways that

168 PART I The Java Language

a box can be constructed. In each case, super() is called using the appropriate arguments.

Notice that width, height, and depth have been made private within Box.

// A complete implementation of BoxWeight.
class Box {
 private double width;
 private double height;
 private double depth;

 // construct clone of an object
 Box(Box ob) { // pass object to constructor
 width = ob.width;
 height = ob.height;
 depth = ob.depth;
 }

 // constructor used when all dimensions specified
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // constructor used when no dimensions specified
 Box() {
 width = -1; // use -1 to indicate
 height = -1; // an uninitialized
 depth = -1; // box
 }

 // constructor used when cube is created
 Box(double len) {
 width = height = depth = len;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
 }

// BoxWeight now fully implements all constructors.
class BoxWeight extends Box {
 double weight; // weight of box

 // construct clone of an object
 BoxWeight(BoxWeight ob) { // pass object to constructor
 super(ob);
 weight = ob.weight;
 }

 // constructor when all parameters are specified
 BoxWeight(double w, double h, double d, double m) {

 Chapter 8 Inheritance 169

P
a

rt
 I

 super(w, h, d); // call superclass constructor
 weight = m;
 }

 // default constructor
 BoxWeight() {
 super();
 weight = -1;
 }

 // constructor used when cube is created
 BoxWeight(double len, double m) {
 super(len);
 weight = m;
 }
}

class DemoSuper {
 public static void main(String args[]) {
 BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
 BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
 BoxWeight mybox3 = new BoxWeight(); // default
 BoxWeight mycube = new BoxWeight(3, 2);
 BoxWeight myclone = new BoxWeight(mybox1);
 double vol;

 vol = mybox1.volume();
 System.out.println("Volume of mybox1 is " + vol);
 System.out.println("Weight of mybox1 is " + mybox1.weight);
 System.out.println();

 vol = mybox2.volume();
 System.out.println("Volume of mybox2 is " + vol);
 System.out.println("Weight of mybox2 is " + mybox2.weight);
 System.out.println();

 vol = mybox3.volume();
 System.out.println("Volume of mybox3 is " + vol);
 System.out.println("Weight of mybox3 is " + mybox3.weight);
 System.out.println();

 vol = myclone.volume();
 System.out.println("Volume of myclone is " + vol);
 System.out.println("Weight of myclone is " + myclone.weight);
 System.out.println();

 vol = mycube.volume();
 System.out.println("Volume of mycube is " + vol);
 System.out.println("Weight of mycube is " + mycube.weight);
 System.out.println();
 }
}

170 PART I The Java Language

This program generates the following output:

 Volume of mybox1 is 3000.0
 Weight of mybox1 is 34.3

 Volume of mybox2 is 24.0
 Weight of mybox2 is 0.076

 Volume of mybox3 is -1.0
 Weight of mybox3 is -1.0

 Volume of myclone is 3000.0
 Weight of myclone is 34.3

 Volume of mycube is 27.0
 Weight of mycube is 2.0

Pay special attention to this constructor in BoxWeight:

// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor
 super(ob);
 weight = ob.weight;
}

Notice that super() is passed an object of type BoxWeight—not of type Box. This still

invokes the constructor Box(Box ob). As mentioned earlier, a superclass variable can be

used to reference any object derived from that class. Thus, we are able to pass a BoxWeight
object to the Box constructor. Of course, Box only has knowledge of its own members.

Let’s review the key concepts behind super(). When a subclass calls super(), it is calling

the constructor of its immediate superclass. Thus, super() always refers to the superclass

immediately above the calling class. This is true even in a multileveled hierarchy. Also,

super() must always be the first statement executed inside a subclass constructor.

A Second Use for super

The second form of super acts somewhat like this, except that it always refers to the

superclass of the subclass in which it is used. This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.

This second form of super is most applicable to situations in which member names

of a subclass hide members by the same name in the superclass. Consider this simple class

hierarchy:

// Using super to overcome name hiding.
class A {
 int i;
}

// Create a subclass by extending class A.

 Chapter 8 Inheritance 171

P
a

rt
 I

class B extends A {
 int i; // this i hides the i in A

 B(int a, int b) {
 super.i = a; // i in A
 i = b; // i in B
 }

 void show() {
 System.out.println("i in superclass: " + super.i);
 System.out.println("i in subclass: " + i);
 }
}

class UseSuper {
 public static void main(String args[]) {
 B subOb = new B(1, 2);

 subOb.show();
 }
}

This program displays the following:

 i in superclass: 1
 i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i
defined in the superclass. As you will see, super can also be used to call methods that are

hidden by a subclass.

Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies that consist of only a superclass

and a subclass. However, you can build hierarchies that contain as many layers of inheritance

as you like. As mentioned, it is perfectly acceptable to use a subclass as a superclass of

another. For example, given three classes called A, B, and C, C can be a subclass of B, which

is a subclass of A. When this type of situation occurs, each subclass inherits all of the traits

found in all of its superclasses. In this case, C inherits all aspects of B and A. To see how a

multilevel hierarchy can be useful, consider the following program. In it, the subclass

BoxWeight is used as a superclass to create the subclass called Shipment. Shipment inherits

all of the traits of BoxWeight and Box, and adds a field called cost, which holds the cost of

shipping such a parcel.

// Extend BoxWeight to include shipping costs.

// Start with Box.
class Box {
 private double width;
 private double height;
 private double depth;

172 PART I The Java Language

 // construct clone of an object
 Box(Box ob) { // pass object to constructor
 width = ob.width;
 height = ob.height;
 depth = ob.depth;
 }

 // constructor used when all dimensions specified
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // constructor used when no dimensions specified
 Box() {
 width = -1; // use -1 to indicate
 height = -1; // an uninitialized
 depth = -1; // box
 }

 // constructor used when cube is created
 Box(double len) {
 width = height = depth = len;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

// Add weight.
class BoxWeight extends Box {
 double weight; // weight of box

 // construct clone of an object
 BoxWeight(BoxWeight ob) { // pass object to constructor
 super(ob);
 weight = ob.weight;
 }

 // constructor when all parameters are specified
 BoxWeight(double w, double h, double d, double m) {
 super(w, h, d); // call superclass constructor
 weight = m;
 }

 // default constructor
 BoxWeight() {
 super();
 weight = -1;
 }

 Chapter 8 Inheritance 173

P
a

rt
 I

 // constructor used when cube is created
 BoxWeight(double len, double m) {
 super(len);
 weight = m;
 }
}

// Add shipping costs.
class Shipment extends BoxWeight {
 double cost;

 // construct clone of an object
 Shipment(Shipment ob) { // pass object to constructor
 super(ob);
 cost = ob.cost;
 }

 // constructor when all parameters are specified
 Shipment(double w, double h, double d,
 double m, double c) {
 super(w, h, d, m); // call superclass constructor
 cost = c;
 }

 // default constructor
 Shipment() {
 super();
 cost = -1;
 }

 // constructor used when cube is created
 Shipment(double len, double m, double c) {
 super(len, m);
 cost = c;
 }
}

class DemoShipment {
 public static void main(String args[]) {
 Shipment shipment1 =
 new Shipment(10, 20, 15, 10, 3.41);
 Shipment shipment2 =
 new Shipment(2, 3, 4, 0.76, 1.28);

 double vol;

 vol = shipment1.volume();
 System.out.println("Volume of shipment1 is " + vol);
 System.out.println("Weight of shipment1 is "
 + shipment1.weight);
 System.out.println("Shipping cost: $" + shipment1.cost);
 System.out.println();

174 PART I The Java Language

 vol = shipment2.volume();
 System.out.println("Volume of shipment2 is " + vol);
 System.out.println("Weight of shipment2 is "
 + shipment2.weight);
 System.out.println("Shipping cost: $" + shipment2.cost);
 }
}

The output of this program is shown here:

 Volume of shipment1 is 3000.0
 Weight of shipment1 is 10.0
 Shipping cost: $3.41

 Volume of shipment2 is 24.0
 Weight of shipment2 is 0.76
 Shipping cost: $1.28

Because of inheritance, Shipment can make use of the previously defined classes of Box

and BoxWeight, adding only the extra information it needs for its own, specific application.

This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the

constructor in the closest superclass. The super() in Shipment calls the constructor in

BoxWeight. The super() in BoxWeight calls the constructor in Box. In a class hierarchy, if a

superclass constructor requires parameters, then all subclasses must pass those parameters

“up the line.” This is true whether or not a subclass needs parameters of its own.

NOTE In the preceding program, the entire class hierarchy, including Box, BoxWeight, and Shipment, is
shown all in one file. This is for your convenience only. In Java, all three classes could have been
placed into their own files and compiled separately. In fact, using separate files is the norm, not the
exception, in creating class hierarchies.

When Constructors Are Called
When a class hierarchy is created, in what order are the constructors for the classes that

make up the hierarchy called? For example, given a subclass called B and a superclass

called A, is A’s constructor called before B’s, or vice versa? The answer is that in a class

hierarchy, constructors are called in order of derivation, from superclass to subclass.

Further, since super() must be the first statement executed in a subclass’ constructor, this

order is the same whether or not super() is used. If super() is not used, then the default

or parameterless constructor of each superclass will be executed. The following program

illustrates when constructors are executed:

// Demonstrate when constructors are called.

// Create a super class.
class A {
 A() {
 System.out.println("Inside A's constructor.");
 }
}

 Chapter 8 Inheritance 175

P
a

rt
 I

// Create a subclass by extending class A.
class B extends A {
 B() {
 System.out.println("Inside B's constructor.");
 }
}

// Create another subclass by extending B.
class C extends B {
 C() {
 System.out.println("Inside C's constructor.");
 }
}

class CallingCons {
 public static void main(String args[]) {
 C c = new C();
 }
}

The output from this program is shown here:

 Inside A's constructor
 Inside B's constructor
 Inside C's constructor

As you can see, the constructors are called in order of derivation.

If you think about it, it makes sense that constructors are executed in order of derivation.

Because a superclass has no knowledge of any subclass, any initialization it needs to perform

is separate from and possibly prerequisite to any initialization performed by the subclass.

Therefore, it must be executed first.

Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type signature as

a method in its superclass, then the method in the subclass is said to override the method in

the superclass. When an overridden method is called from within its subclass, it will always

refer to the version of that method defined by the subclass. The version of the method

defined by the superclass will be hidden. Consider the following:

// Method overriding.
class A {
 int i, j;
 A(int a, int b) {
 i = a;
 j = b;
 }

 // display i and j
 void show() {
 System.out.println("i and j: " + i + " " + j);
 }
}

176 PART I The Java Language

class B extends A {
 int k;

 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }

 // display k – this overrides show() in A
 void show() {
 System.out.println("k: " + k);
 }
}

class Override {
 public static void main(String args[]) {
 B subOb = new B(1, 2, 3);

 subOb.show(); // this calls show() in B
 }
}

The output produced by this program is shown here:

 k: 3

When show() is invoked on an object of type B, the version of show() defined within B

is used. That is, the version of show() inside B overrides the version declared in A.

If you wish to access the superclass version of an overridden method, you can do so by

using super. For example, in this version of B, the superclass version of show() is invoked

within the subclass’ version. This allows all instance variables to be displayed.

class B extends A {
 int k;

 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }

 void show() {
 super.show(); // this calls A's show()
 System.out.println("k: " + k);
 }
}

If you substitute this version of A into the previous program, you will see the following

output:

 i and j: 1 2
 k: 3

Here, super.show() calls the superclass version of show().

 Chapter 8 Inheritance 177

P
a

rt
 I

Method overriding occurs only when the names and the type signatures of the two

methods are identical. If they are not, then the two methods are simply overloaded. For

example, consider this modified version of the preceding example:

// Methods with differing type signatures are overloaded – not
// overridden.
class A {
 int i, j;

 A(int a, int b) {
 i = a;
 j = b;
 }

 // display i and j
 void show() {
 System.out.println("i and j: " + i + " " + j);
 }
}

// Create a subclass by extending class A.
class B extends A {
 int k;

 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }

 // overload show()
 void show(String msg) {
 System.out.println(msg + k);
 }
}

class Override {
 public static void main(String args[]) {
 B subOb = new B(1, 2, 3);

 subOb.show("This is k: "); // this calls show() in B
 subOb.show(); // this calls show() in A
 }
}

The output produced by this program is shown here:

 This is k: 3
 i and j: 1 2

The version of show() in B takes a string parameter. This makes its type signature

different from the one in A, which takes no parameters. Therefore, no overriding (or name

hiding) takes place. Instead, the version of show() in B simply overloads the version of

show() in A.

178 PART I The Java Language

Dynamic Method Dispatch
While the examples in the preceding section demonstrate the mechanics of method

overriding, they do not show its power. Indeed, if there were nothing more to method

overriding than a name space convention, then it would be, at best, an interesting curiosity,

but of little real value. However, this is not the case. Method overriding forms the basis for

one of Java’s most powerful concepts: dynamic method dispatch. Dynamic method dispatch is

the mechanism by which a call to an overridden method is resolved at run time, rather than

compile time. Dynamic method dispatch is important because this is how Java implements

run-time polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can refer

to a subclass object. Java uses this fact to resolve calls to overridden methods at run time.

Here is how. When an overridden method is called through a superclass reference, Java

determines which version of that method to execute based upon the type of the object

being referred to at the time the call occurs. Thus, this determination is made at run time.

When different types of objects are referred to, different versions of an overridden method

will be called. In other words, it is the type of the object being referred to (not the type of the

reference variable) that determines which version of an overridden method will be executed.

Therefore, if a superclass contains a method that is overridden by a subclass, then when

different types of objects are referred to through a superclass reference variable, different

versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch
class A {
 void callme() {
 System.out.println("Inside A's callme method");
 }
}

class B extends A {
 // override callme()
 void callme() {
 System.out.println("Inside B's callme method");
 }
}

class C extends A {
 // override callme()
 void callme() {
 System.out.println("Inside C's callme method");
 }
}

class Dispatch {
 public static void main(String args[]) {
 A a = new A(); // object of type A
 B b = new B(); // object of type B
 C c = new C(); // object of type C

 Chapter 8 Inheritance 179

P
a

rt
 I

 A r; // obtain a reference of type A

 r = a; // r refers to an A object
 r.callme(); // calls A's version of callme

 r = b; // r refers to a B object
 r.callme(); // calls B's version of callme

 r = c; // r refers to a C object
 r.callme(); // calls C's version of callme
 }
}

The output from the program is shown here:

 Inside A's callme method
 Inside B's callme method
 Inside C's callme method

This program creates one superclass called A and two subclasses of it, called B and C.

Subclasses B and C override callme() declared in A. Inside the main() method, objects of

type A, B, and C are declared. Also, a reference of type A, called r, is declared. The

program then in turn assigns a reference to each type of object to r and uses that reference

to invoke callme(). As the output shows, the version of callme() executed is determined by

the type of object being referred to at the time of the call. Had it been determined by the

type of the reference variable, r, you would see three calls to A’s callme() method.

NOTE Readers familiar with C++ or C# will recognize that overridden methods in Java are similar to
virtual functions in those languages.

Why Overridden Methods?

As stated earlier, overridden methods allow Java to support run-time polymorphism.

Polymorphism is essential to object-oriented programming for one reason: it allows a

general class to specify methods that will be common to all of its derivatives, while allowing

subclasses to define the specific implementation of some or all of those methods.

Overridden methods are another way that Java implements the “one interface, multiple

methods” aspect of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the

superclasses and subclasses form a hierarchy which moves from lesser to greater

specialization. Used correctly, the superclass provides all elements that a subclass can use

directly. It also defines those methods that the derived class must implement on its own.

This allows the subclass the flexibility to define its own methods, yet still enforces a

consistent interface. Thus, by combining inheritance with overridden methods, a superclass

can define the general form of the methods that will be used by all of its subclasses.

Dynamic, run-time polymorphism is one of the most powerful mechanisms that object-

oriented design brings to bear on code reuse and robustness. The ability of existing code

libraries to call methods on instances of new classes without recompiling while maintaining

a clean abstract interface is a profoundly powerful tool.

180 PART I The Java Language

Applying Method Overriding

Let’s look at a more practical example that uses method overriding. The following program

creates a superclass called Figure that stores the dimensions of a two-dimensional object. It

also defines a method called area() that computes the area of an object. The program

derives two subclasses from Figure. The first is Rectangle and the second is Triangle. Each

of these subclasses overrides area() so that it returns the area of a rectangle and a triangle,

respectively.

// Using run-time polymorphism.
class Figure {
 double dim1;
 double dim2;

 Figure(double a, double b) {
 dim1 = a;
 dim2 = b;
 }

 double area() {
 System.out.println("Area for Figure is undefined.");
 return 0;
 }
}

class Rectangle extends Figure {
 Rectangle(double a, double b) {
 super(a, b);
 }

 // override area for rectangle
 double area() {
 System.out.println("Inside Area for Rectangle.");
 return dim1 * dim2;
 }
}

class Triangle extends Figure {
 Triangle(double a, double b) {
 super(a, b);
 }

 // override area for right triangle
 double area() {
 System.out.println("Inside Area for Triangle.");
 return dim1 * dim2 / 2;
 }
}

class FindAreas {
 public static void main(String args[]) {
 Figure f = new Figure(10, 10);
 Rectangle r = new Rectangle(9, 5);

 Chapter 8 Inheritance 181

P
a

rt
 I

 Triangle t = new Triangle(10, 8);
 Figure figref;

 figref = r;
 System.out.println("Area is " + figref.area());

 figref = t;
 System.out.println("Area is " + figref.area());

 figref = f;
 System.out.println("Area is " + figref.area());
 }
}

The output from the program is shown here:

 Inside Area for Rectangle.
 Area is 45
 Inside Area for Triangle.
 Area is 40
 Area for Figure is undefined.
 Area is 0

Through the dual mechanisms of inheritance and run-time polymorphism, it is possible

to define one consistent interface that is used by several different, yet related, types of

objects. In this case, if an object is derived from Figure, then its area can be obtained by

calling area(). The interface to this operation is the same no matter what type of figure is

being used.

Using Abstract Classes
There are situations in which you will want to define a superclass that declares the structure

of a given abstraction without providing a complete implementation of every method. That

is, sometimes you will want to create a superclass that only defines a generalized form that

will be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a

class determines the nature of the methods that the subclasses must implement. One way

this situation can occur is when a superclass is unable to create a meaningful implementation

for a method. This is the case with the class Figure used in the preceding example. The

definition of area() is simply a placeholder. It will not compute and display the area of any

type of object.

As you will see as you create your own class libraries, it is not uncommon for a method

to have no meaningful definition in the context of its superclass. You can handle this

situation two ways. One way, as shown in the previous example, is to simply have it report

a warning message. While this approach can be useful in certain situations—such as

debugging—it is not usually appropriate. You may have methods that must be overridden

by the subclass in order for the subclass to have any meaning. Consider the class Triangle.

It has no meaning if area() is not defined. In this case, you want some way to ensure that a

subclass does, indeed, override all necessary methods. Java’s solution to this problem is the

abstract method.

182 PART I The Java Language

You can require that certain methods be overridden by subclasses by specifying the

abstract type modifier. These methods are sometimes referred to as subclasser responsibility
because they have no implementation specified in the superclass. Thus, a subclass must

override them—it cannot simply use the version defined in the superclass. To declare an

abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.

Any class that contains one or more abstract methods must also be declared abstract. To

declare a class abstract, you simply use the abstract keyword in front of the class keyword at

the beginning of the class declaration. There can be no objects of an abstract class. That is,

an abstract class cannot be directly instantiated with the new operator. Such objects would

be useless, because an abstract class is not fully defined. Also, you cannot declare abstract

constructors, or abstract static methods. Any subclass of an abstract class must either

implement all of the abstract methods in the superclass, or be declared abstract itself.

Here is a simple example of a class with an abstract method, followed by a class which

implements that method:

// A Simple demonstration of abstract.
abstract class A {
 abstract void callme();

 // concrete methods are still allowed in abstract classes
 void callmetoo() {
 System.out.println("This is a concrete method.");
 }
}

class B extends A {
 void callme() {
 System.out.println("B's implementation of callme.");
 }
}

class AbstractDemo {
 public static void main(String args[]) {
 B b = new B();

 b.callme();
 b.callmetoo();
 }
}

Notice that no objects of class A are declared in the program. As mentioned, it is not

possible to instantiate an abstract class. One other point: class A implements a concrete

method called callmetoo(). This is perfectly acceptable. Abstract classes can include as

much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used to

create object references, because Java’s approach to run-time polymorphism is implemented

through the use of superclass references. Thus, it must be possible to create a reference to

an abstract class so that it can be used to point to a subclass object. You will see this feature

put to use in the next example.

 Chapter 8 Inheritance 183

P
a

rt
 I

Using an abstract class, you can improve the Figure class shown earlier. Since there is no

meaningful concept of area for an undefined two-dimensional figure, the following version

of the program declares area() as abstract inside Figure. This, of course, means that all

classes derived from Figure must override area().

// Using abstract methods and classes.
abstract class Figure {
 double dim1;
 double dim2;

 Figure(double a, double b) {
 dim1 = a;
 dim2 = b;
 }

 // area is now an abstract method
 abstract double area();
}

class Rectangle extends Figure {
 Rectangle(double a, double b) {
 super(a, b);
 }

 // override area for rectangle
 double area() {
 System.out.println("Inside Area for Rectangle.");
 return dim1 * dim2;
 }
}

class Triangle extends Figure {
 Triangle(double a, double b) {
 super(a, b);
 }

 // override area for right triangle
 double area() {
 System.out.println("Inside Area for Triangle.");
 return dim1 * dim2 / 2;
 }
}

class AbstractAreas {
 public static void main(String args[]) {
 // Figure f = new Figure(10, 10); // illegal now
 Rectangle r = new Rectangle(9, 5);
 Triangle t = new Triangle(10, 8);
 Figure figref; // this is OK, no object is created

 figref = r;
 System.out.println("Area is " + figref.area());

 figref = t;

184 PART I The Java Language

 System.out.println("Area is " + figref.area());
 }
}

As the comment inside main() indicates, it is no longer possible to declare objects of

type Figure, since it is now abstract. And, all subclasses of Figure must override area(). To

prove this to yourself, try creating a subclass that does not override area(). You will receive

a compile-time error.

Although it is not possible to create an object of type Figure, you can create a reference

variable of type Figure. The variable figref is declared as a reference to Figure, which means

that it can be used to refer to an object of any class derived from Figure. As explained, it is

through superclass reference variables that overridden methods are resolved at run time.

Using final with Inheritance
The keyword final has three uses. First, it can be used to create the equivalent of a named

constant. This use was described in the preceding chapter. The other two uses of final apply

to inheritance. Both are examined here.

Using final to Prevent Overriding

While method overriding is one of Java’s most powerful features, there will be times when

you will want to prevent it from occurring. To disallow a method from being overridden,

specify final as a modifier at the start of its declaration. Methods declared as final cannot

be overridden. The following fragment illustrates final:

class A {
 final void meth() {
 System.out.println("This is a final method.");
 }
}

class B extends A {
 void meth() { // ERROR! Can't override.
 System.out.println("Illegal!");
 }
}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do

so, a compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement: The

compiler is free to inline calls to them because it “knows” they will not be overridden by a

subclass. When a small final method is called, often the Java compiler can copy the bytecode

for the subroutine directly inline with the compiled code of the calling method, thus

eliminating the costly overhead associated with a method call. Inlining is an option only with

final methods. Normally, Java resolves calls to methods dynamically, at run time. This is called

late binding. However, since final methods cannot be overridden, a call to one can be resolved

at compile time. This is called early binding.

 Chapter 8 Inheritance 185

P
a

rt
 I

Using final to Prevent Inheritance

Sometimes you will want to prevent a class from being inherited. To do this, precede the

class declaration with final. Declaring a class as final implicitly declares all of its methods as

final, too. As you might expect, it is illegal to declare a class as both abstract and final since

an abstract class is incomplete by itself and relies upon its subclasses to provide complete

implementations.

Here is an example of a final class:

final class A {
 //...
}

// The following class is illegal.
class B extends A { // ERROR! Can't subclass A
 //...
}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

The Object Class
There is one special class, Object, defined by Java. All other classes are subclasses of Object.
That is, Object is a superclass of all other classes. This means that a reference variable of

type Object can refer to an object of any other class. Also, since arrays are implemented as

classes, a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in every object.

Method Purpose

Object clone() Creates a new object that is the same as the object

being cloned.

boolean equals(Object object) Determines whether one object is equal to another.

void finalize() Called before an unused object is recycled.

Class<?> getClass() Obtains the class of an object at run time.

int hashCode() Returns the hash code associated with the invoking

object.

void notify() Resumes execution of a thread waiting on the

invoking object.

void notifyAll() Resumes execution of all threads waiting on the

invoking object.

String toString() Returns a string that describes the object.

void wait()

void wait(long milliseconds)
void wait(long milliseconds,
 int nanoseconds)

Waits on another thread of execution.

186 PART I The Java Language

The methods getClass(), notify(), notifyAll(), and wait() are declared as final. You may

override the others. These methods are described elsewhere in this book. However, notice

two methods now: equals() and toString(). The equals() method compares two objects. It

returns true if the objects are equal, and false otherwise. The precise definition of equality

can vary, depending on the type of objects being compared. The toString() method returns

a string that contains a description of the object on which it is called. Also, this method is

automatically called when an object is output using println(). Many classes override this

method. Doing so allows them to tailor a description specifically for the types of objects that

they create.

One last point: Notice the unusual syntax in the return type for getClass(). This relates

to Java’s generics feature, which is described in Chapter 14.

9
CHAPTER

 187

Packages and Interfaces

This chapter examines two of Java’s most innovative features: packages and interfaces. Packages
are containers for classes. They are used to keep the class name space compartmentalized. For

example, a package allows you to create a class named List, which you can store in your own

package without concern that it will collide with some other class named List stored elsewhere.

Packages are stored in a hierarchical manner and are explicitly imported into new class

definitions.

In previous chapters, you have seen how methods define the interface to the data in a

class. Through the use of the interface keyword, Java allows you to fully abstract an interface

from its implementation. Using interface, you can specify a set of methods that can be

implemented by one or more classes. The interface, itself, does not actually define any

implementation. Although they are similar to abstract classes, interfaces have an additional

capability: A class can implement more than one interface. By contrast, a class can only

inherit a single superclass (abstract or otherwise).

Packages
In the preceding chapters, the name of each example class was taken from the same name

space. This means that a unique name had to be used for each class to avoid name collisions.

After a while, without some way to manage the name space, you could run out of convenient,

descriptive names for individual classes. You also need some way to be assured that the

name you choose for a class will be reasonably unique and not collide with class names

chosen by other programmers. (Imagine a small group of programmers fighting over who

gets to use the name “Foobar” as a class name. Or, imagine the entire Internet community

arguing over who first named a class “Espresso.”) Thankfully, Java provides a mechanism for

partitioning the class name space into more manageable chunks. This mechanism is the

package. The package is both a naming and a visibility control mechanism. You can define

classes inside a package that are not accessible by code outside that package. You can also

define class members that are exposed only to other members of the same package. This

allows your classes to have intimate knowledge of each other, but not expose that knowledge

to the rest of the world.

188 PART I The Java Language

Defining a Package

To create a package is quite easy: simply include a package command as the first statement

in a Java source file. Any classes declared within that file will belong to the specified

package. The package statement defines a name space in which classes are stored. If you

omit the package statement, the class names are put into the default package, which has no

name. (This is why you haven’t had to worry about packages before now.) While the default

package is fine for short, sample programs, it is inadequate for real applications. Most of

the time, you will define a package for your code.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a

package called MyPackage:

package MyPackage;

Java uses file system directories to store packages. For example, the .class files for any

classes you declare to be part of MyPackage must be stored in a directory called MyPackage.

Remember that case is significant, and the directory name must match the package name

exactly.

More than one file can include the same package statement. The package statement

simply specifies to which package the classes defined in a file belong. It does not exclude

other classes in other files from being part of that same package. Most real-world packages

are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package name

from the one above it by use of a period. The general form of a multileveled package

statement is shown here:

package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development

system. For example, a package declared as

package java.awt.image;

needs to be stored in java\awt\image in a Windows environment. Be sure to choose your

package names carefully. You cannot rename a package without renaming the directory in

which the classes are stored.

Finding Packages and CLASSPATH

As just explained, packages are mirrored by directories. This raises an important question:

How does the Java run-time system know where to look for packages that you create? The

answer has three parts. First, by default, the Java run-time system uses the current working

directory as its starting point. Thus, if your package is in a subdirectory of the current

directory, it will be found. Second, you can specify a directory path or paths by setting the

CLASSPATH environmental variable. Third, you can use the -classpath option with java

and javac to specify the path to your classes.

188 PART I The Java Language

 Chapter 9 Packages and Interfaces 189

P
a

rt
 I

For example, consider the following package specification:

package MyPack

In order for a program to find MyPack, one of three things must be true. Either the program

can be executed from a directory immediately above MyPack, or the CLASSPATH must be

set to include the path to MyPack, or the -classpath option must specify the path to MyPack

when the program is run via java.

When the second two options are used, the class path must not include MyPack, itself. It

must simply specify the path to MyPack. For example, in a Windows environment, if the path

to MyPack is

C:\MyPrograms\Java\MyPack

Then the class path to MyPack is

C:\MyPrograms\Java

The easiest way to try the examples shown in this book is to simply create the package

directories below your current development directory, put the .class files into the

appropriate directories, and then execute the programs from the development directory.

This is the approach used in the following example.

A Short Package Example

Keeping the preceding discussion in mind, you can try this simple package:

// A simple package
package MyPack;

class Balance {
 String name;
 double bal;

 Balance(String n, double b) {
 name = n;
 bal = b;
 }

 void show() {
 if(bal<0)
 System.out.print("--> ");
 System.out.println(name + ": $" + bal);
 }
}

class AccountBalance {
 public static void main(String args[]) {
 Balance current[] = new Balance[3];

 current[0] = new Balance("K. J. Fielding", 123.23);
 current[1] = new Balance("Will Tell", 157.02);
 current[2] = new Balance("Tom Jackson", -12.33);

190 PART I The Java Language

 for(int i=0; i<3; i++) current[i].show();
 }
}

Call this file AccountBalance.java and put it in a directory called MyPack.

Next, compile the file. Make sure that the resulting .class file is also in the MyPack

directory. Then, try executing the AccountBalance class, using the following command line:

java MyPack.AccountBalance

Remember, you will need to be in the directory above MyPack when you execute this

command. (Alternatively, you can use one of the other two options described in the

preceding section to specify the path MyPack.)

As explained, AccountBalance is now part of the package MyPack. This means that it

cannot be executed by itself. That is, you cannot use this command line:

java AccountBalance

AccountBalance must be qualified with its package name.

Access Protection
In the preceding chapters, you learned about various aspects of Java’s access control

mechanism and its access modifiers. For example, you already know that access to a private

member of a class is granted only to other members of that class. Packages add another

dimension to access control. As you will see, Java provides many levels of protection to allow

fine-grained control over the visibility of variables and methods within classes, subclasses,

and packages.

Classes and packages are both means of encapsulating and containing the name space

and scope of variables and methods. Packages act as containers for classes and other

subordinate packages. Classes act as containers for data and code. The class is Java’s

smallest unit of abstraction. Because of the interplay between classes and packages, Java

addresses four categories of visibility for class members:

• Subclasses in the same package

• Non-subclasses in the same package

• Subclasses in different packages

• Classes that are neither in the same package nor subclasses

The three access modifiers, private, public, and protected, provide a variety of ways to

produce the many levels of access required by these categories. Table 9-1 sums up the

interactions.

While Java’s access control mechanism may seem complicated, we can simplify it as

follows. Anything declared public can be accessed from anywhere. Anything declared

private cannot be seen outside of its class. When a member does not have an explicit access

specification, it is visible to subclasses as well as to other classes in the same package. This is

the default access. If you want to allow an element to be seen outside your current package,

but only to classes that subclass your class directly, then declare that element protected.

 Chapter 9 Packages and Interfaces 191

P
a

rt
 I

Table 9-1 applies only to members of classes. A non-nested class has only two possible

access levels: default and public. When a class is declared as public, it is accessible by any

other code. If a class has default access, then it can only be accessed by other code within its

same package. When a class is public, it must be the only public class declared in the file,

and the file must have the same name as the class.

An Access Example

The following example shows all combinations of the access control modifiers. This

example has two packages and five classes. Remember that the classes for the two different

packages need to be stored in directories named after their respective packages—in this

case, p1 and p2.

The source for the first package defines three classes: Protection, Derived, and

SamePackage. The first class defines four int variables in each of the legal protection

modes. The variable n is declared with the default protection, n_pri is private, n_pro is

protected, and n_pub is public.

Each subsequent class in this example will try to access the variables in an instance of

this class. The lines that will not compile due to access restrictions are commented out.

Before each of these lines is a comment listing the places from which this level of

protection would allow access.

The second class, Derived, is a subclass of Protection in the same package, p1. This

grants Derived access to every variable in Protection except for n_pri, the private one. The

third class, SamePackage, is not a subclass of Protection, but is in the same package and

also has access to all but n_pri.
This is file Protection.java:

package p1;

public class Protection {
 int n = 1;
 private int n_pri = 2;
 protected int n_pro = 3;
 public int n_pub = 4;

 public Protection() {
 System.out.println("base constructor");
 System.out.println("n = " + n);
 System.out.println("n_pri = " + n_pri);
 System.out.println("n_pro = " + n_pro);

Table 9-1 Class Member Access

Private No Modifier Protected Public

Same class Yes Yes Yes Yes

Same package subclass No Yes Yes Yes

Same package non-subclass No Yes Yes Yes

Different package subclass No No Yes Yes

Different package non-subclass No No No Yes

192 PART I The Java Language

 System.out.println("n_pub = " + n_pub);
 }
}

This is file Derived.java:

package p1;

class Derived extends Protection {
 Derived() {
 System.out.println("derived constructor");
 System.out.println("n = " + n);

// class only
// System.out.println("n_pri = "4 + n_pri);

 System.out.println("n_pro = " + n_pro);
 System.out.println("n_pub = " + n_pub);
 }
}

This is file SamePackage.java:

package p1;

class SamePackage {
 SamePackage() {

 Protection p = new Protection();
 System.out.println("same package constructor");
 System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

 System.out.println("n_pro = " + p.n_pro);
 System.out.println("n_pub = " + p.n_pub);
 }
}

Following is the source code for the other package, p2. The two classes defined in p2

cover the other two conditions that are affected by access control. The first class, Protection2,

is a subclass of p1.Protection. This grants access to all of p1.Protection’s variables except

for n_pri (because it is private) and n, the variable declared with the default protection.

Remember, the default only allows access from within the class or the package, not extra-

package subclasses. Finally, the class OtherPackage has access to only one variable, n_pub,

which was declared public.

This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection {
 Protection2() {

 Chapter 9 Packages and Interfaces 193

P
a

rt
 I

 System.out.println("derived other package constructor");

// class or package only
// System.out.println("n = " + n);

// class only
// System.out.println("n_pri = " + n_pri);

 System.out.println("n_pro = " + n_pro);
 System.out.println("n_pub = " + n_pub);
 }
}

This is file OtherPackage.java:

package p2;

class OtherPackage {
 OtherPackage() {
 p1.Protection p = new p1.Protection();
 System.out.println("other package constructor");

// class or package only
// System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

// class, subclass or package only
// System.out.println("n_pro = " + p.n_pro);

 System.out.println("n_pub = " + p.n_pub);
 }
}

If you want to try these two packages, here are two test files you can use. The one for

package p1 is shown here:

// Demo package p1.
package p1;

// Instantiate the various classes in p1.
public class Demo {
 public static void main(String args[]) {
 Protection ob1 = new Protection();
 Derived ob2 = new Derived();
 SamePackage ob3 = new SamePackage();
 }
}

The test file for p2 is shown next:

// Demo package p2.
package p2;

194 PART I The Java Language

// Instantiate the various classes in p2.
public class Demo {
 public static void main(String args[]) {
 Protection2 ob1 = new Protection2();
 OtherPackage ob2 = new OtherPackage();
 }
}

Importing Packages
Given that packages exist and are a good mechanism for compartmentalizing diverse classes

from each other, it is easy to see why all of the built-in Java classes are stored in packages.

There are no core Java classes in the unnamed default package; all of the standard classes

are stored in some named package. Since classes within packages must be fully qualified with

their package name or names, it could become tedious to type in the long dot-separated

package path name for every class you want to use. For this reason, Java includes the import
statement to bring certain classes, or entire packages, into visibility. Once imported, a class

can be referred to directly, using only its name. The import statement is a convenience to

the programmer and is not technically needed to write a complete Java program. If you are

going to refer to a few dozen classes in your application, however, the import statement will

save a lot of typing.

In a Java source file, import statements occur immediately following the package

statement (if it exists) and before any class definitions. This is the general form of the

import statement:

import pkg1 [.pkg2].(classname | *);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate

package inside the outer package separated by a dot (.). There is no practical limit on the

depth of a package hierarchy, except that imposed by the file system. Finally, you specify

either an explicit classname or a star (*), which indicates that the Java compiler should

import the entire package. This code fragment shows both forms in use:

import java.util.Date;
import java.io.*;

All of the standard Java classes included with Java are stored in a package called java.

The basic language functions are stored in a package inside of the java package called

java.lang. Normally, you have to import every package or class that you want to use, but

since Java is useless without much of the functionality in java.lang, it is implicitly imported

by the compiler for all programs. This is equivalent to the following line being at the top

of all of your programs:

import java.lang.*;

If a class with the same name exists in two different packages that you import using the

star form, the compiler will remain silent, unless you try to use one of the classes. In that

case, you will get a compile-time error and have to explicitly name the class specifying its

package.

 Chapter 9 Packages and Interfaces 195

P
a

rt
 I

It must be emphasized that the import statement is optional. Any place you use a class

name, you can use its fully qualified name, which includes its full package hierarchy. For

example, this fragment uses an import statement:

import java.util.*;
class MyDate extends Date {
}

The same example without the import statement looks like this:

class MyDate extends java.util.Date {
}

In this version, Date is fully-qualified.

As shown in Table 9-1, when a package is imported, only those items within the package

declared as public will be available to non-subclasses in the importing code. For example, if

you want the Balance class of the package MyPack shown earlier to be available as a stand-

alone class for general use outside of MyPack, then you will need to declare it as public and

put it into its own file, as shown here:

package MyPack;

/* Now, the Balance class, its constructor, and its
 show() method are public. This means that they can
 be used by non-subclass code outside their package.
*/
public class Balance {
 String name;
 double bal;

 public Balance(String n, double b) {
 name = n;
 bal = b;
 }

 public void show() {
 if(bal<0)
 System.out.print("--> ");
 System.out.println(name + ": $" + bal);
 }
}

As you can see, the Balance class is now public. Also, its constructor and its show()
method are public, too. This means that they can be accessed by any type of code outside

the MyPack package. For example, here TestBalance imports MyPack and is then able to

make use of the Balance class:

import MyPack.*;

class TestBalance {
 public static void main(String args[]) {

196 PART I The Java Language

 /* Because Balance is public, you may use Balance
 class and call its constructor. */
 Balance test = new Balance("J. J. Jaspers", 99.88);

 test.show(); // you may also call show()
 }
}

As an experiment, remove the public specifier from the Balance class and then try

compiling TestBalance. As explained, errors will result.

Interfaces
Using the keyword interface, you can fully abstract a class’ interface from its implementation.

That is, using interface, you can specify what a class must do, but not how it does it. Interfaces

are syntactically similar to classes, but they lack instance variables, and their methods are

declared without any body. In practice, this means that you can define interfaces that don’t

make assumptions about how they are implemented. Once it is defined, any number of

classes can implement an interface. Also, one class can implement any number of interfaces.

To implement an interface, a class must create the complete set of methods defined by

the interface. However, each class is free to determine the details of its own implementation.

By providing the interface keyword, Java allows you to fully utilize the “one interface,

multiple methods” aspect of polymorphism.

Interfaces are designed to support dynamic method resolution at run time. Normally,

in order for a method to be called from one class to another, both classes need to be

present at compile time so the Java compiler can check to ensure that the method

signatures are compatible. This requirement by itself makes for a static and nonextensible

classing environment. Inevitably in a system like this, functionality gets pushed up higher

and higher in the class hierarchy so that the mechanisms will be available to more and

more subclasses. Interfaces are designed to avoid this problem. They disconnect the

definition of a method or set of methods from the inheritance hierarchy. Since interfaces

are in a different hierarchy from classes, it is possible for classes that are unrelated in terms

of the class hierarchy to implement the same interface. This is where the real power of

interfaces is realized.

NOTE Interfaces add most of the functionality that is required for many applications that would normally
resort to using multiple inheritance in a language such as C++.

Defining an Interface

An interface is defined much like a class. This is a simplified general form of an interface:

access interface name {
 return-type method-name1(parameter-list);

 return-type method-name2(parameter-list);

 type final-varname1 = value;
 type final-varname2 = value;
 //...

 Chapter 9 Packages and Interfaces 197

P
a

rt
 I

 return-type method-nameN(parameter-list);

 type final-varnameN = value;
}

When no access modifier is included, then default access results, and the interface is only

available to other members of the package in which it is declared. When it is declared as

public, the interface can be used by any other code. In this case, the interface must be the

only public interface declared in the file, and the file must have the same name as the

interface. name is the name of the interface, and can be any valid identifier. Notice that the

methods that are declared have no bodies. They end with a semicolon after the parameter

list. They are, essentially, abstract methods; there can be no default implementation of any

method specified within an interface. Each class that includes an interface must implement

all of the methods.

Variables can be declared inside of interface declarations. They are implicitly final and

static, meaning they cannot be changed by the implementing class. They must also be

initialized. All methods and variables are implicitly public.

Here is an example of an interface definition. It declares a simple interface that

contains one method called callback() that takes a single integer parameter.

interface Callback {
 void callback(int param);
}

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that interface.

To implement an interface, include the implements clause in a class definition, and then

create the methods defined by the interface. The general form of a class that includes the

implements clause looks like this:

class classname [extends superclass] [implements interface [,interface...]] {

 // class-body

}

If a class implements more than one interface, the interfaces are separated with a comma.

If a class implements two interfaces that declare the same method, then the same method

will be used by clients of either interface. The methods that implement an interface must

be declared public. Also, the type signature of the implementing method must match

exactly the type signature specified in the interface definition.

Here is a small example class that implements the Callback interface shown earlier:

class Client implements Callback {
 // Implement Callback's interface
 public void callback(int p) {

 System.out.println("callback called with " + p);
 }
}

Notice that callback() is declared using the public access modifier.

198 PART I The Java Language

REMEMBER When you implement an interface method, it must be declared as public.

It is both permissible and common for classes that implement interfaces to define

additional members of their own. For example, the following version of Client implements

callback() and adds the method nonIfaceMeth():

class Client implements Callback {
 // Implement Callback's interface
 public void callback(int p) {
 System.out.println("callback called with " + p);
 }

 void nonIfaceMeth() {
 System.out.println("Classes that implement interfaces " +
 "may also define other members, too.");
 }
}

Accessing Implementations Through Interface References
You can declare variables as object references that use an interface rather than a class type.

Any instance of any class that implements the declared interface can be referred to by such

a variable. When you call a method through one of these references, the correct version

will be called based on the actual instance of the interface being referred to. This is one of

the key features of interfaces. The method to be executed is looked up dynamically at run

time, allowing classes to be created later than the code which calls methods on them. The

calling code can dispatch through an interface without having to know anything about the

“callee.” This process is similar to using a superclass reference to access a subclass object, as

described in Chapter 8.

CAUTION Because dynamic lookup of a method at run time incurs a significant overhead when
compared with the normal method invocation in Java, you should be careful not to use interfaces
casually in performance-critical code.

The following example calls the callback() method via an interface reference variable:

class TestIface {
 public static void main(String args[]) {
 Callback c = new Client();
 c.callback(42);
 }
}

The output of this program is shown here:

 callback called with 42

Notice that variable c is declared to be of the interface type Callback, yet it was assigned an

instance of Client. Although c can be used to access the callback() method, it cannot access

any other members of the Client class. An interface reference variable has knowledge only

of the methods declared by its interface declaration. Thus, c could not be used to access

nonIfaceMeth() since it is defined by Client but not Callback.

 Chapter 9 Packages and Interfaces 199

P
a

rt
 I

While the preceding example shows, mechanically, how an interface reference variable

can access an implementation object, it does not demonstrate the polymorphic power of

such a reference. To sample this usage, first create the second implementation of Callback,

shown here:

// Another implementation of Callback.
class AnotherClient implements Callback {
 // Implement Callback's interface
 public void callback(int p) {
 System.out.println("Another version of callback");
 System.out.println("p squared is " + (p*p));
 }
}

Now, try the following class:

class TestIface2 {
 public static void main(String args[]) {
 Callback c = new Client();
 AnotherClient ob = new AnotherClient();

 c.callback(42);

 c = ob; // c now refers to AnotherClient object
 c.callback(42);
 }
}

The output from this program is shown here:

 callback called with 42
 Another version of callback
 p squared is 1764

As you can see, the version of callback() that is called is determined by the type of object

that c refers to at run time. While this is a very simple example, you will see another, more

practical one shortly.

Partial Implementations
If a class includes an interface but does not fully implement the methods defined by that

interface, then that class must be declared as abstract. For example:

abstract class Incomplete implements Callback {
 int a, b;

 void show() {
 System.out.println(a + " " + b);
 }
 //...
}

Here, the class Incomplete does not implement callback() and must be declared

as abstract. Any class that inherits Incomplete must implement callback() or be declared

abstract itself.

200 PART I The Java Language

Nested Interfaces

An interface can be declared a member of a class or another interface. Such an interface

is called a member interface or a nested interface. A nested interface can be declared as public,

private, or protected. This differs from a top-level interface, which must either be declared

as public or use the default access level, as previously described. When a nested interface is

used outside of its enclosing scope, it must be qualified by the name of the class or interface

of which it is a member. Thus, outside of the class or interface in which a nested interface is

declared, its name must be fully qualified.

Here is an example that demonstrates a nested interface:

// A nested interface example.

// This class contains a member interface.
class A {
 // this is a nested interface
 public interface NestedIF {
 boolean isNotNegative(int x);
 }
}

// B implements the nested interface.
class B implements A.NestedIF {
 public boolean isNotNegative(int x) {
 return x < 0 ? false: true;
 }
}

class NestedIFDemo {
 public static void main(String args[]) {

 // use a nested interface reference
 A.NestedIF nif = new B();

 if(nif.isNotNegative(10))
 System.out.println("10 is not negative");
 if(nif.isNotNegative(-12))
 System.out.println("this won't be displayed");
 }
}

Notice that A defines a member interface called NestedIF and that it is declared public.

Next, B implements the nested interface by specifying

implements A.NestedIF

Notice that the name is fully qualified by the enclosing class’ name. Inside the main()
method, an A.NestedIF reference called nif is created, and it is assigned a reference to

a B object. Because B implements A.NestedIF, this is legal.

 Chapter 9 Packages and Interfaces 201

P
a

rt
 I

Applying Interfaces

To understand the power of interfaces, let’s look at a more practical example. In earlier

chapters, you developed a class called Stack that implemented a simple fixed-size stack.

However, there are many ways to implement a stack. For example, the stack can be of a

fixed size or it can be “growable.” The stack can also be held in an array, a linked list,

a binary tree, and so on. No matter how the stack is implemented, the interface to the

stack remains the same. That is, the methods push() and pop() define the interface to

the stack independently of the details of the implementation. Because the interface to a

stack is separate from its implementation, it is easy to define a stack interface, leaving it to

each implementation to define the specifics. Let’s look at two examples.

First, here is the interface that defines an integer stack. Put this in a file called

IntStack.java. This interface will be used by both stack implementations.

// Define an integer stack interface.
interface IntStack {
 void push(int item); // store an item
 int pop(); // retrieve an item
}

The following program creates a class called FixedStack that implements a fixed-length

version of an integer stack:

// An implementation of IntStack that uses fixed storage.
class FixedStack implements IntStack {
 private int stck[];
 private int tos;

 // allocate and initialize stack
 FixedStack(int size) {
 stck = new int[size];
 tos = -1;
 }

 // Push an item onto the stack
 public void push(int item) {
 if(tos==stck.length-1) // use length member
 System.out.println("Stack is full.");
 else
 stck[++tos] = item;
 }

 // Pop an item from the stack
 public int pop() {
 if(tos < 0) {
 System.out.println("Stack underflow.");
 return 0;
 }
 else
 return stck[tos--];
 }
}

202 PART I The Java Language

class IFTest {
 public static void main(String args[]) {
 FixedStack mystack1 = new FixedStack(5);
 FixedStack mystack2 = new FixedStack(8);

 // push some numbers onto the stack
 for(int i=0; i<5; i++) mystack1.push(i);
 for(int i=0; i<8; i++) mystack2.push(i);

 // pop those numbers off the stack
 System.out.println("Stack in mystack1:");
 for(int i=0; i<5; i++)
 System.out.println(mystack1.pop());

 System.out.println("Stack in mystack2:");
 for(int i=0; i<8; i++)
 System.out.println(mystack2.pop());
 }
}

Following is another implementation of IntStack that creates a dynamic stack by use

of the same interface definition. In this implementation, each stack is constructed with an

initial length. If this initial length is exceeded, then the stack is increased in size. Each time

more room is needed, the size of the stack is doubled.

// Implement a "growable" stack.
class DynStack implements IntStack {
 private int stck[];
 private int tos;

 // allocate and initialize stack
 DynStack(int size) {
 stck = new int[size];
 tos = -1;
 }

 // Push an item onto the stack
 public void push(int item) {
 // if stack is full, allocate a larger stack
 if(tos==stck.length-1) {
 int temp[] = new int[stck.length * 2]; // double size
 for(int i=0; i<stck.length; i++) temp[i] = stck[i];
 stck = temp;
 stck[++tos] = item;
 }
 else
 stck[++tos] = item;
 }

 // Pop an item from the stack
 public int pop() {
 if(tos < 0) {
 System.out.println("Stack underflow.");

 Chapter 9 Packages and Interfaces 203

P
a

rt
 I

 return 0;
 }
 else
 return stck[tos--];
 }
}

class IFTest2 {
 public static void main(String args[]) {
 DynStack mystack1 = new DynStack(5);
 DynStack mystack2 = new DynStack(8);

 // these loops cause each stack to grow
 for(int i=0; i<12; i++) mystack1.push(i);
 for(int i=0; i<20; i++) mystack2.push(i);

 System.out.println("Stack in mystack1:");
 for(int i=0; i<12; i++)
 System.out.println(mystack1.pop());

 System.out.println("Stack in mystack2:");
 for(int i=0; i<20; i++)
 System.out.println(mystack2.pop());
 }
}

The following class uses both the FixedStack and DynStack implementations. It does so

through an interface reference. This means that calls to push() and pop() are resolved at

run time rather than at compile time.

/* Create an interface variable and
 access stacks through it.
*/
class IFTest3 {
 public static void main(String args[]) {
 IntStack mystack; // create an interface reference variable
 DynStack ds = new DynStack(5);
 FixedStack fs = new FixedStack(8);

 mystack = ds; // load dynamic stack
 // push some numbers onto the stack
 for(int i=0; i<12; i++) mystack.push(i);

 mystack = fs; // load fixed stack
 for(int i=0; i<8; i++) mystack.push(i);

 mystack = ds;
 System.out.println("Values in dynamic stack:");
 for(int i=0; i<12; i++)
 System.out.println(mystack.pop());

 mystack = fs;
 System.out.println("Values in fixed stack:");

204 PART I The Java Language

 for(int i=0; i<8; i++)
 System.out.println(mystack.pop());
 }
}

In this program, mystack is a reference to the IntStack interface. Thus, when it refers to ds,

it uses the versions of push() and pop() defined by the DynStack implementation. When it

refers to fs, it uses the versions of push() and pop() defined by FixedStack. As explained,

these determinations are made at run time. Accessing multiple implementations of an

interface through an interface reference variable is the most powerful way that Java

achieves run-time polymorphism.

Variables in Interfaces

You can use interfaces to import shared constants into multiple classes by simply declaring

an interface that contains variables that are initialized to the desired values. When you

include that interface in a class (that is, when you “implement” the interface), all of those

variable names will be in scope as constants. (This is similar to using a header file in C/C++

to create a large number of #defined constants or const declarations.) If an interface

contains no methods, then any class that includes such an interface doesn’t actually

implement anything. It is as if that class were importing the constant fields into the class

name space as final variables. The next example uses this technique to implement an

automated “decision maker”:

import java.util.Random;

interface SharedConstants {
 int NO = 0;
 int YES = 1;
 int MAYBE = 2;
 int LATER = 3;
 int SOON = 4;
 int NEVER = 5;
}

class Question implements SharedConstants {
 Random rand = new Random();
 int ask() {
 int prob = (int) (100 * rand.nextDouble());
 if (prob < 30)
 return NO; // 30%
 else if (prob < 60)
 return YES; // 30%
 else if (prob < 75)
 return LATER; // 15%
 else if (prob < 98)
 return SOON; // 13%

 else
 return NEVER; // 2%
 }
}

 Chapter 9 Packages and Interfaces 205

P
a

rt
 I

class AskMe implements SharedConstants {
 static void answer(int result) {
 switch(result) {
 case NO:
 System.out.println("No");
 break;
 case YES:
 System.out.println("Yes");
 break;
 case MAYBE:
 System.out.println("Maybe");
 break;
 case LATER:
 System.out.println("Later");
 break;
 case SOON:
 System.out.println("Soon");
 break;
 case NEVER:
 System.out.println("Never");
 break;
 }
 }

 public static void main(String args[]) {
 Question q = new Question();

 answer(q.ask());
 answer(q.ask());
 answer(q.ask());
 answer(q.ask());
 }
}

Notice that this program makes use of one of Java’s standard classes: Random. This class

provides pseudorandom numbers. It contains several methods that allow you to obtain

random numbers in the form required by your program. In this example, the method

nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.

In this sample program, the two classes, Question and AskMe, both implement the

SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are

defined. Inside each class, the code refers to these constants as if each class had defined or

inherited them directly. Here is the output of a sample run of this program. Note that the

results are different each time it is run.

 Later
 Soon
 No
 Yes

Interfaces Can Be Extended

One interface can inherit another by use of the keyword extends. The syntax is the same as

for inheriting classes. When a class implements an interface that inherits another interface,

206 PART I The Java Language

it must provide implementations for all methods defined within the interface inheritance

chain. Following is an example:

// One interface can extend another.
interface A {
 void meth1();
 void meth2();
}

// B now includes meth1() and meth2() -- it adds meth3().
interface B extends A {
 void meth3();
}

// This class must implement all of A and B
class MyClass implements B {
 public void meth1() {
 System.out.println("Implement meth1().");
 }

 public void meth2() {
 System.out.println("Implement meth2().");
 }

 public void meth3() {
 System.out.println("Implement meth3().");
 }
}

class IFExtend {
 public static void main(String arg[]) {
 MyClass ob = new MyClass();

 ob.meth1();
 ob.meth2();
 ob.meth3();
 }
}

As an experiment, you might want to try removing the implementation for meth1() in

MyClass. This will cause a compile-time error. As stated earlier, any class that implements

an interface must implement all methods defined by that interface, including any that are

inherited from other interfaces.

Although the examples we’ve included in this book do not make frequent use of

packages or interfaces, both of these tools are an important part of the Java programming

environment. Virtually all real programs that you write in Java will be contained within

packages. A number will probably implement interfaces as well. It is important, therefore,

that you be comfortable with their usage.

10
CHAPTER

 207

Exception Handling

This chapter examines Java’s exception-handling mechanism. An exception is an abnormal

condition that arises in a code sequence at run time. In other words, an exception is a run-

time error. In computer languages that do not support exception handling, errors must be

checked and handled manually—typically through the use of error codes, and so on. This

approach is as cumbersome as it is troublesome. Java’s exception handling avoids these

problems and, in the process, brings run-time error management into the object-oriented

world.

Exception-Handling Fundamentals
A Java exception is an object that describes an exceptional (that is, error) condition

that has occurred in a piece of code. When an exceptional condition arises, an object

representing that exception is created and thrown in the method that caused the error. That

method may choose to handle the exception itself, or pass it on. Either way, at some point,

the exception is caught and processed. Exceptions can be generated by the Java run-time

system, or they can be manually generated by your code. Exceptions thrown by Java relate

to fundamental errors that violate the rules of the Java language or the constraints of the

Java execution environment. Manually generated exceptions are typically used to report

some error condition to the caller of a method.

Java exception handling is managed via five keywords: try, catch, throw, throws, and

finally. Briefly, here is how they work. Program statements that you want to monitor for

exceptions are contained within a try block. If an exception occurs within the try block,

it is thrown. Your code can catch this exception (using catch) and handle it in some

rational manner. System-generated exceptions are automatically thrown by the Java run-

time system. To manually throw an exception, use the keyword throw. Any exception that

is thrown out of a method must be specified as such by a throws clause. Any code that

absolutely must be executed after a try block completes is put in a finally block.

208 PART I The Java Language

This is the general form of an exception-handling block:

 try {

 // block of code to monitor for errors

 }

 catch (ExceptionType1 exOb) {

 // exception handler for ExceptionType1
 }

 catch (ExceptionType2 exOb) {

 // exception handler for ExceptionType2
 }

 // ...

 finally {

 // block of code to be executed after try block ends

 }

Here, ExceptionType is the type of exception that has occurred. The remainder of this

chapter describes how to apply this framework.

NOTE JDK 7 adds a new form of the try statement that supports automatic resource management. This
new form of try, called try-with-resources, is described in Chapter 13 in the context of managing files
because files are some of the most commonly used resources.

Exception Types
All exception types are subclasses of the built-in class Throwable. Thus, Throwable is at the

top of the exception class hierarchy. Immediately below Throwable are two subclasses that

partition exceptions into two distinct branches. One branch is headed by Exception. This

class is used for exceptional conditions that user programs should catch. This is also the

class that you will subclass to create your own custom exception types. There is an

important subclass of Exception, called RuntimeException. Exceptions of this type are

automatically defined for the programs that you write and include things such as division by

zero and invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected to

be caught under normal circumstances by your program. Exceptions of type Error are used

by the Java run-time system to indicate errors having to do with the run-time environment,

itself. Stack overflow is an example of such an error. This chapter will not be dealing with

exceptions of type Error, because these are typically created in response to catastrophic

failures that cannot usually be handled by your program.

The top-level exception hierarchy is shown here:

 Chapter 10 Exception Handling 209

P
a

rt
 I

Uncaught Exceptions
Before you learn how to handle exceptions in your program, it is useful to see what

happens when you don’t handle them. This small program includes an expression that

intentionally causes a divide-by-zero error:

class Exc0 {
 public static void main(String args[]) {
 int d = 0;
 int a = 42 / d;
 }
}

When the Java run-time system detects the attempt to divide by zero, it constructs a new

exception object and then throws this exception. This causes the execution of Exc0 to stop,

because once an exception has been thrown, it must be caught by an exception handler and

dealt with immediately. In this example, we haven’t supplied any exception handlers of our

own, so the exception is caught by the default handler provided by the Java run-time

system. Any exception that is not caught by your program will ultimately be processed by

the default handler. The default handler displays a string describing the exception, prints a

stack trace from the point at which the exception occurred, and terminates the program.

Here is the exception generated when this example is executed:

 java.lang.ArithmeticException: / by zero
 at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java; and

the line number, 4, are all included in the simple stack trace. Also, notice that the type of

exception thrown is a subclass of Exception called ArithmeticException, which more

specifically describes what type of error happened. As discussed later in this chapter, Java

supplies several built-in exception types that match the various sorts of run-time errors that

can be generated.

210 PART I The Java Language

The stack trace will always show the sequence of method invocations that led up to the

error. For example, here is another version of the preceding program that introduces the

same error but in a method separate from main():

class Exc1 {
 static void subroutine() {
 int d = 0;
 int a = 10 / d;
 }
 public static void main(String args[]) {
 Exc1.subroutine();
 }
}

The resulting stack trace from the default exception handler shows how the entire call

stack is displayed:

 java.lang.ArithmeticException: / by zero
 at Exc1.subroutine(Exc1.java:4)
 at Exc1.main(Exc1.java:7)

As you can see, the bottom of the stack is main’s line 7, which is the call to subroutine(),
which caused the exception at line 4. The call stack is quite useful for debugging, because it

pinpoints the precise sequence of steps that led to the error.

Using try and catch
Although the default exception handler provided by the Java run-time system is useful for

debugging, you will usually want to handle an exception yourself. Doing so provides two

benefits. First, it allows you to fix the error. Second, it prevents the program from

automatically terminating. Most users would be confused (to say the least) if your program

stopped running and printed a stack trace whenever an error occurred! Fortunately, it is

quite easy to prevent this.

To guard against and handle a run-time error, simply enclose the code that you want to

monitor inside a try block. Immediately following the try block, include a catch clause that

specifies the exception type that you wish to catch. To illustrate how easily this can be done,

the following program includes a try block and a catch clause that processes the

ArithmeticException generated by the division-by-zero error:

class Exc2 {
 public static void main(String args[]) {
 int d, a;

 try { // monitor a block of code.
 d = 0;
 a = 42 / d;
 System.out.println("This will not be printed.");
 } catch (ArithmeticException e) { // catch divide-by-zero error
 System.out.println("Division by zero.");
 }

 Chapter 10 Exception Handling 211

P
a

rt
 I

 System.out.println("After catch statement.");
 }
}

This program generates the following output:

 Division by zero.
 After catch statement.

Notice that the call to println() inside the try block is never executed. Once an exception

is thrown, program control transfers out of the try block into the catch block. Put differently,

catch is not “called,” so execution never “returns” to the try block from a catch. Thus, the

line "This will not be printed." is not displayed. Once the catch statement has executed,

program control continues with the next line in the program following the entire try /
catch mechanism.

A try and its catch statement form a unit. The scope of the catch clause is restricted to

those statements specified by the immediately preceding try statement. A catch statement

cannot catch an exception thrown by another try statement (except in the case of nested

try statements, described shortly). The statements that are protected by try must be

surrounded by curly braces. (That is, they must be within a block.) You cannot use try

on a single statement.

The goal of most well-constructed catch clauses should be to resolve the exceptional

condition and then continue on as if the error had never happened. For example, in the

next program each iteration of the for loop obtains two random integers. Those two

integers are divided by each other, and the result is used to divide the value 12345. The

final result is put into a. If either division operation causes a divide-by-zero error, it is

caught, the value of a is set to zero, and the program continues.

// Handle an exception and move on.
import java.util.Random;

class HandleError {
 public static void main(String args[]) {
 int a=0, b=0, c=0;
 Random r = new Random();

 for(int i=0; i<32000; i++) {
 try {
 b = r.nextInt();
 c = r.nextInt();
 a = 12345 / (b/c);
 } catch (ArithmeticException e) {
 System.out.println("Division by zero.");
 a = 0; // set a to zero and continue
 }
 System.out.println("a: " + a);
 }
 }
}

212 PART I The Java Language

Displaying a Description of an Exception

Throwable overrides the toString() method (defined by Object) so that it returns a string

containing a description of the exception. You can display this description in a println()
statement by simply passing the exception as an argument. For example, the catch block

in the preceding program can be rewritten like this:

catch (ArithmeticException e) {
 System.out.println("Exception: " + e);
 a = 0; // set a to zero and continue
}

When this version is substituted in the program, and the program is run, each divide-by-

zero error displays the following message:

 Exception: java.lang.ArithmeticException: / by zero

While it is of no particular value in this context, the ability to display a description of

an exception is valuable in other circumstances—particularly when you are experimenting

with exceptions or when you are debugging.

Multiple catch Clauses
In some cases, more than one exception could be raised by a single piece of code. To

handle this type of situation, you can specify two or more catch clauses, each catching a

different type of exception. When an exception is thrown, each catch statement is inspected

in order, and the first one whose type matches that of the exception is executed. After one

catch statement executes, the others are bypassed, and execution continues after the try /
catch block. The following example traps two different exception types:

// Demonstrate multiple catch statements.
class MultipleCatches {
 public static void main(String args[]) {
 try {
 int a = args.length;
 System.out.println("a = " + a);
 int b = 42 / a;
 int c[] = { 1 };
 c[42] = 99;
 } catch(ArithmeticException e) {
 System.out.println("Divide by 0: " + e);
 } catch(ArrayIndexOutOfBoundsException e) {
 System.out.println("Array index oob: " + e);
 }
 System.out.println("After try/catch blocks.");
 }
}

This program will cause a division-by-zero exception if it is started with no command-

line arguments, since a will equal zero. It will survive the division if you provide a command-

 Chapter 10 Exception Handling 213

P
a

rt
 I

line argument, setting a to something larger than zero. But it will cause an

ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet

the program attempts to assign a value to c[42].
Here is the output generated by running it both ways:

 C:\>java MultipleCatches
 a = 0
 Divide by 0: java.lang.ArithmeticException: / by zero
 After try/catch blocks.

 C:\>java MultipleCatches TestArg
 a = 1
 Array index oob: java.lang.ArrayIndexOutOfBoundsException:42
 After try/catch blocks.

When you use multiple catch statements, it is important to remember that exception

subclasses must come before any of their superclasses. This is because a catch statement

that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus, a

subclass would never be reached if it came after its superclass. Further, in Java, unreachable

code is an error. For example, consider the following program:

/* This program contains an error.

 A subclass must come before its superclass in
 a series of catch statements. If not,
 unreachable code will be created and a
 compile-time error will result.
*/
class SuperSubCatch {
 public static void main(String args[]) {
 try {
 int a = 0;
 int b = 42 / a;
 } catch(Exception e) {
 System.out.println("Generic Exception catch.");
 }
 /* This catch is never reached because
 ArithmeticException is a subclass of Exception. */
 catch(ArithmeticException e) { // ERROR – unreachable
 System.out.println("This is never reached.");
 }
 }
}

If you try to compile this program, you will receive an error message stating that the

second catch statement is unreachable because the exception has already been caught.

Since ArithmeticException is a subclass of Exception, the first catch statement will handle

all Exception-based errors, including ArithmeticException. This means that the second

catch statement will never execute. To fix the problem, reverse the order of the catch

statements.

214 PART I The Java Language

Nested try Statements
The try statement can be nested. That is, a try statement can be inside the block of another

try. Each time a try statement is entered, the context of that exception is pushed on the

stack. If an inner try statement does not have a catch handler for a particular exception,

the stack is unwound and the next try statement’s catch handlers are inspected for a match.

This continues until one of the catch statements succeeds, or until all of the nested try

statements are exhausted. If no catch statement matches, then the Java run-time system

will handle the exception. Here is an example that uses nested try statements:

// An example of nested try statements.
class NestTry {
 public static void main(String args[]) {
 try {
 int a = args.length;

 /* If no command-line args are present,
 the following statement will generate
 a divide-by-zero exception. */
 int b = 42 / a;

 System.out.println("a = " + a);

 try { // nested try block
 /* If one command-line arg is used,
 then a divide-by-zero exception
 will be generated by the following code. */
 if(a==1) a = a/(a-a); // division by zero

 /* If two command-line args are used,
 then generate an out-of-bounds exception. */
 if(a==2) {
 int c[] = { 1 };
 c[42] = 99; // generate an out-of-bounds exception
 }
 } catch(ArrayIndexOutOfBoundsException e) {
 System.out.println("Array index out-of-bounds: " + e);
 }

 } catch(ArithmeticException e) {
 System.out.println("Divide by 0: " + e);
 }
 }
}

As you can see, this program nests one try block within another. The program works

as follows. When you execute the program with no command-line arguments, a divide-by-

zero exception is generated by the outer try block. Execution of the program with one

command-line argument generates a divide-by-zero exception from within the nested try

block. Since the inner block does not catch this exception, it is passed on to the outer try

block, where it is handled. If you execute the program with two command-line arguments,

 Chapter 10 Exception Handling 215

P
a

rt
 I

an array boundary exception is generated from within the inner try block. Here are sample

runs that illustrate each case:

 C:\>java NestTry
 Divide by 0: java.lang.ArithmeticException: / by zero

 C:\>java NestTry One
 a = 1
 Divide by 0: java.lang.ArithmeticException: / by zero

 C:\>java NestTry One Two
 a = 2
 Array index out-of-bounds:
 java.lang.ArrayIndexOutOfBoundsException:42

Nesting of try statements can occur in less obvious ways when method calls are involved.

For example, you can enclose a call to a method within a try block. Inside that method is

another try statement. In this case, the try within the method is still nested inside the outer

try block, which calls the method. Here is the previous program recoded so that the nested

try block is moved inside the method nesttry():

/* Try statements can be implicitly nested via
 calls to methods. */
class MethNestTry {
 static void nesttry(int a) {
 try { // nested try block
 /* If one command-line arg is used,
 then a divide-by-zero exception
 will be generated by the following code. */
 if(a==1) a = a/(a-a); // division by zero

 /* If two command-line args are used,
 then generate an out-of-bounds exception. */
 if(a==2) {
 int c[] = { 1 };
 c[42] = 99; // generate an out-of-bounds exception
 }
 } catch(ArrayIndexOutOfBoundsException e) {
 System.out.println("Array index out-of-bounds: " + e);
 }
 }

 public static void main(String args[]) {
 try {
 int a = args.length;

 /* If no command-line args are present,
 the following statement will generate
 a divide-by-zero exception. */
 int b = 42 / a;
 System.out.println("a = " + a);

216 PART I The Java Language

 nesttry(a);
 } catch(ArithmeticException e) {
 System.out.println("Divide by 0: " + e);
 }
 }
}

The output of this program is identical to that of the preceding example.

throw
So far, you have only been catching exceptions that are thrown by the Java run-time system.

However, it is possible for your program to throw an exception explicitly, using the throw

statement. The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.

Primitive types, such as int or char, as well as non-Throwable classes, such as String and

Object, cannot be used as exceptions. There are two ways you can obtain a Throwable

object: using a parameter in a catch clause or creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent

statements are not executed. The nearest enclosing try block is inspected to see if it has

a catch statement that matches the type of exception. If it does find a match, control is

transferred to that statement. If not, then the next enclosing try statement is inspected, and

so on. If no matching catch is found, then the default exception handler halts the program

and prints the stack trace.

Here is a sample program that creates and throws an exception. The handler that

catches the exception rethrows it to the outer handler.

// Demonstrate throw.
class ThrowDemo {
 static void demoproc() {
 try {
 throw new NullPointerException("demo");
 } catch(NullPointerException e) {
 System.out.println("Caught inside demoproc.");
 throw e; // rethrow the exception
 }
 }

 public static void main(String args[]) {
 try {
 demoproc();
 } catch(NullPointerException e) {
 System.out.println("Recaught: " + e);
 }
 }
}

This program gets two chances to deal with the same error. First, main() sets up an

exception context and then calls demoproc(). The demoproc() method then sets up

 Chapter 10 Exception Handling 217

P
a

rt
 I

another exception-handling context and immediately throws a new instance of

NullPointerException, which is caught on the next line. The exception is then rethrown.

Here is the resulting output:

 Caught inside demoproc.
 Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects. Pay

close attention to this line:

throw new NullPointerException("demo");

Here, new is used to construct an instance of NullPointerException. Many of Java’s

built-in run-time exceptions have at least two constructors: one with no parameter and

one that takes a string parameter. When the second form is used, the argument specifies a

string that describes the exception. This string is displayed when the object is used as an

argument to print() or println(). It can also be obtained by a call to getMessage(), which

is defined by Throwable.

throws
If a method is capable of causing an exception that it does not handle, it must specify this

behavior so that callers of the method can guard themselves against that exception. You do

this by including a throws clause in the method’s declaration. A throws clause lists the types

of exceptions that a method might throw. This is necessary for all exceptions, except those

of type Error or RuntimeException, or any of their subclasses. All other exceptions that a

method can throw must be declared in the throws clause. If they are not, a compile-time

error will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list
{

 // body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

Following is an example of an incorrect program that tries to throw an exception that

it does not catch. Because the program does not specify a throws clause to declare this fact,

the program will not compile.

// This program contains an error and will not compile.
class ThrowsDemo {
 static void throwOne() {
 System.out.println("Inside throwOne.");
 throw new IllegalAccessException("demo");
 }
 public static void main(String args[]) {
 throwOne();
 }
}

218 PART I The Java Language

To make this example compile, you need to make two changes. First, you need to

declare that throwOne() throws IllegalAccessException. Second, main() must define

a try / catch statement that catches this exception.

The corrected example is shown here:

// This is now correct.
class ThrowsDemo {
 static void throwOne() throws IllegalAccessException {
 System.out.println("Inside throwOne.");
 throw new IllegalAccessException("demo");
 }
 public static void main(String args[]) {
 try {
 throwOne();
 } catch (IllegalAccessException e) {
 System.out.println("Caught " + e);
 }
 }
}

Here is the output generated by running this example program:

 inside throwOne
 caught java.lang.IllegalAccessException: demo

finally
When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path

that alters the normal flow through the method. Depending upon how the method is

coded, it is even possible for an exception to cause the method to return prematurely. This

could be a problem in some methods. For example, if a method opens a file upon entry

and closes it upon exit, then you will not want the code that closes the file to be bypassed

by the exception-handling mechanism. The finally keyword is designed to address this

contingency.

finally creates a block of code that will be executed after a try /catch block has completed

and before the code following the try/catch block. The finally block will execute whether

or not an exception is thrown. If an exception is thrown, the finally block will execute even

if no catch statement matches the exception. Any time a method is about to return to the

caller from inside a try/catch block, via an uncaught exception or an explicit return

statement, the finally clause is also executed just before the method returns. This can be

useful for closing file handles and freeing up any other resources that might have been

allocated at the beginning of a method with the intent of disposing of them before

returning. The finally clause is optional. However, each try statement requires at least

one catch or a finally clause.

Here is an example program that shows three methods that exit in various ways, none

without executing their finally clauses:

 Chapter 10 Exception Handling 219

P
a

rt
 I

// Demonstrate finally.
class FinallyDemo {
 // Through an exception out of the method.
 static void procA() {
 try {
 System.out.println("inside procA");
 throw new RuntimeException("demo");
 } finally {
 System.out.println("procA's finally");
 }
 }

 // Return from within a try block.
 static void procB() {
 try {
 System.out.println("inside procB");
 return;
 } finally {
 System.out.println("procB's finally");
 }
 }

 // Execute a try block normally.
 static void procC() {
 try {
 System.out.println("inside procC");
 } finally {
 System.out.println("procC's finally");
 }
 }

 public static void main(String args[]) {
 try {
 procA();
 } catch (Exception e) {
 System.out.println("Exception caught");
 }

 procB();
 procC();
 }
}

In this example, procA() prematurely breaks out of the try by throwing an exception.

The finally clause is executed on the way out. procB()’s try statement is exited via a return

statement. The finally clause is executed before procB() returns. In procC(), the try

statement executes normally, without error. However, the finally block is still executed.

REMEMBER If a finally block is associated with a try, the finally block will be executed upon conclusion
of the try.

220 PART I The Java Language

Here is the output generated by the preceding program:

 inside procA
 procA's finally
 Exception caught
 inside procB
 procB's finally
 inside procC
 procC's finally

Java’s Built-in Exceptions
Inside the standard package java.lang, Java defines several exception classes. A few have

been used by the preceding examples. The most general of these exceptions are subclasses

of the standard type RuntimeException. As previously explained, these exceptions need not

be included in any method’s throws list. In the language of Java, these are called unchecked
exceptions because the compiler does not check to see if a method handles or throws these

exceptions. The unchecked exceptions defined in java.lang are listed in Table 10-1. Table

10-2 lists those exceptions defined by java.lang that must be included in a method’s throws

list if that method can generate one of these exceptions and does not handle it itself. These

are called checked exceptions. Java defines several other types of exceptions that relate to its

various class libraries.

Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible

type.

ClassCastException Invalid cast.

EnumConstantNotPresentException An attempt is made to use an undefined

enumeration value.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an

unlocked thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current

thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

TypeNotPresentException Type not found.

UnsupportedOperationException An unsupported operation was encountered.

Table 10-1 Java’s Unchecked RuntimeException Subclasses Defined in java.lang

 Chapter 10 Exception Handling 221

P
a

rt
 I

Creating Your Own Exception Subclasses
Although Java’s built-in exceptions handle most common errors, you will probably want to

create your own exception types to handle situations specific to your applications. This is

quite easy to do: just define a subclass of Exception (which is, of course, a subclass of

Throwable). Your subclasses don’t need to actually implement anything—it is their

existence in the type system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course, inherit

those methods provided by Throwable. Thus, all exceptions, including those that you

create, have the methods defined by Throwable available to them. They are shown in Table

10-3. You may also wish to override one or more of these methods in exception classes that

you create.

Exception defines four constructors. Two support chained exceptions, described in the

next section. The other two are shown here:

Exception()

Exception(String msg)

The first form creates an exception that has no description. The second form lets you

specify a description of the exception.

Although specifying a description when an exception is created is often useful,

sometimes it is better to override toString(). Here’s why: The version of toString()
defined by Throwable (and inherited by Exception) first displays the name of the

exception followed by a colon, which is then followed by your description. By overriding

toString(), you can prevent the exception name and colon from being displayed. This

makes for a cleaner output, which is desirable in some cases.

Table 10-2 Java’s Checked Exceptions Defined in java.lang

Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement the

Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

ReflectiveOperationException Superclass of reflection-related exceptions. (Added

by JDK 7.)

222 PART I The Java Language

Method Description

final void

 addSuppressed(Throwable exc)
Adds exc to the list of suppressed exceptions

associated with the invoking exception. Primarily

for use by the new try-with-resources statement.

(Added by JDK 7.)

Throwable fillInStackTrace() Returns a Throwable object that contains a

completed stack trace. This object can be

rethrown.

Throwable getCause() Returns the exception that underlies the current

exception. If there is no underlying exception,

null is returned.

String getLocalizedMessage() Returns a localized description of the exception.

String getMessage() Returns a description of the exception.

StackTraceElement[] getStackTrace() Returns an array that contains the stack

trace, one element at a time, as an array of

StackTraceElement. The method at the top

of the stack is the last method called before

the exception was thrown. This method is

found in the first element of the array. The

StackTraceElement class gives your program

access to information about each element in the

trace, such as its method name.

final Throwable[] getSuppressed() Obtains the suppressed exceptions associated

with the invoking exception and returns an array

that contains the result. Suppressed exceptions

are primarily generated by the new try-with-

resources statement. (Added by JDK 7.)

Throwable initCause(Throwable causeExc) Associates causeExc with the invoking exception

as a cause of the invoking exception. Returns a

reference to the exception.

void printStackTrace() Displays the stack trace.

void printStackTrace(PrintStream stream) Sends the stack trace to the specified stream.

void printStackTrace(PrintWriter stream) Sends the stack trace to the specified stream.

void setStackTrace(StackTraceElement

 elements[])

Sets the stack trace to the elements passed

in elements. This method is for specialized

applications, not normal use.

String toString() Returns a String object containing a description

of the exception. This method is called by

println() when outputting a Throwable object.

Table 10-3 The Methods Defined by Throwable

 Chapter 10 Exception Handling 223

P
a

rt
 I

The following example declares a new subclass of Exception and then uses that subclass

to signal an error condition in a method. It overrides the toString() method, allowing a

carefully tailored description of the exception to be displayed.

// This program creates a custom exception type.
class MyException extends Exception {
 private int detail;

 MyException(int a) {
 detail = a;
 }

 public String toString() {
 return "MyException[" + detail + "]";
 }
}

class ExceptionDemo {
 static void compute(int a) throws MyException {
 System.out.println("Called compute(" + a + ")");
 if(a > 10)
 throw new MyException(a);
 System.out.println("Normal exit");
 }

 public static void main(String args[]) {
 try {
 compute(1);
 compute(20);
 } catch (MyException e) {
 System.out.println("Caught " + e);
 }
 }
}

This example defines a subclass of Exception called MyException. This subclass is quite

simple: It has only a constructor plus an overridden toString() method that displays the

value of the exception. The ExceptionDemo class defines a method named compute()
that throws a MyException object. The exception is thrown when compute()’s integer

parameter is greater than 10. The main() method sets up an exception handler for

MyException, then calls compute() with a legal value (less than 10) and an illegal one

to show both paths through the code. Here is the result:

 Called compute(1)
 Normal exit
 Called compute(20)
 Caught MyException[20]

224 PART I The Java Language

Chained Exceptions
Beginning with JDK 1.4, a feature was incorporated into the exception subsystem: chained
exceptions. The chained exception feature allows you to associate another exception with an

exception. This second exception describes the cause of the first exception. For example,

imagine a situation in which a method throws an ArithmeticException because of an attempt

to divide by zero. However, the actual cause of the problem was that an I/O error occurred,

which caused the divisor to be set improperly. Although the method must certainly throw

an ArithmeticException, since that is the error that occurred, you might also want to let the

calling code know that the underlying cause was an I/O error. Chained exceptions let you

handle this, and any other situation in which layers of exceptions exist.

To allow chained exceptions, two constructors and two methods were added to

Throwable. The constructors are shown here:

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)

In the first form, causeExc is the exception that causes the current exception. That is,

causeExc is the underlying reason that an exception occurred. The second form allows you

to specify a description at the same time that you specify a cause exception. These two

constructors have also been added to the Error, Exception, and RuntimeException classes.

The chained exception methods added to Throwable are getCause() and initCause().
These methods are shown in Table 10-3 and are repeated here for the sake of discussion.

Throwable getCause()

Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current exception.

If there is no underlying exception, null is returned. The initCause() method associates

causeExc with the invoking exception and returns a reference to the exception. Thus, you

can associate a cause with an exception after the exception has been created. However, the

cause exception can be set only once. Thus, you can call initCause() only once for each

exception object. Furthermore, if the cause exception was set by a constructor, then you

can’t set it again using initCause(). In general, initCause() is used to set a cause for legacy

exception classes that don’t support the two additional constructors described earlier.

Here is an example that illustrates the mechanics of handling chained exceptions:

// Demonstrate exception chaining.
class ChainExcDemo {
 static void demoproc() {

 // create an exception
 NullPointerException e =
 new NullPointerException("top layer");

 // add a cause
 e.initCause(new ArithmeticException("cause"));

 throw e;
 }

 Chapter 10 Exception Handling 225

P
a

rt
 I

 public static void main(String args[]) {
 try {
 demoproc();
 } catch(NullPointerException e) {
 // display top level exception
 System.out.println("Caught: " + e);

 // display cause exception
 System.out.println("Original cause: " +
 e.getCause());
 }
 }
}

The output from the program is shown here:

Caught: java.lang.NullPointerException: top layer
Original cause: java.lang.ArithmeticException: cause

In this example, the top-level exception is NullPointerException. To it is added a cause

exception, ArithmeticException. When the exception is thrown out of demoproc(), it is
caught by main(). There, the top-level exception is displayed, followed by the underlying

exception, which is obtained by calling getCause().
Chained exceptions can be carried on to whatever depth is necessary. Thus, the cause

exception can, itself, have a cause. Be aware that overly long chains of exceptions may

indicate poor design.

Chained exceptions are not something that every program will need. However, in cases

in which knowledge of an underlying cause is useful, they offer an elegant solution.

Three New JDK 7 Exception Features
JDK 7 adds three interesting and useful features to the exception system. The first automates

the process of releasing a resource, such as a file, when it is no longer needed. It is based

on an expanded form of the try statement called try-with-resources, and is described in

Chapter 13 when files are introduced. The second new feature is called multi-catch, and the

third is sometimes referred to as final rethrow or more precise rethrow. These two features are

described here.

The multi-catch feature allows two or more exceptions to be caught by the same catch

clause. It is not uncommon for two or more exception handlers to use the same code

sequence even though they respond to different exceptions. Instead of having to catch

each exception type individually, now you can use a single catch clause to handle all of the

exceptions without code duplication.

To use a multi-catch, separate each exception type in the catch clause with the OR

operator. Each multi-catch parameter is implicitly final. (You can explicitly specify final,
if desired, but it is not necessary.) Because each multi-catch parameter is implicitly final, it
can’t be assigned a new value.

226 PART I The Java Language

Here is a catch statement that uses the multi-catch feature to catch both

ArithmeticException and ArrayIndexOutOfBoundsException:

catch(ArithmeticException | ArrayIndexOutOfBoundsException e) {

The following program shows the multi-catch feature in action:

// Demonstrate JDK 7's multi-catch feature.
class MultiCatch {
 public static void main(String args[]) {
 int a=10, b=0;
 int vals[] = { 1, 2, 3 };

 try {
 int result = a / b; // generate an ArithmeticException

// vals[10] = 19; // generate an ArrayIndexOutOfBoundsException

 // This catch clause catches both exceptions.
 } catch(ArithmeticException | ArrayIndexOutOfBoundsException e) {
 System.out.println("Exception caught: " + e);
 }

 System.out.println("After multi-catch.");
 }
}

The program will generate an ArithmeticException when the division by zero is attempted.

If you comment out the division statement and remove the comment symbol from the next

line, an ArrayIndexOutOfBoundsException is generated. Both exceptions are caught by

the single catch statement.

The more precise rethrow feature restricts the type of exceptions that can be rethrown

to only those checked exceptions that the associated try block throws, that are not handled

by a preceding catch clause, and that are a subtype or supertype of the parameter. Although

this capability might not be needed often, it is now available for use. For the more precise

rethrow feature to be in force, the catch parameter must be either effectively final, which

means that it must not be assigned a new value inside the catch block, or explicitly declared

final.

Using Exceptions
Exception handling provides a powerful mechanism for controlling complex programs that

have many dynamic run-time characteristics. It is important to think of try, throw, and catch

as clean ways to handle errors and unusual boundary conditions in your program’s logic.

Unlike some other languages in which error return codes are used to indicate failure, Java

uses exceptions. Thus, when a method can fail, have it throw an exception. This is a cleaner

way to handle failure modes.

One last point: Java’s exception-handling statements should not be considered a general

mechanism for nonlocal branching. If you do so, it will only confuse your code and make it

hard to maintain.

11
CHAPTER

 227

Multithreaded
Programming

Unlike some computer languages, Java provides built-in support for multithreaded programming.

A multithreaded program contains two or more parts that can run concurrently. Each part of

such a program is called a thread, and each thread defines a separate path of execution. Thus,

multithreading is a specialized form of multitasking.

You are almost certainly acquainted with multitasking because it is supported by virtually

all modern operating systems. However, there are two distinct types of multitasking:

process-based and thread-based. It is important to understand the difference between the

two. For many readers, process-based multitasking is the more familiar form. A process is,
in essence, a program that is executing. Thus, process-based multitasking is the feature that

allows your computer to run two or more programs concurrently. For example, process-

based multitasking enables you to run the Java compiler at the same time that you are using

a text editor or visiting a web site. In process-based multitasking, a program is the smallest

unit of code that can be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of dispatchable

code. This means that a single program can perform two or more tasks simultaneously. For

instance, a text editor can format text at the same time that it is printing, as long as these two

actions are being performed by two separate threads. Thus, process-based multitasking deals

with the “big picture,” and thread-based multitasking handles the details.

Multitasking threads require less overhead than multitasking processes. Processes are

heavyweight tasks that require their own separate address spaces. Interprocess communication

is expensive and limited. Context switching from one process to another is also costly. Threads,

on the other hand, are lighter weight. They share the same address space and cooperatively

share the same heavyweight process. Interthread communication is inexpensive, and context

switching from one thread to the next is lower in cost. While Java programs make use of

process-based multitasking environments, process-based multitasking is not under Java’s

control. However, multithreaded multitasking is.

Multithreading enables you to write efficient programs that make maximum use of the

processing power available in the system. One important way multithreading achieves this is

by keeping idle time to a minimum. This is especially important for the interactive, networked

228 PART I The Java Language

environment in which Java operates because idle time is common. For example, the

transmission rate of data over a network is much slower than the rate at which the computer

can process it. Even local file system resources are read and written at a much slower pace

than they can be processed by the CPU. And, of course, user input is much slower than the

computer. In a single-threaded environment, your program has to wait for each of these tasks

to finish before it can proceed to the next one—even though most of the time the program is

idle, waiting for input. Multithreading helps you reduce this idle time because another thread

can run when one is waiting.

If you have programmed for operating systems such as Windows, then you are already

familiar with multithreaded programming. However, the fact that Java manages threads

makes multithreading especially convenient because many of the details are handled for you.

The Java Thread Model
The Java run-time system depends on threads for many things, and all the class libraries

are designed with multithreading in mind. In fact, Java uses threads to enable the entire

environment to be asynchronous. This helps reduce inefficiency by preventing the waste

of CPU cycles.

The value of a multithreaded environment is best understood in contrast to its

counterpart. Single-threaded systems use an approach called an event loop with polling. In

this model, a single thread of control runs in an infinite loop, polling a single event queue

to decide what to do next. Once this polling mechanism returns with, say, a signal that a

network file is ready to be read, then the event loop dispatches control to the appropriate

event handler. Until this event handler returns, nothing else can happen in the program.

This wastes CPU time. It can also result in one part of a program dominating the system

and preventing any other events from being processed. In general, in a single-threaded

environment, when a thread blocks (that is, suspends execution) because it is waiting for

some resource, the entire program stops running.

The benefit of Java’s multithreading is that the main loop/polling mechanism is

eliminated. One thread can pause without stopping other parts of your program. For

example, the idle time created when a thread reads data from a network or waits for user

input can be utilized elsewhere. Multithreading allows animation loops to sleep for a

second between each frame without causing the whole system to pause. When a thread

blocks in a Java program, only the single thread that is blocked pauses. All other threads

continue to run.

As most readers know, over the past few years, multi-core systems have become

commonplace. Of course, single-core systems are still in widespread use. It is important to

understand that Java’s multithreading features work in both types of systems. In a single-

core system, concurrently executing threads share the CPU, with each thread receiving a

slice of CPU time. Therefore, in a single-core system, two or more threads do not actually

run at the same time, but idle CPU time is utilized. However, in multi-core systems, it is

possible for two or more threads to actually execute simultaneously. In many cases, this

can further improve program efficiency and increase the speed of certain operations.

 Chapter 11 Multithreaded Programming 229

P
a

rt
 I

NOTE JDK 7 adds the Fork/Join Framework, which provides a powerful means of creating multithreaded
applications that automatically scale to make best use of multi-core environments. The Fork/Join
Framework is part of Java’s support for parallel programming, which is the name commonly given to
the techniques that optimize some types of algorithms for parallel execution in systems that have
more than one CPU. For a discussion of the Fork/Join Framework and other concurrency utilities, see
Chapter 27. Java’s traditional multithreading capabilities are described here.

Threads exist in several states. Here is a general description. A thread can be running.

It can be ready to run as soon as it gets CPU time. A running thread can be suspended, which

temporarily halts its activity. A suspended thread can then be resumed, allowing it to pick up

where it left off. A thread can be blocked when waiting for a resource. At any time, a thread

can be terminated, which halts its execution immediately. Once terminated, a thread

cannot be resumed.

Thread Priorities

Java assigns to each thread a priority that determines how that thread should be treated

with respect to the others. Thread priorities are integers that specify the relative priority

of one thread to another. As an absolute value, a priority is meaningless; a higher-priority

thread doesn’t run any faster than a lower-priority thread if it is the only thread running.

Instead, a thread’s priority is used to decide when to switch from one running thread to the

next. This is called a context switch. The rules that determine when a context switch takes

place are simple:

• A thread can voluntarily relinquish control. This is done by explicitly yielding, sleeping,

or blocking on pending I/O. In this scenario, all other threads are examined, and

the highest-priority thread that is ready to run is given the CPU.

• A thread can be preempted by a higher-priority thread. In this case, a lower-priority thread

that does not yield the processor is simply preempted—no matter what it is doing—

by a higher-priority thread. Basically, as soon as a higher-priority thread wants to

run, it does. This is called preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the

situation is a bit complicated. For operating systems such as Windows, threads of equal

priority are time-sliced automatically in round-robin fashion. For other types of operating

systems, threads of equal priority must voluntarily yield control to their peers. If they don’t,

the other threads will not run.

CAUTION Portability problems can arise from the differences in the way that operating systems
context-switch threads of equal priority.

Synchronization

Because multithreading introduces an asynchronous behavior to your programs, there must

be a way for you to enforce synchronicity when you need it. For example, if you want two

threads to communicate and share a complicated data structure, such as a linked list, you

230 PART I The Java Language

need some way to ensure that they don’t conflict with each other. That is, you must prevent

one thread from writing data while another thread is in the middle of reading it. For

this purpose, Java implements an elegant twist on an age-old model of interprocess

synchronization: the monitor. The monitor is a control mechanism first defined by C.A.R.

Hoare. You can think of a monitor as a very small box that can hold only one thread. Once

a thread enters a monitor, all other threads must wait until that thread exits the monitor. In

this way, a monitor can be used to protect a shared asset from being manipulated by more

than one thread at a time.

Most multithreaded systems expose monitors as objects that your program must

explicitly acquire and manipulate. Java provides a cleaner solution. There is no class

“Monitor”; instead, each object has its own implicit monitor that is automatically entered

when one of the object’s synchronized methods is called. Once a thread is inside a

synchronized method, no other thread can call any other synchronized method on the

same object. This enables you to write very clear and concise multithreaded code, because

synchronization support is built into the language.

Messaging

After you divide your program into separate threads, you need to define how they will

communicate with each other. When programming with some other languages, you must

depend on the operating system to establish communication between threads. This, of

course, adds overhead. By contrast, Java provides a clean, low-cost way for two or more

threads to talk to each other, via calls to predefined methods that all objects have. Java’s

messaging system allows a thread to enter a synchronized method on an object, and then

wait there until some other thread explicitly notifies it to come out.

The Thread Class and the Runnable Interface

Java’s multithreading system is built upon the Thread class, its methods, and its companion

interface, Runnable. Thread encapsulates a thread of execution. Since you can’t directly

refer to the ethereal state of a running thread, you will deal with it through its proxy, the

Thread instance that spawned it. To create a new thread, your program will either extend

Thread or implement the Runnable interface.

The Thread class defines several methods that help manage threads. Several of those

used in this chapter are shown here:

Method Meaning

getName Obtain a thread’s name.

getPriority Obtain a thread’s priority.

isAlive Determine if a thread is still running.

join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.

start Start a thread by calling its run method.

 Chapter 11 Multithreaded Programming 231

P
a

rt
 I

Thus far, all the examples in this book have used a single thread of execution. The

remainder of this chapter explains how to use Thread and Runnable to create and manage

threads, beginning with the one thread that all Java programs have: the main thread.

The Main Thread
When a Java program starts up, one thread begins running immediately. This is usually

called the main thread of your program, because it is the one that is executed when your

program begins. The main thread is important for two reasons:

• It is the thread from which other “child” threads will be spawned.

• Often, it must be the last thread to finish execution because it performs various

shutdown actions.

Although the main thread is created automatically when your program is started, it

can be controlled through a Thread object. To do so, you must obtain a reference to it by

calling the method currentThread(), which is a public static member of Thread. Its general

form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a

reference to the main thread, you can control it just like any other thread.

Let’s begin by reviewing the following example:

// Controlling the main Thread.
class CurrentThreadDemo {
 public static void main(String args[]) {
 Thread t = Thread.currentThread();

 System.out.println("Current thread: " + t);

 // change the name of the thread
 t.setName("My Thread");
 System.out.println("After name change: " + t);

 try {
 for(int n = 5; n > 0; n--) {
 System.out.println(n);
 Thread.sleep(1000);
 }
 } catch (InterruptedException e) {
 System.out.println("Main thread interrupted");
 }
 }
}

In this program, a reference to the current thread (the main thread, in this case) is

obtained by calling currentThread(), and this reference is stored in the local variable t.
Next, the program displays information about the thread. The program then calls

232 PART I The Java Language

setName() to change the internal name of the thread. Information about the thread is

then redisplayed. Next, a loop counts down from five, pausing one second between each

line. The pause is accomplished by the sleep() method. The argument to sleep() specifies

the delay period in milliseconds. Notice the try/catch block around this loop. The sleep()
method in Thread might throw an InterruptedException. This would happen if some other

thread wanted to interrupt this sleeping one. This example just prints a message if it gets

interrupted. In a real program, you would need to handle this differently. Here is the

output generated by this program:

Current thread: Thread[main,5,main]
After name change: Thread[My Thread,5,main]
5
4
3
2
1

Notice the output produced when t is used as an argument to println(). This displays, in

order: the name of the thread, its priority, and the name of its group. By default, the name

of the main thread is main. Its priority is 5, which is the default value, and main is also the

name of the group of threads to which this thread belongs. A thread group is a data structure

that controls the state of a collection of threads as a whole. After the name of the thread is

changed, t is again output. This time, the new name of the thread is displayed.

Let’s look more closely at the methods defined by Thread that are used in the program.

The sleep() method causes the thread from which it is called to suspend execution for the

specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may throw

an InterruptedException.

The sleep() method has a second form, shown next, which allows you to specify the

period in terms of milliseconds and nanoseconds:

static void sleep(long milliseconds, int nanoseconds) throws InterruptedException

This second form is useful only in environments that allow timing periods as short as

nanoseconds.

As the preceding program shows, you can set the name of a thread by using setName().
You can obtain the name of a thread by calling getName() (but note that this is not shown

in the program). These methods are members of the Thread class and are declared like this:

final void setName(String threadName)
final String getName()

Here, threadName specifies the name of the thread.

Creating a Thread
In the most general sense, you create a thread by instantiating an object of type Thread.

Java defines two ways in which this can be accomplished:

 Chapter 11 Multithreaded Programming 233

P
a

rt
 I

• You can implement the Runnable interface.

• You can extend the Thread class, itself.

The following two sections look at each method, in turn.

Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable

interface. Runnable abstracts a unit of executable code. You can construct a thread on any

object that implements Runnable. To implement Runnable, a class need only implement a

single method called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to

understand that run() can call other methods, use other classes, and declare variables, just

like the main thread can. The only difference is that run() establishes the entry point for

another, concurrent thread of execution within your program. This thread will end when

run() returns.

After you create a class that implements Runnable, you will instantiate an object of type

Thread from within that class. Thread defines several constructors. The one that we will use

is shown here:

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable

interface. This defines where execution of the thread will begin. The name of the new

thread is specified by threadName.
After the new thread is created, it will not start running until you call its start() method,

which is declared within Thread. In essence, start() executes a call to run(). The start()
method is shown here:

void start()

Here is an example that creates a new thread and starts it running:

// Create a second thread.
class NewThread implements Runnable {
 Thread t;

 NewThread() {
 // Create a new, second thread
 t = new Thread(this, "Demo Thread");
 System.out.println("Child thread: " + t);
 t.start(); // Start the thread
 }

 // This is the entry point for the second thread.
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Child Thread: " + i);
 Thread.sleep(500);
 }

234 PART I The Java Language

 } catch (InterruptedException e) {
 System.out.println("Child interrupted.");
 }
 System.out.println("Exiting child thread.");
 }
}

class ThreadDemo {
 public static void main(String args[]) {
 new NewThread(); // create a new thread

 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Main Thread: " + i);
 Thread.sleep(1000);
 }
 } catch (InterruptedException e) {

 System.out.println("Main thread interrupted.");
 }
 System.out.println("Main thread exiting.");
 }
}

Inside NewThread’s constructor, a new Thread object is created by the following

statement:

t = new Thread(this, "Demo Thread");

Passing this as the first argument indicates that you want the new thread to call the run()
method on this object. Next, start() is called, which starts the thread of execution

beginning at the run() method. This causes the child thread’s for loop to begin. After

calling start(), NewThread’s constructor returns to main(). When the main thread

resumes, it enters its for loop. Both threads continue running, sharing the CPU in single-

core systems, until their loops finish. The output produced by this program is as follows.

(Your output may vary based upon the specific execution environment.)

 Child thread: Thread[Demo Thread,5,main]
 Main Thread: 5
 Child Thread: 5
 Child Thread: 4
 Main Thread: 4
 Child Thread: 3
 Child Thread: 2
 Main Thread: 3
 Child Thread: 1
 Exiting child thread.
 Main Thread: 2
 Main Thread: 1
 Main thread exiting.

As mentioned earlier, in a multithreaded program, often the main thread must be

the last thread to finish running. In fact, for some older JVMs, if the main thread finishes

 Chapter 11 Multithreaded Programming 235

P
a

rt
 I

before a child thread has completed, then the Java run-time system may “hang.” The

preceding program ensures that the main thread finishes last, because the main thread

sleeps for 1,000 milliseconds between iterations, but the child thread sleeps for only 500

milliseconds. This causes the child thread to terminate earlier than the main thread.

Shortly, you will see a better way to wait for a thread to finish.

Extending Thread

The second way to create a thread is to create a new class that extends Thread, and then to

create an instance of that class. The extending class must override the run() method, which

is the entry point for the new thread. It must also call start() to begin execution of the new

thread. Here is the preceding program rewritten to extend Thread:

// Create a second thread by extending Thread
class NewThread extends Thread {

 NewThread() {
 // Create a new, second thread
 super("Demo Thread");
 System.out.println("Child thread: " + this);
 start(); // Start the thread
 }

 // This is the entry point for the second thread.
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Child Thread: " + i);
 Thread.sleep(500);
 }
 } catch (InterruptedException e) {
 System.out.println("Child interrupted.");
 }
 System.out.println("Exiting child thread.");
 }
}

class ExtendThread {
 public static void main(String args[]) {
 new NewThread(); // create a new thread

 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Main Thread: " + i);
 Thread.sleep(1000);
 }
 } catch (InterruptedException e) {
 System.out.println("Main thread interrupted.");
 }
 System.out.println("Main thread exiting.");
 }
}

236 PART I The Java Language

This program generates the same output as the preceding version. As you can see, the child

thread is created by instantiating an object of NewThread, which is derived from Thread.

Notice the call to super() inside NewThread. This invokes the following form of the

Thread constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

Choosing an Approach

At this point, you might be wondering why Java has two ways to create child threads, and

which approach is better. The answers to these questions turn on the same point. The

Thread class defines several methods that can be overridden by a derived class. Of these

methods, the only one that must be overridden is run(). This is, of course, the same

method required when you implement Runnable. Many Java programmers feel that classes

should be extended only when they are being enhanced or modified in some way. So, if you

will not be overriding any of Thread’s other methods, it is probably best simply to implement

Runnable. Also, by implementing Runnable, your thread class does not need to inherit

Thread, making it free to inherit a different class. Ultimately, which approach to use is up

to you. However, throughout the rest of this chapter, we will create threads by using classes

that implement Runnable.

Creating Multiple Threads
So far, you have been using only two threads: the main thread and one child thread.

However, your program can spawn as many threads as it needs. For example, the following

program creates three child threads:

// Create multiple threads.
class NewThread implements Runnable {
 String name; // name of thread
 Thread t;

 NewThread(String threadname) {
 name = threadname;
 t = new Thread(this, name);
 System.out.println("New thread: " + t);
 t.start(); // Start the thread
 }

 // This is the entry point for thread.
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println(name + ": " + i);
 Thread.sleep(1000);
 }
 } catch (InterruptedException e) {

 Chapter 11 Multithreaded Programming 237

P
a

rt
 I

 System.out.println(name + "Interrupted");
 }
 System.out.println(name + " exiting.");
 }
}

class MultiThreadDemo {
 public static void main(String args[]) {
 new NewThread("One"); // start threads
 new NewThread("Two");
 new NewThread("Three");

 try {
 // wait for other threads to end
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }
 System.out.println("Main thread exiting.");
 }
}

Sample output from this program is shown here. (Your output may vary based upon the

specific execution environment.)

 New thread: Thread[One,5,main]
 New thread: Thread[Two,5,main]
 New thread: Thread[Three,5,main]
 One: 5
 Two: 5
 Three: 5
 One: 4
 Two: 4
 Three: 4
 One: 3
 Three: 3
 Two: 3
 One: 2
 Three: 2
 Two: 2
 One: 1
 Three: 1
 Two: 1
 One exiting.
 Two exiting.
 Three exiting.
 Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call to

sleep(10000) in main(). This causes the main thread to sleep for ten seconds and ensures

that it will finish last.

238 PART I The Java Language

Using isAlive() and join()
As mentioned, often you will want the main thread to finish last. In the preceding

examples, this is accomplished by calling sleep() within main(), with a long enough delay

to ensure that all child threads terminate prior to the main thread. However, this is hardly

a satisfactory solution, and it also raises a larger question: How can one thread know when

another thread has ended? Fortunately, Thread provides a means by which you can answer

this question.

Two ways exist to determine whether a thread has finished. First, you can call isAlive()
on the thread. This method is defined by Thread, and its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It

returns false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly use to

wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from

the concept of the calling thread waiting until the specified thread joins it. Additional forms

of join() allow you to specify a maximum amount of time that you want to wait for the

specified thread to terminate.

Here is an improved version of the preceding example that uses join() to ensure that

the main thread is the last to stop. It also demonstrates the isAlive() method.

// Using join() to wait for threads to finish.
class NewThread implements Runnable {
 String name; // name of thread
 Thread t;

 NewThread(String threadname) {
 name = threadname;
 t = new Thread(this, name);
 System.out.println("New thread: " + t);
 t.start(); // Start the thread
 }

 // This is the entry point for thread.
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println(name + ": " + i);
 Thread.sleep(1000);
 }
 } catch (InterruptedException e) {
 System.out.println(name + " interrupted.");
 }
 System.out.println(name + " exiting.");
 }
}

 Chapter 11 Multithreaded Programming 239

P
a

rt
 I

class DemoJoin {
 public static void main(String args[]) {
 NewThread ob1 = new NewThread("One");
 NewThread ob2 = new NewThread("Two");
 NewThread ob3 = new NewThread("Three");

 System.out.println("Thread One is alive: "
 + ob1.t.isAlive());
 System.out.println("Thread Two is alive: "
 + ob2.t.isAlive());
 System.out.println("Thread Three is alive: "
 + ob3.t.isAlive());
 // wait for threads to finish
 try {
 System.out.println("Waiting for threads to finish.");
 ob1.t.join();
 ob2.t.join();
 ob3.t.join();
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }

 System.out.println("Thread One is alive: "
 + ob1.t.isAlive());
 System.out.println("Thread Two is alive: "
 + ob2.t.isAlive());
 System.out.println("Thread Three is alive: "
 + ob3.t.isAlive());

 System.out.println("Main thread exiting.");
 }
}

Sample output from this program is shown here. (Your output may vary based upon the

specific execution environment.)

 New thread: Thread[One,5,main]
 New thread: Thread[Two,5,main]
 New thread: Thread[Three,5,main]
 Thread One is alive: true
 Thread Two is alive: true
 Thread Three is alive: true
 Waiting for threads to finish.
 One: 5
 Two: 5
 Three: 5
 One: 4
 Two: 4
 Three: 4
 One: 3
 Two: 3
 Three: 3
 One: 2

240 PART I The Java Language

 Two: 2
 Three: 2
 One: 1
 Two: 1
 Three: 1
 Two exiting.
 Three exiting.
 One exiting.
 Thread One is alive: false
 Thread Two is alive: false
 Thread Three is alive: false
 Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped executing.

Thread Priorities
Thread priorities are used by the thread scheduler to decide when each thread should be

allowed to run. In theory, higher-priority threads get more CPU time than lower-priority

threads. In practice, the amount of CPU time that a thread gets often depends on several

factors besides its priority. (For example, how an operating system implements multitasking

can affect the relative availability of CPU time.) A higher-priority thread can also preempt a

lower-priority one. For instance, when a lower-priority thread is running and a higher-

priority thread resumes (from sleeping or waiting on I/O, for example), it will preempt the

lower-priority thread.

In theory, threads of equal priority should get equal access to the CPU. But you need to

be careful. Remember, Java is designed to work in a wide range of environments. Some of

those environments implement multitasking fundamentally differently than others. For

safety, threads that share the same priority should yield control once in a while. This ensures

that all threads have a chance to run under a nonpreemptive operating system. In practice,

even in nonpreemptive environments, most threads still get a chance to run, because most

threads inevitably encounter some blocking situation, such as waiting for I/O. When this

happens, the blocked thread is suspended and other threads can run. But, if you want

smooth multithreaded execution, you are better off not relying on this. Also, some types

of tasks are CPU-intensive. Such threads dominate the CPU. For these types of threads, you

want to yield control occasionally so that other threads can run.

To set a thread’s priority, use the setPriority() method, which is a member of Thread.

This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be

within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and

10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is

currently 5. These priorities are defined as static final variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of

Thread, shown here:

final int getPriority()

 Chapter 11 Multithreaded Programming 241

P
a

rt
 I

Implementations of Java may have radically different behavior when it comes to

scheduling. Most of the inconsistencies arise when you have threads that are relying on

preemptive behavior, instead of cooperatively giving up CPU time. The safest way to obtain

predictable, cross-platform behavior with Java is to use threads that voluntarily give up

control of the CPU.

Synchronization
When two or more threads need access to a shared resource, they need some way to ensure

that the resource will be used by only one thread at a time. The process by which this is

achieved is called synchronization. As you will see, Java provides unique, language-level

support for it.

Key to synchronization is the concept of the monitor. A monitor is an object that is used

as a mutually exclusive lock. Only one thread can own a monitor at a given time. When a

thread acquires a lock, it is said to have entered the monitor. All other threads attempting to

enter the locked monitor will be suspended until the first thread exits the monitor. These

other threads are said to be waiting for the monitor. A thread that owns a monitor can

reenter the same monitor if it so desires.

You can synchronize your code in either of two ways. Both involve the use of the

synchronized keyword, and both are examined here.

Using Synchronized Methods

Synchronization is easy in Java, because all objects have their own implicit monitor associated

with them. To enter an object’s monitor, just call a method that has been modified with the

synchronized keyword. While a thread is inside a synchronized method, all other threads that

try to call it (or any other synchronized method) on the same instance have to wait. To exit

the monitor and relinquish control of the object to the next waiting thread, the owner of the

monitor simply returns from the synchronized method.

To understand the need for synchronization, let’s begin with a simple example that does

not use it—but should. The following program has three simple classes. The first one, Callme,

has a single method named call(). The call() method takes a String parameter called msg. This

method tries to print the msg string inside of square brackets. The interesting thing to notice

is that after call() prints the opening bracket and the msg string, it calls Thread.sleep(1000),
which pauses the current thread for one second.

The constructor of the next class, Caller, takes a reference to an instance of the Callme

class and a String, which are stored in target and msg, respectively. The constructor also

creates a new thread that will call this object’s run() method. The thread is started immediately.

The run() method of Caller calls the call() method on the target instance of Callme, passing

in the msg string. Finally, the Synch class starts by creating a single instance of Callme, and

three instances of Caller, each with a unique message string. The same instance of Callme

is passed to each Caller.

// This program is not synchronized.
class Callme {
 void call(String msg) {
 System.out.print("[" + msg);

242 PART I The Java Language

 try {
 Thread.sleep(1000);
 } catch(InterruptedException e) {
 System.out.println("Interrupted");
 }
 System.out.println("]");
 }
}

class Caller implements Runnable {
 String msg;
 Callme target;
 Thread t;

 public Caller(Callme targ, String s) {
 target = targ;
 msg = s;
 t = new Thread(this);
 t.start();
 }
 public void run() {
 target.call(msg);
 }
}

class Synch {
 public static void main(String args[]) {
 Callme target = new Callme();
 Caller ob1 = new Caller(target, "Hello");
 Caller ob2 = new Caller(target, "Synchronized");
 Caller ob3 = new Caller(target, "World");

 // wait for threads to end
 try {
 ob1.t.join();
 ob2.t.join();
 ob3.t.join();
 } catch(InterruptedException e) {
 System.out.println("Interrupted");
 }
 }
}

Here is the output produced by this program:

 Hello[Synchronized[World]
]
]

As you can see, by calling sleep(), the call() method allows execution to switch to another

thread. This results in the mixed-up output of the three message strings. In this program,

nothing exists to stop all three threads from calling the same method, on the same object,

 Chapter 11 Multithreaded Programming 243

P
a

rt
 I

at the same time. This is known as a race condition, because the three threads are racing each

other to complete the method. This example used sleep() to make the effects repeatable

and obvious. In most situations, a race condition is more subtle and less predictable,

because you can’t be sure when the context switch will occur. This can cause a program

to run right one time and wrong the next.

To fix the preceding program, you must serialize access to call(). That is, you must

restrict its access to only one thread at a time. To do this, you simply need to precede call()’s
definition with the keyword synchronized, as shown here:

class Callme {
 synchronized void call(String msg) {
 ...

This prevents other threads from entering call() while another thread is using it. After

synchronized has been added to call(), the output of the program is as follows:

 [Hello]
 [Synchronized]
 [World]

Any time that you have a method, or group of methods, that manipulates the internal

state of an object in a multithreaded situation, you should use the synchronized keyword to

guard the state from race conditions. Remember, once a thread enters any synchronized

method on an instance, no other thread can enter any other synchronized method on the

same instance. However, nonsynchronized methods on that instance will continue to be

callable.

The synchronized Statement

While creating synchronized methods within classes that you create is an easy and effective

means of achieving synchronization, it will not work in all cases. To understand why, consider

the following. Imagine that you want to synchronize access to objects of a class that was not

designed for multithreaded access. That is, the class does not use synchronized methods.

Further, this class was not created by you, but by a third party, and you do not have access to

the source code. Thus, you can’t add synchronized to the appropriate methods within the

class. How can access to an object of this class be synchronized? Fortunately, the solution to

this problem is quite easy: You simply put calls to the methods defined by this class inside a

synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {

 // statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures

that a call to a method that is a member of object occurs only after the current thread has

successfully entered object’s monitor.

244 PART I The Java Language

Here is an alternative version of the preceding example, using a synchronized block

within the run() method:

// This program uses a synchronized block.
class Callme {
 void call(String msg) {
 System.out.print("[" + msg);
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.out.println("Interrupted");
 }
 System.out.println("]");
 }
}

class Caller implements Runnable {
 String msg;
 Callme target;
 Thread t;

 public Caller(Callme targ, String s) {
 target = targ;
 msg = s;
 t = new Thread(this);
 t.start();
 }

 // synchronize calls to call()
 public void run() {
 synchronized(target) { // synchronized block
 target.call(msg);
 }
 }
}

class Synch1 {
 public static void main(String args[]) {
 Callme target = new Callme();
 Caller ob1 = new Caller(target, "Hello");
 Caller ob2 = new Caller(target, "Synchronized");
 Caller ob3 = new Caller(target, "World");

 // wait for threads to end
 try {
 ob1.t.join();
 ob2.t.join();
 ob3.t.join();
 } catch(InterruptedException e) {
 System.out.println("Interrupted");
 }
 }
}

 Chapter 11 Multithreaded Programming 245

P
a

rt
 I

Here, the call() method is not modified by synchronized. Instead, the synchronized

statement is used inside Caller’s run() method. This causes the same correct output as the

preceding example, because each thread waits for the prior one to finish before proceeding.

Interthread Communication
The preceding examples unconditionally blocked other threads from asynchronous access

to certain methods. This use of the implicit monitors in Java objects is powerful, but you

can achieve a more subtle level of control through interprocess communication. As you will

see, this is especially easy in Java.

As discussed earlier, multithreading replaces event loop programming by dividing your

tasks into discrete, logical units. Threads also provide a secondary benefit: they do away

with polling. Polling is usually implemented by a loop that is used to check some condition

repeatedly. Once the condition is true, appropriate action is taken. This wastes CPU time.

For example, consider the classic queuing problem, where one thread is producing some

data and another is consuming it. To make the problem more interesting, suppose that the

producer has to wait until the consumer is finished before it generates more data. In a

polling system, the consumer would waste many CPU cycles while it waited for the producer

to produce. Once the producer was finished, it would start polling, wasting more CPU

cycles waiting for the consumer to finish, and so on. Clearly, this situation is undesirable.

To avoid polling, Java includes an elegant interprocess communication mechanism via

the wait(), notify(), and notifyAll() methods. These methods are implemented as final
methods in Object, so all classes have them. All three methods can be called only from

within a synchronized context. Although conceptually advanced from a computer science

perspective, the rules for using these methods are actually quite simple:

• wait() tells the calling thread to give up the monitor and go to sleep until some

other thread enters the same monitor and calls notify().

• notify() wakes up a thread that called wait() on the same object.

• notifyAll() wakes up all the threads that called wait() on the same object. One of

the threads will be granted access.

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException

final void notify()

final void notify All()

Additional forms of wait() exist that allow you to specify a period of time to wait.

Before working through an example that illustrates interthread communication, an

important point needs to be made. Although wait() normally waits until notify() or

notifyAll() is called, there is a possibility that in very rare cases the waiting thread could be

awakened due to a spurious wakeup. In this case, a waiting thread resumes without notify()
or notifyAll() having been called. (In essence, the thread resumes for no apparent reason.)

Because of this remote possibility, Oracle recommends that calls to wait() should take place

within a loop that checks the condition on which the thread is waiting. The following

example shows this technique.

246 PART I The Java Language

Let’s now work through an example that uses wait() and notify(). To begin, consider

the following sample program that incorrectly implements a simple form of the producer/

consumer problem. It consists of four classes: Q, the queue that you’re trying to synchronize;

Producer, the threaded object that is producing queue entries; Consumer, the threaded

object that is consuming queue entries; and PC, the tiny class that creates the single Q,

Producer, and Consumer.

// An incorrect implementation of a producer and consumer.
class Q {
 int n;

 synchronized int get() {
 System.out.println("Got: " + n);
 return n;
 }

 synchronized void put(int n) {
 this.n = n;
 System.out.println("Put: " + n);
 }
}

class Producer implements Runnable {
 Q q;

 Producer(Q q) {
 this.q = q;
 new Thread(this, "Producer").start();
 }

 public void run() {
 int i = 0;

 while(true) {
 q.put(i++);
 }
 }
}

class Consumer implements Runnable {
 Q q;

 Consumer(Q q) {
 this.q = q;
 new Thread(this, "Consumer").start();
 }

 public void run() {
 while(true) {
 q.get();
 }
 }
}

 Chapter 11 Multithreaded Programming 247

P
a

rt
 I

class PC {
 public static void main(String args[]) {
 Q q = new Q();
 new Producer(q);
 new Consumer(q);

 System.out.println("Press Control-C to stop.");
 }
}

Although the put() and get() methods on Q are synchronized, nothing stops the producer

from overrunning the consumer, nor will anything stop the consumer from consuming the

same queue value twice. Thus, you get the erroneous output shown here (the exact output

will vary with processor speed and task load):

 Put: 1
 Got: 1
 Got: 1
 Got: 1
 Got: 1
 Got: 1
 Put: 2
 Put: 3
 Put: 4
 Put: 5
 Put: 6
 Put: 7
 Got: 7

As you can see, after the producer put 1, the consumer started and got the same 1 five

times in a row. Then, the producer resumed and produced 2 through 7 without letting

the consumer have a chance to consume them.

The proper way to write this program in Java is to use wait() and notify() to signal in

both directions, as shown here:

// A correct implementation of a producer and consumer.
class Q {
 int n;
 boolean valueSet = false;

 synchronized int get() {
 while(!valueSet)
 try {
 wait();
 } catch(InterruptedException e) {
 System.out.println("InterruptedException caught");
 }

 System.out.println("Got: " + n);
 valueSet = false;
 notify();
 return n;
 }

248 PART I The Java Language

 synchronized void put(int n) {
 while(valueSet)
 try {
 wait();
 } catch(InterruptedException e) {
 System.out.println("InterruptedException caught");
 }

 this.n = n;
 valueSet = true;
 System.out.println("Put: " + n);
 notify();
 }
}

class Producer implements Runnable {
 Q q;

 Producer(Q q) {
 this.q = q;
 new Thread(this, "Producer").start();
 }

 public void run() {
 int i = 0;

 while(true) {
 q.put(i++);
 }
 }
}

class Consumer implements Runnable {
 Q q;

 Consumer(Q q) {
 this.q = q;
 new Thread(this, "Consumer").start();
 }

 public void run() {
 while(true) {
 q.get();
 }
 }
}

class PCFixed {
 public static void main(String args[]) {
 Q q = new Q();
 new Producer(q);
 new Consumer(q);

 System.out.println("Press Control-C to stop.");
 }
}

 Chapter 11 Multithreaded Programming 249

P
a

rt
 I

Inside get(), wait() is called. This causes its execution to suspend until Producer notifies

you that some data is ready. When this happens, execution inside get() resumes. After the

data has been obtained, get() calls notify(). This tells Producer that it is okay to put more

data in the queue. Inside put(), wait() suspends execution until Consumer has removed the

item from the queue. When execution resumes, the next item of data is put in the queue,

and notify() is called. This tells Consumer that it should now remove it.

Here is some output from this program, which shows the clean synchronous behavior:

 Put: 1
 Got: 1
 Put: 2
 Got: 2
 Put: 3
 Got: 3
 Put: 4
 Got: 4
 Put: 5
 Got: 5

Deadlock

A special type of error that you need to avoid that relates specifically to multitasking is deadlock,

which occurs when two threads have a circular dependency on a pair of synchronized objects.

For example, suppose one thread enters the monitor on object X and another thread enters

the monitor on object Y. If the thread in X tries to call any synchronized method on Y, it will

block as expected. However, if the thread in Y, in turn, tries to call any synchronized method

on X, the thread waits forever, because to access X, it would have to release its own lock on Y

so that the first thread could complete. Deadlock is a difficult error to debug for two reasons:

• In general, it occurs only rarely, when the two threads time-slice in just the right way.

• It may involve more than two threads and two synchronized objects. (That is,

deadlock can occur through a more convoluted sequence of events than just

described.)

To understand deadlock fully, it is useful to see it in action. The next example creates

two classes, A and B, with methods foo() and bar(), respectively, which pause briefly before

trying to call a method in the other class. The main class, named Deadlock, creates an A

and a B instance, and then starts a second thread to set up the deadlock condition. The

foo() and bar() methods use sleep() as a way to force the deadlock condition to occur.

// An example of deadlock.
class A {
 synchronized void foo(B b) {
 String name = Thread.currentThread().getName();

 System.out.println(name + " entered A.foo");

 try {
 Thread.sleep(1000);
 } catch(Exception e) {
 System.out.println("A Interrupted");
 }

250 PART I The Java Language

 System.out.println(name + " trying to call B.last()");
 b.last();
 }

 synchronized void last() {
 System.out.println("Inside A.last");
 }
}

class B {
 synchronized void bar(A a) {
 String name = Thread.currentThread().getName();
 System.out.println(name + " entered B.bar");

 try {
 Thread.sleep(1000);
 } catch(Exception e) {
 System.out.println("B Interrupted");
 }

 System.out.println(name + " trying to call A.last()");
 a.last();
 }

 synchronized void last() {
 System.out.println("Inside A.last");
 }
}

class Deadlock implements Runnable {
 A a = new A();
 B b = new B();

 Deadlock() {
 Thread.currentThread().setName("MainThread");
 Thread t = new Thread(this, "RacingThread");
 t.start();

 a.foo(b); // get lock on a in this thread.
 System.out.println("Back in main thread");
 }

 public void run() {
 b.bar(a); // get lock on b in other thread.
 System.out.println("Back in other thread");
 }

 public static void main(String args[]) {
 new Deadlock();
 }
}

When you run this program, you will see the output shown here:

 Chapter 11 Multithreaded Programming 251

P
a

rt
 I

 MainThread entered A.foo
 RacingThread entered B.bar
 MainThread trying to call B.last()
 RacingThread trying to call A.last()

Because the program has deadlocked, you need to press ctrl-c to end the program.

You can see a full thread and monitor cache dump by pressing ctrl-break on a PC. You

will see that RacingThread owns the monitor on b, while it is waiting for the monitor on a.

At the same time, MainThread owns a and is waiting to get b. This program will never

complete. As this example illustrates, if your multithreaded program locks up occasionally,

deadlock is one of the first conditions that you should check for.

Suspending, Resuming, and Stopping Threads
Sometimes, suspending execution of a thread is useful. For example, a separate thread can

be used to display the time of day. If the user doesn’t want a clock, then its thread can be

suspended. Whatever the case, suspending a thread is a simple matter. Once suspended,

restarting the thread is also a simple matter.

The mechanisms to suspend, stop, and resume threads differ between early versions of

Java, such as Java 1.0, and modern versions, beginning with Java 2. Although you should use

the modern approach for all new code, you still need to understand how these operations

were accomplished for earlier Java environments. For example, you may need to update or

maintain older, legacy code. You also need to understand why a change was made. For these

reasons, the next section describes the original way that the execution of a thread was

controlled, followed by a section that describes the modern approach.

Suspending, Resuming, and Stopping Threads Using Java 1.1

and Earlier

Prior to Java 2, a program used suspend() and resume(), which are methods defined by

Thread, to pause and restart the execution of a thread. They have the form shown below:

final void suspend()

final void resume()

Although these methods are no longer recommended, the following program demonstrates

their use so that you can understand how they worked:

// Using the suspend() and resume() methods for the
// purposes of demonstration only. Not for new code.
class NewThread implements Runnable {
 String name; // name of thread
 Thread t;

 NewThread(String threadname) {
 name = threadname;
 t = new Thread(this, name);
 System.out.println("New thread: " + t);
 t.start(); // Start the thread
 }

252 PART I The Java Language

 // This is the entry point for thread.
 public void run() {
 try {
 for(int i = 15; i > 0; i--) {
 System.out.println(name + ": " + i);
 Thread.sleep(200);
 }
 } catch (InterruptedException e) {
 System.out.println(name + " interrupted.");
 }
 System.out.println(name + " exiting.");
 }
}

class SuspendResume {
 public static void main(String args[]) {
 NewThread ob1 = new NewThread("One");
 NewThread ob2 = new NewThread("Two");

 try {
 Thread.sleep(1000);
 ob1.t.suspend();
 System.out.println("Suspending thread One");
 Thread.sleep(1000);
 ob1.t.resume();
 System.out.println("Resuming thread One");
 ob2.t.suspend();
 System.out.println("Suspending thread Two");
 Thread.sleep(1000);
 ob2.t.resume();
 System.out.println("Resuming thread Two");
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }

 // wait for threads to finish
 try {
 System.out.println("Waiting for threads to finish.");
 ob1.t.join();
 ob2.t.join();
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }
 System.out.println("Main thread exiting.");
 }
}

Sample output from this program is shown here. (Your output may differ based on

processor speed and task load.)

 New thread: Thread[One,5,main]
 One: 15
 New thread: Thread[Two,5,main]
 Two: 15

 Chapter 11 Multithreaded Programming 253

P
a

rt
 I

 One: 14
 Two: 14
 One: 13
 Two: 13
 One: 12
 Two: 12
 One: 11
 Two: 11
 Suspending thread One
 Two: 10
 Two: 9
 Two: 8
 Two: 7
 Two: 6
 Resuming thread One
 Suspending thread Two
 One: 10
 One: 9
 One: 8
 One: 7
 One: 6
 Resuming thread Two
 Waiting for threads to finish.
 Two: 5
 One: 5
 Two: 4
 One: 4
 Two: 3
 One: 3
 Two: 2
 One: 2
 Two: 1
 One: 1
 Two exiting.
 One exiting.
 Main thread exiting.

The Thread class also defines a method called stop() that stops a thread. Its signature is

shown here:

final void stop()

Once a thread has been stopped, it cannot be restarted using resume().

The Modern Way of Suspending, Resuming, and

Stopping Threads

While the suspend(), resume(), and stop() methods defined by Thread seem to be a

perfectly reasonable and convenient approach to managing the execution of threads, they

must not be used for new Java programs. Here’s why. The suspend() method of the Thread

class was deprecated by Java 2 several years ago. This was done because suspend() can

sometimes cause serious system failures. Assume that a thread has obtained locks on critical

data structures. If that thread is suspended at that point, those locks are not relinquished.

Other threads that may be waiting for those resources can be deadlocked.

254 PART I The Java Language

The resume() method is also deprecated. It does not cause problems, but cannot be

used without the suspend() method as its counterpart.

The stop() method of the Thread class, too, was deprecated by Java 2. This was done

because this method can sometimes cause serious system failures. Assume that a thread is

writing to a critically important data structure and has completed only part of its changes. If

that thread is stopped at that point, that data structure might be left in a corrupted state.

The trouble is that stop() causes any lock the calling thread holds to be released. Thus, the

corrupted data might be used by another thread that is waiting on the same lock.

Because you can’t now use the suspend(), resume(), or stop() methods to control a

thread, you might be thinking that no way exists to pause, restart, or terminate a thread. But,

fortunately, this is not true. Instead, a thread must be designed so that the run() method

periodically checks to determine whether that thread should suspend, resume, or stop its

own execution. Typically, this is accomplished by establishing a flag variable that indicates

the execution state of the thread. As long as this flag is set to “running,” the run() method

must continue to let the thread execute. If this variable is set to “suspend,” the thread must

pause. If it is set to “stop,” the thread must terminate. Of course, a variety of ways exist in

which to write such code, but the central theme will be the same for all programs.

The following example illustrates how the wait() and notify() methods that are

inherited from Object can be used to control the execution of a thread. This example is

similar to the program in the previous section. However, the deprecated method calls have

been removed. Let us consider the operation of this program.

The NewThread class contains a boolean instance variable named suspendFlag, which is

used to control the execution of the thread. It is initialized to false by the constructor. The

run() method contains a synchronized statement block that checks suspendFlag. If that

variable is true, the wait() method is invoked to suspend the execution of the thread. The

mysuspend() method sets suspendFlag to true. The myresume() method sets suspendFlag

to false and invokes notify() to wake up the thread. Finally, the main() method has been

modified to invoke the mysuspend() and myresume() methods.

// Suspending and resuming a thread the modern way.
class NewThread implements Runnable {
 String name; // name of thread
 Thread t;
 boolean suspendFlag;

 NewThread(String threadname) {
 name = threadname;
 t = new Thread(this, name);
 System.out.println("New thread: " + t);
 suspendFlag = false;
 t.start(); // Start the thread
 }

 // This is the entry point for thread.
 public void run() {
 try {
 for(int i = 15; i > 0; i--) {
 System.out.println(name + ": " + i);
 Thread.sleep(200);
 synchronized(this) {

 Chapter 11 Multithreaded Programming 255

P
a

rt
 I

 while(suspendFlag) {
 wait();
 }
 }
 }
 } catch (InterruptedException e) {
 System.out.println(name + " interrupted.");
 }

 System.out.println(name + " exiting.");
 }

 synchronized void mysuspend() {
 suspendFlag = true;
 }

 synchronized void myresume() {
 suspendFlag = false;
 notify();
 }
}

class SuspendResume {
 public static void main(String args[]) {
 NewThread ob1 = new NewThread("One");
 NewThread ob2 = new NewThread("Two");

 try {
 Thread.sleep(1000);
 ob1.mysuspend();
 System.out.println("Suspending thread One");
 Thread.sleep(1000);
 ob1.myresume();
 System.out.println("Resuming thread One");
 ob2.mysuspend();
 System.out.println("Suspending thread Two");
 Thread.sleep(1000);
 ob2.myresume();
 System.out.println("Resuming thread Two");
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }

 // wait for threads to finish
 try {
 System.out.println("Waiting for threads to finish.");
 ob1.t.join();
 ob2.t.join();
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }

 System.out.println("Main thread exiting.");
 }
}

256 PART I The Java Language

The output from this program is identical to that shown in the previous section. Later

in this book, you will see more examples that use the modern mechanism of thread control.

Although this mechanism isn’t as “clean” as the old way, nevertheless, it is the way required

to ensure that run-time errors don’t occur. It is the approach that must be used for all new

code.

Obtaining A Thread’s State
As mentioned earlier in this chapter, a thread can exist in a number of different states. You

can obtain the current state of a thread by calling the getState() method defined by

Thread. It is shown here:

Thread.State getState()

It returns a value of type Thread.State that indicates the state of the thread at the time at

which the call was made. State is an enumeration defined by Thread. (An enumeration is a

list of named constants. It is discussed in detail in Chapter 12.) Here are the values that can

be returned by getState():

Value State

BLOCKED A thread that has suspended execution because it is waiting to

acquire a lock.

NEW A thread that has not begun execution.

RUNNABLE A thread that either is currently executing or will execute when it

gains access to the CPU.

TERMINATED A thread that has completed execution.

TIMED_WAITING A thread that has suspended execution for a specified period of

time, such as when it has called sleep(). This state is also entered

when a timeout version of wait() or join() is called.

WAITING A thread that has suspended execution because it is waiting for

some action to occur. For example, it is waiting because of a call to

a non-timeout version of wait() or join().

Figure 11-1 diagrams how the various thread states relate.

Given a Thread instance, you can use getState() to obtain the state of a thread. For

example, the following sequence determines if a thread called thrd is in the RUNNABLE

state at the time getState() is called:

Thread.State ts = thrd.getState();

if(ts == Thread.State.RUNNABLE) // ...

It is important to understand that a thread’s state may change after the call to getState().
Thus, depending on the circumstances, the state obtained by calling getState() may not

reflect the actual state of the thread only a moment later. For this (and other) reasons,

getState() is not intended to provide a means of synchronizing threads. It’s primarily used

for debugging or for profiling a thread’s run-time characteristics.

 Chapter 11 Multithreaded Programming 257

P
a

rt
 I

Using Multithreading
The key to utilizing Java’s multithreading features effectively is to think concurrently rather

than serially. For example, when you have two subsystems within a program that can execute

concurrently, make them individual threads. With the careful use of multithreading, you

can create very efficient programs. A word of caution is in order, however: If you create

too many threads, you can actually degrade the performance of your program rather than

enhance it. Remember, some overhead is associated with context switching. If you create

too many threads, more CPU time will be spent changing contexts than executing your

program! One last point: To create compute-intensive applications that can automatically

scale to make use of the available processors in a multi-core system, consider using the new

Fork/Join Framework, which is described in Chapter 27.

Figure 11-1 Thread states

This page intentionally left blank

12
CHAPTER

 259

Enumerations, Autoboxing,
and Annotations (Metadata)

This chapter examines three relatively recent additions to the Java language: enumerations,

autoboxing, and annotations (also referred to as metadata). Each expands the power of the

language by offering a streamlined approach to handling common programming tasks. This

chapter also discusses Java’s type wrappers and introduces reflection.

Enumerations
Versions of Java prior to JDK 5 lacked one feature that many programmers felt was needed:

enumerations. In its simplest form, an enumeration is a list of named constants. Although

Java offered other features that provide somewhat similar functionality, such as final
variables, many programmers still missed the conceptual purity of enumerations—

especially because enumerations are supported by most other commonly used languages.

Beginning with JDK 5, enumerations were added to the Java language, and they are now

available to the Java programmer.

In their simplest form, Java enumerations appear similar to enumerations in other

languages. However, this similarity is only skin deep. In languages such as C++, enumerations

are simply lists of named integer constants. In Java, an enumeration defines a class type. By

making enumerations into classes, the concept of the enumeration is greatly expanded. For

example, in Java, an enumeration can have constructors, methods, and instance variables.

Therefore, although enumerations were several years in the making, Java’s rich implementation

made them well worth the wait.

Enumeration Fundamentals

An enumeration is created using the enum keyword. For example, here is a simple

enumeration that lists various apple varieties:

// An enumeration of apple varieties.
enum Apple {
 Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

260 PART I The Java Language

The identifiers Jonathan, GoldenDel, and so on, are called enumeration constants. Each is

implicitly declared as a public, static final member of Apple. Furthermore, their type is the

type of the enumeration in which they are declared, which is Apple in this case. Thus, in

the language of Java, these constants are called self-typed, in which “self” refers to the

enclosing enumeration.

Once you have defined an enumeration, you can create a variable of that type. However,

even though enumerations define a class type, you do not instantiate an enum using new.

Instead, you declare and use an enumeration variable in much the same way as you do one

of the primitive types. For example, this declares ap as a variable of enumeration type Apple:

Apple ap;

Because ap is of type Apple, the only values that it can be assigned (or can contain) are

those defined by the enumeration. For example, this assigns ap the value RedDel:

ap = Apple.RedDel;

Notice that the symbol RedDel is preceded by Apple.

Two enumeration constants can be compared for equality by using the = = relational

operator. For example, this statement compares the value in ap with the GoldenDel
constant:

if(ap == Apple.GoldenDel) // ...

An enumeration value can also be used to control a switch statement. Of course, all

of the case statements must use constants from the same enum as that used by the switch

expression. For example, this switch is perfectly valid:

// Use an enum to control a switch statement.
switch(ap) {
 case Jonathan:
 // ...
 case Winesap:
 // ...

Notice that in the case statements, the names of the enumeration constants are used without

being qualified by their enumeration type name. That is, Winesap, not Apple.Winesap, is

used. This is because the type of the enumeration in the switch expression has already

implicitly specified the enum type of the case constants. There is no need to qualify the

constants in the case statements with their enum type name. In fact, attempting to do so

will cause a compilation error.

When an enumeration constant is displayed, such as in a println() statement, its name

is output. For example, given this statement:

System.out.println(Apple.Winesap);

the name Winesap is displayed.

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 261

P
a

rt
 I

The following program puts together all of the pieces and demonstrates the Apple

enumeration:

// An enumeration of apple varieties.
enum Apple {
 Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

class EnumDemo {
 public static void main(String args[])
 {
 Apple ap;

 ap = Apple.RedDel;

 // Output an enum value.
 System.out.println("Value of ap: " + ap);
 System.out.println();

 ap = Apple.GoldenDel;

 // Compare two enum values.
 if(ap == Apple.GoldenDel)
 System.out.println("ap contains GoldenDel.\n");

 // Use an enum to control a switch statement.
 switch(ap) {
 case Jonathan:
 System.out.println("Jonathan is red.");
 break;
 case GoldenDel:
 System.out.println("Golden Delicious is yellow.");
 break;
 case RedDel:
 System.out.println("Red Delicious is red.");
 break;
 case Winesap:
 System.out.println("Winesap is red.");
 break;
 case Cortland:
 System.out.println("Cortland is red.");
 break;
 }
 }
}

The output from the program is shown here:

 Value of ap: RedDel

 ap contains GoldenDel.

 Golden Delicious is yellow.

262 PART I The Java Language

The values() and valueOf() Methods

All enumerations automatically contain two predefined methods: values() and valueOf().
Their general forms are shown here:

public static enum-type [] values()

public static enum-type valueOf(String str)

The values() method returns an array that contains a list of the enumeration constants. The

valueOf() method returns the enumeration constant whose value corresponds to the string

passed in str. In both cases, enum-type is the type of the enumeration. For example, in the

case of the Apple enumeration shown earlier, the return type of Apple.valueOf("Winesap")
is Winesap.

The following program demonstrates the values() and valueOf() methods:

// Use the built-in enumeration methods.

// An enumeration of apple varieties.
enum Apple {
 Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

class EnumDemo2 {
 public static void main(String args[])
 {
 Apple ap;

 System.out.println("Here are all Apple constants:");

 // use values()
 Apple allapples[] = Apple.values();
 for(Apple a : allapples)
 System.out.println(a);

 System.out.println();

 // use valueOf()
 ap = Apple.valueOf("Winesap");
 System.out.println("ap contains " + ap);

 }
}

The output from the program is shown here:

 Here are all Apple constants:
 Jonathan
 GoldenDel
 RedDel
 Winesap
 Cortland

 ap contains Winesap

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 263

P
a

rt
 I

Notice that this program uses a for-each style for loop to cycle through the array of

constants obtained by calling values(). For the sake of illustration, the variable allapples

was created and assigned a reference to the enumeration array. However, this step is not

necessary because the for could have been written as shown here, eliminating the need for

the allapples variable:

for(Apple a : Apple.values())
 System.out.println(a);

Now, notice how the value corresponding to the name Winesap was obtained by calling

valueOf().

ap = Apple.valueOf("Winesap");

As explained, valueOf() returns the enumeration value associated with the name of the

constant represented as a string.

NOTE C/C++ programmers will notice that Java makes it much easier to translate between the human-
readable form of an enumeration constant and its binary value than do these other languages. This
is a significant advantage to Java’s approach to enumerations.

Java Enumerations Are Class Types

As explained, a Java enumeration is a class type. Although you don’t instantiate an enum

using new, it otherwise has much the same capabilities as other classes. The fact that enum

defines a class gives powers to the Java enumeration that enumerations in other languages

simply do not have. For example, you can give them constructors, add instance variables

and methods, and even implement interfaces.

It is important to understand that each enumeration constant is an object of its

enumeration type. Thus, when you define a constructor for an enum, the constructor is

called when each enumeration constant is created. Also, each enumeration constant has its

own copy of any instance variables defined by the enumeration. For example, consider the

following version of Apple:

// Use an enum constructor, instance variable, and method.
enum Apple {
 Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);

 private int price; // price of each apple

 // Constructor
 Apple(int p) { price = p; }

 int getPrice() { return price; }
}

class EnumDemo3 {
 public static void main(String args[])
 {
 Apple ap;

264 PART I The Java Language

 // Display price of Winesap.
 System.out.println("Winesap costs " +
 Apple.Winesap.getPrice() +
 " cents.\n");

 // Display all apples and prices.
 System.out.println("All apple prices:");
 for(Apple a : Apple.values())
 System.out.println(a + " costs " + a.getPrice() +
 " cents.");
 }
}

The output is shown here:

 Winesap costs 15 cents.

 All apple prices:
 Jonathan costs 10 cents.
 GoldenDel costs 9 cents.
 RedDel costs 12 cents.
 Winesap costs 15 cents.
 Cortland costs 8 cents.

This version of Apple adds three things. The first is the instance variable price, which is

used to hold the price of each variety of apple. The second is the Apple constructor, which

is passed the price of an apple. The third is the method getPrice(), which returns the value

of price.

When the variable ap is declared in main(), the constructor for Apple is called once for

each constant that is specified. Notice how the arguments to the constructor are specified,

by putting them inside parentheses after each constant, as shown here:

Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);

These values are passed to the p parameter of Apple(), which then assigns this value to

price. Again, the constructor is called once for each constant.

Because each enumeration constant has its own copy of price, you can obtain the price

of a specified type of apple by calling getPrice(). For example, in main() the price of a

Winesap is obtained by the following call:

Apple.Winesap.getPrice()

The prices of all varieties are obtained by cycling through the enumeration using a for

loop. Because there is a copy of price for each enumeration constant, the value associated

with one constant is separate and distinct from the value associated with another constant.

This is a powerful concept, which is only available when enumerations are implemented as

classes, as Java does.

Although the preceding example contains only one constructor, an enum can offer two

or more overloaded forms, just as can any other class. For example, this version of Apple

provides a default constructor that initializes the price to –1, to indicate that no price data

is available:

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 265

P
a

rt
 I

// Use an enum constructor.
enum Apple {
 Jonathan(10), GoldenDel(9), RedDel, Winesap(15), Cortland(8);

 private int price; // price of each apple

 // Constructor
 Apple(int p) { price = p; }

 // Overloaded constructor
 Apple() { price = -1; }

 int getPrice() { return price; }
}

Notice that in this version, RedDel is not given an argument. This means that the default

constructor is called, and RedDel’s price variable is given the value –1.

Here are two restrictions that apply to enumerations. First, an enumeration can’t

inherit another class. Second, an enum cannot be a superclass. This means that an enum

can’t be extended. Otherwise, enum acts much like any other class type. The key is to

remember that each of the enumeration constants is an object of the class in which it is

defined.

Enumerations Inherit Enum

Although you can’t inherit a superclass when declaring an enum, all enumerations

automatically inherit one: java.lang.Enum. This class defines several methods that are

available for use by all enumerations. The Enum class is described in detail in Part II, but

three of its methods warrant a discussion at this time.

You can obtain a value that indicates an enumeration constant’s position in the list of

constants. This is called its ordinal value, and it is retrieved by calling the ordinal() method,

shown here:

final int ordinal()

It returns the ordinal value of the invoking constant. Ordinal values begin at zero. Thus, in

the Apple enumeration, Jonathan has an ordinal value of zero, GoldenDel has an ordinal

value of 1, RedDel has an ordinal value of 2, and so on.

You can compare the ordinal value of two constants of the same enumeration by using

the compareTo() method. It has this general form:

final int compareTo(enum-type e)

Here, enum-type is the type of the enumeration, and e is the constant being compared to

the invoking constant. Remember, both the invoking constant and e must be of the same

enumeration. If the invoking constant has an ordinal value less than e’s, then compareTo()
returns a negative value. If the two ordinal values are the same, then zero is returned. If the

invoking constant has an ordinal value greater than e’s, then a positive value is returned.

You can compare for equality an enumeration constant with any other object by using

equals(), which overrides the equals() method defined by Object. Although equals() can

compare an enumeration constant to any other object, those two objects will be equal only

266 PART I The Java Language

if they both refer to the same constant, within the same enumeration. Simply having

ordinal values in common will not cause equals() to return true if the two constants are

from different enumerations.

Remember, you can compare two enumeration references for equality by using = =.

The following program demonstrates the ordinal(), compareTo(), and equals() methods:

// Demonstrate ordinal(), compareTo(), and equals().

// An enumeration of apple varieties.
enum Apple {
 Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

class EnumDemo4 {
 public static void main(String args[])
 {
 Apple ap, ap2, ap3;

 // Obtain all ordinal values using ordinal().
 System.out.println("Here are all apple constants" +
 " and their ordinal values: ");
 for(Apple a : Apple.values())
 System.out.println(a + " " + a.ordinal());

 ap = Apple.RedDel;
 ap2 = Apple.GoldenDel;
 ap3 = Apple.RedDel;

 System.out.println();

 // Demonstrate compareTo() and equals()
 if(ap.compareTo(ap2) < 0)
 System.out.println(ap + " comes before " + ap2);

 if(ap.compareTo(ap2) > 0)
 System.out.println(ap2 + " comes before " + ap);

 if(ap.compareTo(ap3) == 0)
 System.out.println(ap + " equals " + ap3);

 System.out.println();

 if(ap.equals(ap2))
 System.out.println("Error!");

 if(ap.equals(ap3))
 System.out.println(ap + " equals " + ap3);

 if(ap == ap3)
 System.out.println(ap + " == " + ap3);

 }
}

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 267

P
a

rt
 I

The output from the program is shown here:

 Here are all apple constants and their ordinal values:
 Jonathan 0
 GoldenDel 1
 RedDel 2
 Winesap 3
 Cortland 4

 GoldenDel comes before RedDel
 RedDel equals RedDel

 RedDel equals RedDel
 RedDel == RedDel

Another Enumeration Example

Before moving on, we will look at a different example that uses an enum. In Chapter 9, an

automated “decision maker” program was created. In that version, variables called NO,

YES, MAYBE, LATER, SOON, and NEVER were declared within an interface and used to

represent the possible answers. While there is nothing technically wrong with that approach,

the enumeration is a better choice. Here is an improved version of that program that uses

an enum called Answers to define the answers. You should compare this version to the

original in Chapter 9.

// An improved version of the "Decision Maker"
// program from Chapter 9. This version uses an
// enum, rather than interface variables, to
// represent the answers.

import java.util.Random;

// An enumeration of the possible answers.
enum Answers {
 NO, YES, MAYBE, LATER, SOON, NEVER
}

class Question {
 Random rand = new Random();
 Answers ask() {
 int prob = (int) (100 * rand.nextDouble());

 if (prob < 15)
 return Answers.MAYBE; // 15%
 else if (prob < 30)
 return Answers.NO; // 15%
 else if (prob < 60)
 return Answers.YES; // 30%
 else if (prob < 75)
 return Answers.LATER; // 15%
 else if (prob < 98)
 return Answers.SOON; // 13%

268 PART I The Java Language

 else
 return Answers.NEVER; // 2%
 }
}

class AskMe {
 static void answer(Answers result) {
 switch(result) {
 case NO:
 System.out.println("No");
 break;
 case YES:
 System.out.println("Yes");
 break;
 case MAYBE:
 System.out.println("Maybe");
 break;
 case LATER:
 System.out.println("Later");
 break;
 case SOON:
 System.out.println("Soon");
 break;
 case NEVER:
 System.out.println("Never");
 break;
 }
 }

 public static void main(String args[]) {
 Question q = new Question();
 answer(q.ask());
 answer(q.ask());
 answer(q.ask());
 answer(q.ask());
 }
}

Type Wrappers
As you know, Java uses primitive types (also called simple types), such as int or double, to

hold the basic data types supported by the language. Primitive types, rather than objects,

are used for these quantities for the sake of performance. Using objects for these values

would add an unacceptable overhead to even the simplest of calculations. Thus, the

primitive types are not part of the object hierarchy, and they do not inherit Object.
Despite the performance benefit offered by the primitive types, there are times when

you will need an object representation. For example, you can’t pass a primitive type by

reference to a method. Also, many of the standard data structures implemented by Java

operate on objects, which means that you can’t use these data structures to store primitive

types. To handle these (and other) situations, Java provides type wrappers, which are classes

that encapsulate a primitive type within an object. The type wrapper classes are described

in detail in Part II, but they are introduced here because they relate directly to Java’s

autoboxing feature.

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 269

P
a

rt
 I

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and

Boolean. These classes offer a wide array of methods that allow you to fully integrate the

primitive types into Java’s object hierarchy. Each is briefly examined next.

Character
Character is a wrapper around a char. The constructor for Character is

Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being created.

To obtain the char value contained in a Character object, call charValue(), shown here:

char charValue()

It returns the encapsulated character.

Boolean
Boolean is a wrapper around boolean values. It defines these constructors:

Boolean(boolean boolValue)
Boolean(String boolString)

In the first version, boolValue must be either true or false. In the second version, if boolString

contains the string "true" (in uppercase or lowercase), then the new Boolean object will be

true. Otherwise, it will be false.

To obtain a boolean value from a Boolean object, use booleanValue(), shown here:

boolean booleanValue()

It returns the boolean equivalent of the invoking object.

The Numeric Type Wrappers
By far, the most commonly used type wrappers are those that represent numeric values.

These are Byte, Short, Integer, Long, Float, and Double. All of the numeric type wrappers

inherit the abstract class Number. Number declares methods that return the value of an

object in each of the different number formats. These methods are shown here:

byte byteValue()

double doubleValue()

float floatValue()

int intValue()

long longValue()

short shortValue()

For example, doubleValue() returns the value of an object as a double, floatValue()
returns the value as a float, and so on. These methods are implemented by each of the

numeric type wrappers.

All of the numeric type wrappers define constructors that allow an object to be

constructed from a given value, or a string representation of that value. For example, here

are the constructors defined for Integer:

Integer(int num)

Integer(String str)

If str does not contain a valid numeric value, then a NumberFormatException is thrown.

270 PART I The Java Language

All of the type wrappers override toString(). It returns the human-readable form of the

value contained within the wrapper. This allows you to output the value by passing a type

wrapper object to println(), for example, without having to convert it into its primitive type.

The following program demonstrates how to use a numeric type wrapper to encapsulate

a value and then extract that value.

// Demonstrate a type wrapper.
class Wrap {
 public static void main(String args[]) {

 Integer iOb = new Integer(100);

 int i = iOb.intValue();

 System.out.println(i + " " + iOb); // displays 100 100
 }
}

This program wraps the integer value 100 inside an Integer object called iOb. The

program then obtains this value by calling intValue() and stores the result in i.
The process of encapsulating a value within an object is called boxing. Thus, in the

program, this line boxes the value 100 into an Integer:

Integer iOb = new Integer(100);

The process of extracting a value from a type wrapper is called unboxing. For example, the

program unboxes the value in iOb with this statement:

int i = iOb.intValue();

The same general procedure used by the preceding program to box and unbox values has

been employed since the original version of Java. However, with the release of JDK 5, Java

fundamentally improved on this through the addition of autoboxing, described next.

Autoboxing
Beginning with JDK 5, Java added two important features: autoboxing and auto-unboxing.

Autoboxing is the process by which a primitive type is automatically encapsulated (boxed)

into its equivalent type wrapper whenever an object of that type is needed. There is no need

to explicitly construct an object. Auto-unboxing is the process by which the value of a

boxed object is automatically extracted (unboxed) from a type wrapper when its value

is needed. There is no need to call a method such as intValue() or doubleValue().
The addition of autoboxing and auto-unboxing greatly streamlines the coding of

several algorithms, removing the tedium of manually boxing and unboxing values. It also

helps prevent errors. Moreover, it is very important to generics, which operate only on

objects. Finally, autoboxing makes working with the Collections Framework (described in

Part II) much easier.

With autoboxing it is no longer necessary to manually construct an object in order to

wrap a primitive type. You need only assign that value to a type-wrapper reference. Java

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 271

P
a

rt
 I

automatically constructs the object for you. For example, here is the modern way to

construct an Integer object that has the value 100:

Integer iOb = 100; // autobox an int

Notice that the object is not explicitly created through the use of new. Java handles this for

you, automatically.

To unbox an object, simply assign that object reference to a primitive-type variable. For

example, to unbox iOb, you can use this line:

int i = iOb; // auto-unbox

Java handles the details for you.

Here is the preceding program rewritten to use autoboxing/unboxing:

// Demonstrate autoboxing/unboxing.
class AutoBox {
 public static void main(String args[]) {

 Integer iOb = 100; // autobox an int

 int i = iOb; // auto-unbox

 System.out.println(i + " " + iOb); // displays 100 100
 }
}

Autoboxing and Methods

In addition to the simple case of assignments, autoboxing automatically occurs whenever a

primitive type must be converted into an object; auto-unboxing takes place whenever an

object must be converted into a primitive type. Thus, autoboxing/unboxing might occur

when an argument is passed to a method, or when a value is returned by a method. For

example, consider this:

// Autoboxing/unboxing takes place with
// method parameters and return values.

class AutoBox2 {
 // Take an Integer parameter and return
 // an int value;
 static int m(Integer v) {
 return v ; // auto-unbox to int
 }

 public static void main(String args[]) {
 // Pass an int to m() and assign the return value
 // to an Integer. Here, the argument 100 is autoboxed
 // into an Integer. The return value is also autoboxed
 // into an Integer.
 Integer iOb = m(100);

 System.out.println(iOb);
 }
}

272 PART I The Java Language

This program displays the following result:

100

In the program, notice that m() specifies an Integer parameter and returns an int
result. Inside main(), m() is passed the value 100. Because m() is expecting an Integer,

this value is automatically boxed. Then, m() returns the int equivalent of its argument. This

causes v to be auto-unboxed. Next, this int value is assigned to iOb in main(), which causes

the int return value to be autoboxed.

Autoboxing/Unboxing Occurs in Expressions

In general, autoboxing and unboxing take place whenever a conversion into an object or

from an object is required. This applies to expressions. Within an expression, a numeric

object is automatically unboxed. The outcome of the expression is reboxed, if necessary.

For example, consider the following program:

// Autoboxing/unboxing occurs inside expressions.

class AutoBox3 {
 public static void main(String args[]) {

 Integer iOb, iOb2;
 int i;

 iOb = 100;
 System.out.println("Original value of iOb: " + iOb);

 // The following automatically unboxes iOb,
 // performs the increment, and then reboxes
 // the result back into iOb.
 ++iOb;
 System.out.println("After ++iOb: " + iOb);

 // Here, iOb is unboxed, the expression is
 // evaluated, and the result is reboxed and
 // assigned to iOb2.
 iOb2 = iOb + (iOb / 3);
 System.out.println("iOb2 after expression: " + iOb2);

 // The same expression is evaluated, but the
 // result is not reboxed.
 i = iOb + (iOb / 3);
 System.out.println("i after expression: " + i);

 }
}

The output is shown here:

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 273

P
a

rt
 I

 Original value of iOb: 100
 After ++iOb: 101
 iOb2 after expression: 134
 i after expression: 134

In the program, pay special attention to this line:

++iOb;

This causes the value in iOb to be incremented. It works like this: iOb is unboxed, the value

is incremented, and the result is reboxed.

Auto-unboxing also allows you to mix different types of numeric objects in an

expression. Once the values are unboxed, the standard type promotions and conversions

are applied. For example, the following program is perfectly valid:

class AutoBox4 {
 public static void main(String args[]) {

 Integer iOb = 100;
 Double dOb = 98.6;

 dOb = dOb + iOb;
 System.out.println("dOb after expression: " + dOb);
 }
}

The output is shown here:

 dOb after expression: 198.6

As you can see, both the Double object dOb and the Integer object iOb participated in the

addition, and the result was reboxed and stored in dOb.

Because of auto-unboxing, you can use Integer numeric objects to control a switch

statement. For example, consider this fragment:

Integer iOb = 2;

switch(iOb) {
 case 1: System.out.println("one");
 break;
 case 2: System.out.println("two");
 break;
 default: System.out.println("error");
}

When the switch expression is evaluated, iOb is unboxed and its int value is obtained.

As the examples in the program show, because of autoboxing/unboxing, using numeric

objects in an expression is both intuitive and easy. In the past, such code would have

involved casts and calls to methods such as intValue().

274 PART I The Java Language

Autoboxing/Unboxing Boolean and Character Values

As described earlier, Java also supplies wrappers for boolean and char. These are Boolean

and Character. Autoboxing/unboxing applies to these wrappers, too. For example, consider

the following program:

// Autoboxing/unboxing a Boolean and Character.

class AutoBox5 {
 public static void main(String args[]) {

 // Autobox/unbox a boolean.
 Boolean b = true;

 // Below, b is auto-unboxed when used in
 // a conditional expression, such as an if.
 if(b) System.out.println("b is true");

 // Autobox/unbox a char.
 Character ch = 'x'; // box a char
 char ch2 = ch; // unbox a char

 System.out.println("ch2 is " + ch2);
 }
}

The output is shown here:

 b is true
 ch2 is x

The most important thing to notice about this program is the auto-unboxing of b inside

the if conditional expression. As you should recall, the conditional expression that controls

an if must evaluate to type boolean. Because of auto-unboxing, the boolean value contained

within b is automatically unboxed when the conditional expression is evaluated. Thus, with

the advent of autoboxing/unboxing, a Boolean object can be used to control an if statement.

Because of auto-unboxing, a Boolean object can now also be used to control any of

Java’s loop statements. When a Boolean is used as the conditional expression of a while, for,

or do/while, it is automatically unboxed into its boolean equivalent. For example, this is

now perfectly valid code:

Boolean b;
// ...
while(b) { // ...

Autoboxing/Unboxing Helps Prevent Errors

In addition to the convenience that it offers, autoboxing/unboxing can also help prevent

errors. For example, consider the following program:

// An error produced by manual unboxing.
class UnboxingError {
 public static void main(String args[]) {

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 275

P
a

rt
 I

 Integer iOb = 1000; // autobox the value 1000

 int i = iOb.byteValue(); // manually unbox as byte !!!

 System.out.println(i); // does not display 1000 !
 }
}

This program displays not the expected value of 1000, but –24! The reason is that the value

inside iOb is manually unboxed by calling byteValue(), which causes the truncation of the

value stored in iOb, which is 1,000. This results in the garbage value of –24 being assigned

to i. Auto-unboxing prevents this type of error because the value in iOb will always auto-

unbox into a value compatible with int.
In general, because autoboxing always creates the proper object, and auto-unboxing

always produces the proper value, there is no way for the process to produce the wrong type

of object or value. In the rare instances where you want a type different than that produced

by the automated process, you can still manually box and unbox values. Of course, the

benefits of autoboxing/unboxing are lost. In general, new code should employ

autoboxing/unboxing. It is the way that modern Java code is written.

A Word of Warning

Now that Java includes autoboxing and auto-unboxing, some might be tempted to use

objects such as Integer or Double exclusively, abandoning primitives altogether. For

example, with autoboxing/unboxing it is possible to write code like this:

// A bad use of autoboxing/unboxing!
Double a, b, c;

a = 10.0;
b = 4.0;

c = Math.sqrt(a*a + b*b);

System.out.println("Hypotenuse is " + c);

In this example, objects of type Double hold values that are used to calculate the hypotenuse

of a right triangle. Although this code is technically correct and does, in fact, work properly,

it is a very bad use of autoboxing/unboxing. It is far less efficient than the equivalent code

written using the primitive type double. The reason is that each autobox and auto-unbox

adds overhead that is not present if the primitive type is used.

In general, you should restrict your use of the type wrappers to only those cases in

which an object representation of a primitive type is required. Autoboxing/unboxing was

not added to Java as a “back door” way of eliminating the primitive types.

Annotations (Metadata)
Since JDK 5, Java has supported a feature that enables you to embed supplemental

information into a source file. This information, called an annotation, does not change the

actions of a program. Thus, an annotation leaves the semantics of a program unchanged.

276 PART I The Java Language

However, this information can be used by various tools during both development and

deployment. For example, an annotation might be processed by a source-code generator.

The term metadata is also used to refer to this feature, but the term annotation is the most

descriptive and more commonly used.

Annotation Basics

An annotation is created through a mechanism based on the interface. Let’s begin with an

example. Here is the declaration for an annotation called MyAnno:

// A simple annotation type.
@interface MyAnno {
 String str();
 int val();
}

First, notice the @ that precedes the keyword interface. This tells the compiler that an

annotation type is being declared. Next, notice the two members str() and val(). All

annotations consist solely of method declarations. However, you don’t provide bodies for

these methods. Instead, Java implements these methods. Moreover, the methods act much

like fields, as you will see.

An annotation cannot include an extends clause. However, all annotation types

automatically extend the Annotation interface. Thus, Annotation is a super-interface of all

annotations. It is declared within the java.lang.annotation package. It overrides hashCode(),
equals(), and toString(), which are defined by Object. It also specifies annotationType(),
which returns a Class object that represents the invoking annotation.

Once you have declared an annotation, you can use it to annotate a declaration. Any

type of declaration can have an annotation associated with it. For example, classes,

methods, fields, parameters, and enum constants can be annotated. Even an annotation

can be annotated. In all cases, the annotation precedes the rest of the declaration.

When you apply an annotation, you give values to its members. For example, here is an

example of MyAnno being applied to a method declaration:

// Annotate a method.
@MyAnno(str = "Annotation Example", val = 100)
public static void myMeth() { // ...

This annotation is linked with the method myMeth(). Look closely at the annotation

syntax. The name of the annotation, preceded by an @, is followed by a parenthesized list

of member initializations. To give a member a value, that member’s name is assigned a

value. Therefore, in the example, the string "Annotation Example" is assigned to the str

member of MyAnno. Notice that no parentheses follow str in this assignment. When an

annotation member is given a value, only its name is used. Thus, annotation members look

like fields in this context.

Specifying a Retention Policy

Before exploring annotations further, it is necessary to discuss annotation retention policies.
A retention policy determines at what point an annotation is discarded. Java defines three

such policies, which are encapsulated within the java.lang.annotation.RetentionPolicy

enumeration. They are SOURCE, CLASS, and RUNTIME.

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 277

P
a

rt
 I

An annotation with a retention policy of SOURCE is retained only in the source file

and is discarded during compilation.

An annotation with a retention policy of CLASS is stored in the .class file during

compilation. However, it is not available through the JVM during run time.

An annotation with a retention policy of RUNTIME is stored in the .class file during

compilation and is available through the JVM during run time. Thus, RUNTIME retention

offers the greatest annotation persistence.

NOTE An annotation on a local variable declaration is not retained in the .class file.

A retention policy is specified for an annotation by using one of Java’s built-in

annotations: @Retention. Its general form is shown here:

@Retention(retention-policy)

Here, retention-policy must be one of the previously discussed enumeration constants. If no

retention policy is specified for an annotation, then the default policy of CLASS is used.

The following version of MyAnno uses @Retention to specify the RUNTIME retention

policy. Thus, MyAnno will be available to the JVM during program execution.

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str();
 int val();
}

Obtaining Annotations at Run Time by Use of Reflection

Although annotations are designed mostly for use by other development or deployment

tools, if they specify a retention policy of RUNTIME, then they can be queried at run time

by any Java program through the use of reflection. Reflection is the feature that enables

information about a class to be obtained at run time. The reflection API is contained in

the java.lang.reflect package. There are a number of ways to use reflection, and we won’t

examine them all here. We will, however, walk through a few examples that apply to

annotations.

The first step to using reflection is to obtain a Class object that represents the class

whose annotations you want to obtain. Class is one of Java’s built-in classes and is defined in

java.lang. It is described in detail in Part II. There are various ways to obtain a Class object.

One of the easiest is to call getClass(), which is a method defined by Object. Its general

form is shown here:

final Class<?> getClass()

It returns the Class object that represents the invoking object.

NOTE Notice the <?> that follows Class in the declaration of getClass() just shown. This is related to
Java’s generics feature. getClass() and several other reflection-related methods discussed in this
chapter make use of generics. Generics are described in Chapter 14. However, an understanding of
generics is not needed to grasp the fundamental principles of reflection.

278 PART I The Java Language

After you have obtained a Class object, you can use its methods to obtain information

about the various items declared by the class, including its annotations. If you want to

obtain the annotations associated with a specific item declared within a class, you must first

obtain an object that represents that item. For example, Class supplies (among others) the

getMethod(), getField(), and getConstructor() methods, which obtain information about

a method, field, and constructor, respectively. These methods return objects of type

Method, Field, and Constructor.

To understand the process, let’s work through an example that obtains the annotations

associated with a method. To do this, you first obtain a Class object that represents the

class, and then call getMethod() on that Class object, specifying the name of the method.

getMethod() has this general form:

Method getMethod(String methName, Class<?> ... paramTypes)

The name of the method is passed in methName. If the method has arguments, then Class

objects representing those types must also be specified by paramTypes. Notice that

paramTypes is a varargs parameter. This means that you can specify as many parameter

types as needed, including zero. getMethod() returns a Method object that represents the

method. If the method can’t be found, NoSuchMethodException is thrown.

From a Class, Method, Field, or Constructor object, you can obtain a specific annotation

associated with that object by calling getAnnotation(). Its general form is shown here:

<A extends Annotation> getAnnotation(Class<A> annoType)

Here, annoType is a Class object that represents the annotation in which you are interested.

The method returns a reference to the annotation. Using this reference, you can obtain the

values associated with the annotation’s members. The method returns null if the annotation

is not found, which will be the case if the annotation does not have RUNTIME retention.

Here is a program that assembles all of the pieces shown earlier and uses reflection to

display the annotation associated with a method:

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str();
 int val();
}

class Meta {

 // Annotate a method.
 @MyAnno(str = "Annotation Example", val = 100)
 public static void myMeth() {
 Meta ob = new Meta();

 // Obtain the annotation for this method
 // and display the values of the members.
 try {

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 279

P
a

rt
 I

 // First, get a Class object that represents
 // this class.
 Class<?> c = ob.getClass();

 // Now, get a Method object that represents
 // this method.
 Method m = c.getMethod("myMeth");

 // Next, get the annotation for this class.
 MyAnno anno = m.getAnnotation(MyAnno.class);

 // Finally, display the values.
 System.out.println(anno.str() + " " + anno.val());
 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

 public static void main(String args[]) {
 myMeth();
 }
}

The output from the program is shown here:

 Annotation Example 100

This program uses reflection as described to obtain and display the values of str and val
in the MyAnno annotation associated with myMeth() in the Meta class. There are two things

to pay special attention to. First, in this line

MyAnno anno = m.getAnnotation(MyAnno.class);

notice the expression MyAnno.class. This expression evaluates to a Class object of type

MyAnno, the annotation. This construct is called a class literal. You can use this type of

expression whenever a Class object of a known class is needed. For example, this statement

could have been used to obtain the Class object for Meta:

Class<?> c = Meta.class;

Of course, this approach only works when you know the class name of an object in advance,

which might not always be the case. In general, you can obtain a class literal for classes,

interfaces, primitive types, and arrays. (Remember, the <?> syntax relates to Java’s generics

feature. It is described in Chapter 14.)

The second point of interest is the way the values associated with str and val are

obtained when they are output by the following line:

System.out.println(anno.str() + " " + anno.val());

Notice that they are invoked using the method-call syntax. This same approach is used

whenever the value of an annotation member is required.

280 PART I The Java Language

A Second Reflection Example
In the preceding example, myMeth() has no parameters. Thus, when getMethod() was

called, only the name myMeth was passed. However, to obtain a method that has parameters,

you must specify class objects representing the types of those parameters as arguments to

getMethod(). For example, here is a slightly different version of the preceding program:

import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str();
 int val();
}

class Meta {

 // myMeth now has two arguments.
 @MyAnno(str = "Two Parameters", val = 19)
 public static void myMeth(String str, int i)
 {
 Meta ob = new Meta();

 try {
 Class<?> c = ob.getClass();

 // Here, the parameter types are specified.
 Method m = c.getMethod("myMeth", String.class, int.class);

 MyAnno anno = m.getAnnotation(MyAnno.class);

 System.out.println(anno.str() + " " + anno.val());
 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

 public static void main(String args[]) {
 myMeth("test", 10);
 }
}

The output from this version is shown here:

 Two Parameters 19

In this version, myMeth() takes a String and an int parameter. To obtain information

about this method, getMethod() must be called as shown here:

Method m = c.getMethod("myMeth", String.class, int.class);

Here, the Class objects representing String and int are passed as additional arguments.

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 281

P
a

rt
 I

Obtaining All Annotations
You can obtain all annotations that have RUNTIME retention that are associated with

an item by calling getAnnotations() on that item. It has this general form:

Annotation[] getAnnotations()

It returns an array of the annotations. getAnnotations() can be called on objects of type

Class, Method, Constructor, and Field.

Here is another reflection example that shows how to obtain all annotations associated

with a class and with a method. It declares two annotations. It then uses those annotations

to annotate a class and a method.

// Show all annotations for a class and a method.
import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str();
 int val();
}

@Retention(RetentionPolicy.RUNTIME)
@interface What {
 String description();
}

@What(description = "An annotation test class")
@MyAnno(str = "Meta2", val = 99)
class Meta2 {

 @What(description = "An annotation test method")
 @MyAnno(str = "Testing", val = 100)
 public static void myMeth() {
 Meta2 ob = new Meta2();

 try {
 Annotation annos[] = ob.getClass().getAnnotations();

 // Display all annotations for Meta2.
 System.out.println("All annotations for Meta2:");
 for(Annotation a : annos)
 System.out.println(a);

 System.out.println();

 // Display all annotations for myMeth.
 Method m = ob.getClass().getMethod("myMeth");
 annos = m.getAnnotations();

 System.out.println("All annotations for myMeth:");
 for(Annotation a : annos)
 System.out.println(a);

282 PART I The Java Language

 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

 public static void main(String args[]) {
 myMeth();
 }
}

The output is shown here:

 All annotations for Meta2:
 @What(description=An annotation test class)
 @MyAnno(str=Meta2, val=99)

 All annotations for myMeth:
 @What(description=An annotation test method)
 @MyAnno(str=Testing, val=100)

The program uses getAnnotations() to obtain an array of all annotations associated

with the Meta2 class and with the myMeth() method. As explained, getAnnotations()
returns an array of Annotation objects. Recall that Annotation is a super-interface of all

annotation interfaces and that it overrides toString() in Object. Thus, when a reference to

an Annotation is output, its toString() method is called to generate a string that describes

the annotation, as the preceding output shows.

The AnnotatedElement Interface

The methods getAnnotation() and getAnnotations() used by the preceding examples are

defined by the AnnotatedElement interface, which is defined in java.lang.reflect. This

interface supports reflection for annotations and is implemented by the classes Method,

Field, Constructor, Class, and Package.

In addition to getAnnotation() and getAnnotations(), AnnotatedElement defines two

other methods. The first is getDeclaredAnnotations(), which has this general form:

Annotation[] getDeclaredAnnotations()

It returns all non-inherited annotations present in the invoking object. The second is

isAnnotationPresent(), which has this general form:

boolean isAnnotationPresent(Class<? extends Annotation> annoType)

It returns true if the annotation specified by annoType is associated with the invoking object.

It returns false otherwise.

Using Default Values

You can give annotation members default values that will be used if no value is specified

when the annotation is applied. A default value is specified by adding a default clause to

a member’s declaration. It has this general form:

type member() default value ;

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 283

P
a

rt
 I

Here, value must be of a type compatible with type.
Here is @MyAnno rewritten to include default values:

// An annotation type declaration that includes defaults.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str() default "Testing";
 int val() default 9000;
}

This declaration gives a default value of "Testing" to str and 9000 to val. This means that

neither value needs to be specified when @MyAnno is used. However, either or both can be

given values if desired. Therefore, following are the four ways that @MyAnno can be used:

@MyAnno() // both str and val default
@MyAnno(str = "some string") // val defaults
@MyAnno(val = 100) // str defaults
@MyAnno(str = "Testing", val = 100) // no defaults

The following program demonstrates the use of default values in an annotation.

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration that includes defaults.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str() default "Testing";
 int val() default 9000;
}

class Meta3 {

 // Annotate a method using the default values.
 @MyAnno()
 public static void myMeth() {
 Meta3 ob = new Meta3();

 // Obtain the annotation for this method
 // and display the values of the members.
 try {
 Class<?> c = ob.getClass();

 Method m = c.getMethod("myMeth");

 MyAnno anno = m.getAnnotation(MyAnno.class);

 System.out.println(anno.str() + " " + anno.val());
 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

 public static void main(String args[]) {

284 PART I The Java Language

 myMeth();
 }
}

The output is shown here:

 Testing 9000

Marker Annotations

A marker annotation is a special kind of annotation that contains no members. Its sole

purpose is to mark a declaration. Thus, its presence as an annotation is sufficient. The best

way to determine if a marker annotation is present is to use the method isAnnotationPresent(),
which is defined by the AnnotatedElement interface.

Here is an example that uses a marker annotation. Because a marker interface contains

no members, simply determining whether it is present or absent is sufficient.

import java.lang.annotation.*;
import java.lang.reflect.*;

// A marker annotation.
@Retention(RetentionPolicy.RUNTIME)
@interface MyMarker { }

class Marker {

 // Annotate a method using a marker.
 // Notice that no () is needed.
 @MyMarker
 public static void myMeth() {
 Marker ob = new Marker();

 try {
 Method m = ob.getClass().getMethod("myMeth");

 // Determine if the annotation is present.
 if(m.isAnnotationPresent(MyMarker.class))
 System.out.println("MyMarker is present.");

 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

 public static void main(String args[]) {
 myMeth();
 }
}

The output, shown here, confirms that @MyMarker is present:

 MyMarker is present.

In the program, notice that you do not need to follow @MyMarker with parentheses

when it is applied. Thus, @MyMarker is applied simply by using its name, like this:

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 285

P
a

rt
 I

@MyMarker

It is not wrong to supply an empty set of parentheses, but they are not needed.

Single-Member Annotations

A single-member annotation contains only one member. It works like a normal annotation

except that it allows a shorthand form of specifying the value of the member. When only

one member is present, you can simply specify the value for that member when the

annotation is applied—you don’t need to specify the name of the member. However,

in order to use this shorthand, the name of the member must be value.

Here is an example that creates and uses a single-member annotation:

import java.lang.annotation.*;
import java.lang.reflect.*;

// A single-member annotation.
@Retention(RetentionPolicy.RUNTIME)
@interface MySingle {
 int value(); // this variable name must be value
}

class Single {

 // Annotate a method using a single-member annotation.
 @MySingle(100)
 public static void myMeth() {
 Single ob = new Single();

 try {
 Method m = ob.getClass().getMethod("myMeth");

 MySingle anno = m.getAnnotation(MySingle.class);

 System.out.println(anno.value()); // displays 100

 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

 public static void main(String args[]) {
 myMeth();
 }
}

As expected, this program displays the value 100. In the program, @MySingle is used to

annotate myMeth(), as shown here:

@MySingle(100)

Notice that value = need not be specified.

286 PART I The Java Language

You can use the single-value syntax when applying an annotation that has other

members, but those other members must all have default values. For example, here the

value xyz is added, with a default value of zero:

@interface SomeAnno {
 int value();
 int xyz() default 0;
}

In cases in which you want to use the default for xyz, you can apply @SomeAnno, as shown

next, by simply specifying the value of value by using the single-member syntax.

@SomeAnno(88)

In this case, xyz defaults to zero, and value gets the value 88. Of course, to specify a

different value for xyz requires that both members be explicitly named, as shown here:

@SomeAnno(value = 88, xyz = 99)

Remember, whenever you are using a single-member annotation, the name of that

member must be value.

The Built-In Annotations

Java defines many built-in annotations. Most are specialized, but eight are general purpose.

Of these, four are imported from java.lang.annotation: @Retention, @Documented,

@Target, and @Inherited. Four—@Override, @Deprecated, @SafeVarargs, and

@SuppressWarnings—are included in java.lang. Each is described here.

@Retention
@Retention is designed to be used only as an annotation to another annotation. It specifies

the retention policy as described earlier in this chapter.

@Documented
The @Documented annotation is a marker interface that tells a tool that an annotation is

to be documented. It is designed to be used only as an annotation to an annotation

declaration.

@Target
The @Target annotation specifies the types of declarations to which an annotation can be

applied. It is designed to be used only as an annotation to another annotation. @Target
takes one argument, which must be a constant from the ElementType enumeration. This

argument specifies the types of declarations to which the annotation can be applied. The

constants are shown here along with the type of declaration to which they correspond:

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 287

P
a

rt
 I

Target Constant Annotation Can Be Applied To

ANNOTATION_TYPE Another annotation

CONSTRUCTOR Constructor

FIELD Field

LOCAL_VARIABLE Local variable

METHOD Method

PACKAGE Package

PARAMETER Parameter

TYPE Class, interface, or enumeration

You can specify one or more of these values in a @Target annotation. To specify multiple

values, you must specify them within a braces-delimited list. For example, to specify that an

annotation applies only to fields and local variables, you can use this @Target annotation:

@Target({ ElementType.FIELD, ElementType.LOCAL_VARIABLE })

@Inherited
@Inherited is a marker annotation that can be used only on another annotation declaration.

Furthermore, it affects only annotations that will be used on class declarations. @Inherited

causes the annotation for a superclass to be inherited by a subclass. Therefore, when a

request for a specific annotation is made to the subclass, if that annotation is not present in

the subclass, then its superclass is checked. If that annotation is present in the superclass,

and if it is annotated with @Inherited, then that annotation will be returned.

@Override
@Override is a marker annotation that can be used only on methods. A method annotated

with @Override must override a method from a superclass. If it doesn’t, a compile-time

error will result. It is used to ensure that a superclass method is actually overridden, and not

simply overloaded.

@Deprecated
@Deprecated is a marker annotation. It indicates that a declaration is obsolete and has

been replaced by a newer form.

@SafeVarargs
@SafeVarargs is a marker annotation that can be applied to methods and constructors. It

indicates that no unsafe actions related to a varargs parameter occur. It is used to suppress

unchecked warnings on otherwise safe code as it relates to non-reifiable vararg types and

parameterized array instantiation. (A non-reifiable type is, essentially, a generic type.

Generics are described in Chapter 14.) It must be applied only to vararg methods or

constructors that are static or final. It was added by JDK 7.

288 PART I The Java Language

@SuppressWarnings
@SuppressWarnings specifies that one or more warnings that might be issued by the

compiler are to be suppressed. The warnings to suppress are specified by name, in string

form. This annotation can be applied to any type of declaration.

Some Restrictions

There are a number of restrictions that apply to annotation declarations. First, no

annotation can inherit another. Second, all methods declared by an annotation must

be without parameters. Furthermore, they must return one of the following:

• A primitive type, such as int or double

• An object of type String or Class

• An enum type

• Another annotation type

• An array of one of the preceding types

Annotations cannot be generic. In other words, they cannot take type parameters.

(Generics are described in Chapter 14.) Finally, annotation methods cannot specify a

throws clause.

13
CHAPTER

 289

I/O, Applets, and
Other Topics

This chapter introduces two of Java’s most important packages: io and applet. The io

package supports Java’s basic I/O (input/output) system, including file I/O. The applet
package supports applets. Support for both I/O and applets comes from Java’s core API

libraries, not from language keywords. For this reason, an in-depth discussion of these

topics is found in Part II of this book, which examines Java’s API classes. This chapter

discusses the foundation of these two subsystems so that you can see how they are

integrated into the Java language and how they fit into the larger context of the Java

programming and execution environment. This chapter also examines JDK 7’s new

try-with-resources statement and the last of Java’s keywords: transient, volatile, instanceof,

native, strictfp, and assert. It concludes by examining static import and by describing

another use for the this keyword.

I/O Basics
As you may have noticed while reading the preceding 12 chapters, not much use has been

made of I/O in the example programs. In fact, aside from print() and println(), none of

the I/O methods have been used significantly. The reason is simple: most real applications

of Java are not text-based, console programs. Rather, they are either graphically oriented

programs that rely on Java’s Abstract Window Toolkit (AWT) or Swing for user interaction,

or they are Web applications. Although text-based, console programs are excellent as

teaching examples, they do not constitute an important use for Java in the real world. Also,

Java’s support for console I/O is limited and somewhat awkward to use—even in simple

example programs. Text-based console I/O is just not that useful in real-world Java

programming.

The preceding paragraph notwithstanding, Java does provide strong, flexible support

for I/O as it relates to files and networks. Java’s I/O system is cohesive and consistent. In

fact, once you understand its fundamentals, the rest of the I/O system is easy to master. A

general overview of I/O is presented here. A detailed description is found in Chapters 19

and 20.

290 PART I The Java Language

Streams

Java programs perform I/O through streams. A stream is an abstraction that either produces

or consumes information. A stream is linked to a physical device by the Java I/O system. All

streams behave in the same manner, even if the actual physical devices to which they are

linked differ. Thus, the same I/O classes and methods can be applied to any type of device.

This means that an input stream can abstract many different kinds of input: from a disk file,

a keyboard, or a network socket. Likewise, an output stream may refer to the console, a disk

file, or a network connection. Streams are a clean way to deal with input/output without

having every part of your code understand the difference between a keyboard and a network,

for example. Java implements streams within class hierarchies defined in the java.io package.

NOTE In addition to the stream-based I/O defined in java.io, Java also provides buffer- and channel-
based I/O, which is defined in java.nio and its subpackages. They are described in Chapter 20.

Byte Streams and Character Streams

Java defines two types of streams: byte and character. Byte streams provide a convenient

means for handling input and output of bytes. Byte streams are used, for example, when

reading or writing binary data. Character streams provide a convenient means for handling

input and output of characters. They use Unicode and, therefore, can be internationalized.

Also, in some cases, character streams are more efficient than byte streams.

The original version of Java (Java 1.0) did not include character streams and, thus, all

I/O was byte-oriented. Character streams were added by Java 1.1, and certain byte-oriented

classes and methods were deprecated. Although old code that doesn’t use character streams

is becoming increasingly rare, it may still be encountered from time to time. As a general

rule, old code should be updated to take advantage of character streams where appropriate.

One other point: at the lowest level, all I/O is still byte-oriented. The character-based

streams simply provide a convenient and efficient means for handling characters.

An overview of both byte-oriented streams and character-oriented streams is presented

in the following sections.

The Byte Stream Classes
Byte streams are defined by using two class hierarchies. At the top are two abstract classes:

InputStream and OutputStream. Each of these abstract classes has several concrete

subclasses that handle the differences among various devices, such as disk files, network

connections, and even memory buffers. The byte stream classes in java.io are shown in

Table 13-1. A few of these classes are discussed later in this section. Others are described in

Part II of this book. Remember, to use the stream classes, you must import java.io.

 Chapter 13 I/O, Applets, and Other Topics 291

P
a

rt
 I

The abstract classes InputStream and OutputStream define several key methods that

the other stream classes implement. Two of the most important are read() and write(),
which, respectively, read and write bytes of data. Each has forms that are abstract and must

be overridden by derived stream classes.

The Character Stream Classes
Character streams are defined by using two class hierarchies. At the top are two abstract

classes: Reader and Writer. These abstract classes handle Unicode character streams. Java

has several concrete subclasses of each of these. The character stream classes in java.io are

shown in Table 13-2.

Table 13-1 The Byte Stream Classes in java.io

Stream Class Meaning

BufferedInputStream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArrayInputStream Input stream that reads from a byte array

ByteArrayOutputStream Output stream that writes to a byte array

DataInputStream An input stream that contains methods for reading the Java

standard data types

DataOutputStream An output stream that contains methods for writing the Java

standard data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

ObjectInputStream Input stream for objects

ObjectOutputStream Output stream for objects

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and println()

PushbackInputStream Input stream that supports one-byte “unget,” which returns a

byte to the input stream

SequenceInputStream Input stream that is a combination of two or more input

streams that will be read sequentially, one after the other

292 PART I The Java Language

The abstract classes Reader and Writer define several key methods that the other stream

classes implement. Two of the most important methods are read() and write(), which read

and write characters of data, respectively. Each has forms that are abstract and must be

overridden by derived stream classes.

The Predefined Streams

As you know, all Java programs automatically import the java.lang package. This package

defines a class called System, which encapsulates several aspects of the run-time environment.

For example, using some of its methods, you can obtain the current time and the settings

of various properties associated with the system. System also contains three predefined

stream variables: in, out, and err. These fields are declared as public, static, and final within

System. This means that they can be used by any other part of your program and without

reference to a specific System object.

System.out refers to the standard output stream. By default, this is the console. System.in

refers to standard input, which is the keyboard by default. System.err refers to the standard

error stream, which also is the console by default. However, these streams may be redirected

to any compatible I/O device.

Table 13-2 The Character Stream I/O Classes in java.io

Stream Class Meaning

BufferedReader Buffered input character stream

BufferedWriter Buffered output character stream

CharArrayReader Input stream that reads from a character array

CharArrayWriter Output stream that writes to a character array

FileReader Input stream that reads from a file

FileWriter Output stream that writes to a file

FilterReader Filtered reader

FilterWriter Filtered writer

InputStreamReader Input stream that translates bytes to characters

LineNumberReader Input stream that counts lines

OutputStreamWriter Output stream that translates characters to bytes

PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print() and println()

PushbackReader Input stream that allows characters to be returned to the input

stream

Reader Abstract class that describes character stream input

StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character stream output

 Chapter 13 I/O, Applets, and Other Topics 293

P
a

rt
 I

System.in is an object of type InputStream; System.out and System.err are objects

of type PrintStream. These are byte streams, even though they are typically used to read

and write characters from and to the console. As you will see, you can wrap these within

character-based streams, if desired.

The preceding chapters have been using System.out in their examples. You can use

System.err in much the same way. As explained in the next section, use of System.in is a

little more complicated.

Reading Console Input
In Java 1.0, the only way to perform console input was to use a byte stream. Today, using a

byte stream to read console input is still acceptable. However, for commercial applications,

the preferred method of reading console input is to use a character-oriented stream. This

makes your program easier to internationalize and maintain.

In Java, console input is accomplished by reading from System.in. To obtain a character-

based stream that is attached to the console, wrap System.in in a BufferedReader object.

BufferedReader supports a buffered input stream. A commonly used constructor is shown

here:

BufferedReader(Reader inputReader)

Here, inputReader is the stream that is linked to the instance of BufferedReader that is being

created. Reader is an abstract class. One of its concrete subclasses is InputStreamReader,

which converts bytes to characters. To obtain an InputStreamReader object that is linked to

System.in, use the following constructor:

InputStreamReader(InputStream inputStream)

Because System.in refers to an object of type InputStream, it can be used for inputStream.

Putting it all together, the following line of code creates a BufferedReader that is connected

to the keyboard:

BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in));

After this statement executes, br is a character-based stream that is linked to the console

through System.in.

Reading Characters

To read a character from a BufferedReader, use read(). The version of read() that we will

be using is

int read() throws IOException

Each time that read() is called, it reads a character from the input stream and returns it as

an integer value. It returns –1 when the end of the stream is encountered. As you can see, it

can throw an IOException.

The following program demonstrates read() by reading characters from the console

until the user types a "q." Notice that any I/O exceptions that might be generated are

simply thrown out of main(). Such an approach is common when reading from the console

294 PART I The Java Language

in simple example programs such as those shown in this book, but in more sophisticated

applications, you can handle the exceptions explicitly.

// Use a BufferedReader to read characters from the console.
import java.io.*;

class BRRead {
 public static void main(String args[]) throws IOException
 {
 char c;
 BufferedReader br = new
 BufferedReader(new InputStreamReader(System.in));
 System.out.println("Enter characters, 'q' to quit.");
 // read characters
 do {
 c = (char) br.read();
 System.out.println(c);
 } while(c != 'q');
 }
}

Here is a sample run:

 Enter characters, 'q' to quit.
 123abcq
 1
 2
 3
 a
 b
 c
 q

This output may look a little different from what you expected because System.in is line

buffered, by default. This means that no input is actually passed to the program until you

press enter. As you can guess, this does not make read() particularly valuable for interactive

console input.

Reading Strings

To read a string from the keyboard, use the version of readLine() that is a member of the

BufferedReader class. Its general form is shown here:

String readLine() throws IOException

As you can see, it returns a String object.

The following program demonstrates BufferedReader and the readLine() method; the

program reads and displays lines of text until you enter the word "stop":

// Read a string from console using a BufferedReader.
import java.io.*;

 Chapter 13 I/O, Applets, and Other Topics 295

P
a

rt
 I

class BRReadLines {
 public static void main(String args[]) throws IOException
 {
 // create a BufferedReader using System.in
 BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in));
 String str;
 System.out.println("Enter lines of text.");
 System.out.println("Enter 'stop' to quit.");
 do {
 str = br.readLine();
 System.out.println(str);
 } while(!str.equals("stop"));
 }
}

The next example creates a tiny text editor. It creates an array of String objects and

then reads in lines of text, storing each line in the array. It will read up to 100 lines or until

you enter "stop." It uses a BufferedReader to read from the console.

// A tiny editor.
import java.io.*;

class TinyEdit {
 public static void main(String args[]) throws IOException
 {
 // create a BufferedReader using System.in
 BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in));
 String str[] = new String[100];
 System.out.println("Enter lines of text.");
 System.out.println("Enter 'stop' to quit.");
 for(int i=0; i<100; i++) {
 str[i] = br.readLine();
 if(str[i].equals("stop")) break;
 }
 System.out.println("\nHere is your file:");
 // display the lines
 for(int i=0; i<100; i++) {
 if(str[i].equals("stop")) break;
 System.out.println(str[i]);
 }
 }
}

Here is a sample run:

 Enter lines of text.
 Enter 'stop' to quit.
 This is line one.
 This is line two.
 Java makes working with strings easy.
 Just create String objects.

296 PART I The Java Language

 stop
 Here is your file:
 This is line one.
 This is line two.
 Java makes working with strings easy.
 Just create String objects.

Writing Console Output
Console output is most easily accomplished with print() and println(), described earlier,

which are used in most of the examples in this book. These methods are defined by the

class PrintStream (which is the type of object referenced by System.out). Even though

System.out is a byte stream, using it for simple program output is still acceptable. However,

a character-based alternative is described in the next section.

Because PrintStream is an output stream derived from OutputStream, it also implements

the low-level method write(). Thus, write() can be used to write to the console. The simplest

form of write() defined by PrintStream is shown here:

void write(int byteval)

This method writes the byte specified by byteval. Although byteval is declared as an integer,

only the low-order eight bits are written. Here is a short example that uses write() to output

the character "A" followed by a newline to the screen:

// Demonstrate System.out.write().
class WriteDemo {
 public static void main(String args[]) {
 int b;

 b = 'A';
 System.out.write(b);
 System.out.write('\n');
 }
}

You will not often use write() to perform console output (although doing so might be

useful in some situations) because print() and println() are substantially easier to use.

The PrintWriter Class
Although using System.out to write to the console is acceptable, its use is probably best for

debugging purposes or for sample programs, such as those found in this book. For real-

world programs, the recommended method of writing to the console when using Java is

through a PrintWriter stream. PrintWriter is one of the character-based classes. Using a

character-based class for console output makes internationalizing your program easier.

PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

Here, outputStream is an object of type OutputStream, and flushOnNewline controls whether

Java flushes the output stream every time a println() method is called. If flushOnNewline is
true, flushing automatically takes place. If false, flushing is not automatic.

 Chapter 13 I/O, Applets, and Other Topics 297

P
a

rt
 I

PrintWriter supports the print() and println() methods. Thus, you can use these

methods in the same way as you used them with System.out. If an argument is not a simple

type, the PrintWriter methods call the object’s toString() method and then print the result.

To write to the console by using a PrintWriter, specify System.out for the output stream

and flush the stream after each newline. For example, this line of code creates a PrintWriter

that is connected to console output:

PrintWriter pw = new PrintWriter(System.out, true);

The following application illustrates using a PrintWriter to handle console output:

// Demonstrate PrintWriter
import java.io.*;

public class PrintWriterDemo {
 public static void main(String args[]) {
 PrintWriter pw = new PrintWriter(System.out, true);

 pw.println("This is a string");
 int i = -7;
 pw.println(i);
 double d = 4.5e-7;
 pw.println(d);
 }
}

The output from this program is shown here:

 This is a string
 -7
 4.5E-7

Remember, there is nothing wrong with using System.out to write simple text output

to the console when you are learning Java or debugging your programs. However, using

a PrintWriter makes your real-world applications easier to internationalize. Because no

advantage is gained by using a PrintWriter in the sample programs shown in this book,

we will continue to use System.out to write to the console.

Reading and Writing Files
Java provides a number of classes and methods that allow you to read and write files. Before

we begin, it is important to state that the topic of file I/O is quite large and file I/O is

examined in detail in Part II. The purpose of this section is to introduce the basic techniques

that read from and write to a file. Although bytes streams are used, these techniques can be

adapted to the character-based streams.

Two of the most often-used stream classes are FileInputStream and FileOutputStream,

which create byte streams linked to files. To open a file, you simply create an object of one

of these classes, specifying the name of the file as an argument to the constructor. Although

both classes support additional constructors, the following are the forms that we will be using:

FileInputStream(String fileName) throws FileNotFoundException

FileOutputStream(String fileName) throws FileNotFoundException

298 PART I The Java Language

Here, fileName specifies the name of the file that you want to open. When you create an

input stream, if the file does not exist, then FileNotFoundException is thrown. For output

streams, if the file cannot be opened or created, then FileNotFoundException is thrown.

FileNotFoundException is a subclass of IOException. When an output file is opened, any

preexisting file by the same name is destroyed.

NOTE In situations in which a security manager is present, several of the file classes, including
FileInputStream and FileOutputStream, will throw a SecurityException if a security violation occurs
when attempting to open a file. By default, applications run via java do not use a security manager.
For that reason, the I/O examples in this book do not need to watch for a possible SecurityException.
However, other types of applications (such as applets) will use the security manager, and file I/O
performed by such an application could generate a SecurityException. In that case, you will need
to appropriately handle this exception.

When you are done with a file, you must close it. This is done by calling the close()
method, which is implemented by both FileInputStream and FileOutputStream. It is shown

here:

void close() throws IOException

Closing a file releases the system resources allocated to the file, allowing them to be used by

another file. Failure to close a file can result in “memory leaks” because of unused resources

remaining allocated.

NOTE Beginning with JDK 7, the close() method is specified by the AutoCloseable interface in
java.lang. AutoCloseable is inherited by the Closeable interface in java.io. Both interfaces are
implemented by the stream classes, including FileInputStream and FileOutputStream.

Before moving on, it is important to point out that there are two basic approaches that

you can use to close a file when you are done with it. The first is the traditional approach,

in which close() is called explicitly when the file is no longer needed. This is the approach

used by all versions of Java prior to JDK 7 and is, therefore, found in all legacy code. The

second is to use the new try-with-resources statement added by JDK 7, which automatically

closes a file when it is no longer needed. In this approach, no explicit call to close() is
executed. Since there are millions of lines of pre-JDK 7 legacy code that are still being used

and maintained, it is important that you know and understand the traditional approach.

Therefore, we will begin with it. The new automated approach is described in the following

section.

To read from a file, you can use a version of read() that is defined within FileInputStream.

The one that we will use is shown here:

int read() throws IOException

Each time that it is called, it reads a single byte from the file and returns the byte as an

integer value. read() returns –1 when the end of the file is encountered. It can throw an

IOException.

The following program uses read() to input and display the contents of a file that

contains ASCII text. The name of the file is specified as a command-line argument.

 Chapter 13 I/O, Applets, and Other Topics 299

P
a

rt
 I

/* Display a text file.
 To use this program, specify the name
 of the file that you want to see.
 For example, to see a file called TEST.TXT,
 use the following command line.

 java ShowFile TEST.TXT
*/

import java.io.*;

class ShowFile {
 public static void main(String args[])
 {
 int i;
 FileInputStream fin;

 // First, confirm that a filename has been specified.
 if(args.length != 1) {
 System.out.println("Usage: ShowFile filename");
 return;
 }

 // Attempt to open the file.
 try {
 fin = new FileInputStream(args[0]);
 } catch(FileNotFoundException e) {
 System.out.println("Cannot Open File");
 return;
 }

 // At this point, the file is open and can be read.
 // The following reads characters until EOF is encountered.
 try {
 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);
 } catch(IOException e) {
 System.out.println("Error Reading File");
 }

 // Close the file.
 try {
 fin.close();
 } catch(IOException e) {
 System.out.println("Error Closing File");
 }
 }
}

In the program, notice the try/catch blocks that handle the I/O errors that might

occur. Each I/O operation is monitored for exceptions, and if an exception occurs, it is

300 PART I The Java Language

handled. Be aware that in simple programs or example code, it is common to see I/O

exceptions simply thrown out of main(), as was done in the earlier console I/O examples.

Also, in some real-world code, it can be helpful to let an exception propagate to a calling

routine to let the caller know that an I/O operation failed. However, most of the file

I/O examples in this book handle all I/O exceptions explicitly, as shown, for the sake

of illustration.

Although the preceding example closes the file stream after the file is read, there is a

variation that is often useful. The variation is to call close() within a finally block. In this

approach, all of the methods that access the file are contained within a try block, and the

finally block is used to close the file. This way, no matter how the try block terminates,

the file is closed. Assuming the preceding example, here is how the try block that reads the

file can be recoded:

try {
 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);
} catch(IOException e) {
 System.out.println("Error Reading File");
} finally {
 // Close file on the way out of the try block.
 try {
 fin.close();
 } catch(IOException e) {
 System.out.println("Error Closing File");
 }
}

Although not an issue in this case, one advantage to this approach in general is that if the

code that accesses a file terminates because of some non-I/O related exception, the file is

still closed by the finally block.

Sometimes it’s easier to wrap the portions of a program that open the file and access

the file within a single try block (rather than separating the two) and then use a finally

block to close the file. For example, here is another way to write the ShowFile program:

/* Display a text file.
 To use this program, specify the name
 of the file that you want to see.
 For example, to see a file called TEST.TXT,
 use the following command line.

 java ShowFile TEST.TXT

 This variation wraps the code that opens and
 accesses the file within a single try block.
 The file is closed by the finally block.
*/

import java.io.*;

 Chapter 13 I/O, Applets, and Other Topics 301

P
a

rt
 I

class ShowFile {
 public static void main(String args[])
 {
 int i;
 FileInputStream fin = null;

 // First, confirm that a filename has been specified.
 if(args.length != 1) {
 System.out.println("Usage: ShowFile filename");
 return;
 }

 // The following code opens a file, reads characters until EOF
 // is encountered, and then closes the file via a finally block.
 try {
 fin = new FileInputStream(args[0]);

 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);

 } catch(FileNotFoundException e) {
 System.out.println("File Not Found.");
 } catch(IOException e) {
 System.out.println("An I/O Error Occurred");
 } finally {
 // Close file in all cases.
 try {
 if(fin != null) fin.close();
 } catch(IOException e) {
 System.out.println("Error Closing File");
 }
 }
 }
}

In this approach, notice that fin is initialized to null. Then, in the finally block, the file

is closed only if fin is not null. This works because fin will be non-null only if the file is

successfully opened. Thus, close() is not called if an exception occurs while opening the file.

It is possible to make the try/catch sequence in the preceding example a bit more

compact. Because FileNotFoundException is a subclass of IOException, it need not be

caught separately. For example, here is the sequence recoded to eliminate catching

FileNotFoundException. In this case, the standard exception message, which describes

the error, is displayed.

try {
 fin = new FileInputStream(args[0]);

 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);

302 PART I The Java Language

 } while(i != -1);

} catch(IOException e) {
 System.out.println("I/O Error: " + e);
} finally {
 // Close file in all cases.
 try {
 if(fin != null) fin.close();
 } catch(IOException e) {
 System.out.println("Error Closing File");
 }
}

In this approach, any error, including an error opening the file, is simply handled by

the single catch statement. Because of its compactness, this approach is used by many of

the I/O examples in this book. Be aware, however, that this approach is not appropriate

in cases in which you want to deal separately with a failure to open a file, such as might be

caused if a user mistypes a filename. In such a situation, you might want to prompt for the

correct name, for example, before entering a try block that accesses the file.

To write to a file, you can use the write() method defined by FileOutputStream. Its

simplest form is shown here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is declared as an

integer, only the low-order eight bits are written to the file. If an error occurs during writing,

an IOException is thrown. The next example uses write() to copy a file:

/* Copy a file.
 To use this program, specify the name
 of the source file and the destination file.
 For example, to copy a file called FIRST.TXT
 to a file called SECOND.TXT, use the following
 command line.

 java CopyFile FIRST.TXT SECOND.TXT
*/

import java.io.*;

class CopyFile {
 public static void main(String args[]) throws IOException
 {
 int i;
 FileInputStream fin = null;
 FileOutputStream fout = null;

 // First, confirm that both files have been specified.
 if(args.length != 2) {
 System.out.println("Usage: CopyFile from to");
 return;
 }

 Chapter 13 I/O, Applets, and Other Topics 303

P
a

rt
 I

 // Copy a File.
 try {
 // Attempt to open the files.
 fin = new FileInputStream(args[0]);
 fout = new FileOutputStream(args[1]);

 do {
 i = fin.read();
 if(i != -1) fout.write(i);
 } while(i != -1);

 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 } finally {
 try {
 if(fin != null) fin.close();
 } catch(IOException e2) {
 System.out.println("Error Closing Input File");
 }
 try {
 if(fout != null) fout.close();
 } catch(IOException e2) {
 System.out.println("Error Closing Output File");
 }
 }
 }
}

In the program, notice that two separate try blocks are used when closing the files. This

ensures that both files are closed, even if the call to fin.close() throws an exception.

In general, notice that all potential I/O errors are handled in the preceding two

programs by the use of exceptions. This differs from some computer languages that use

error codes to report file errors. Not only do exceptions make file handling cleaner, but

they also enable Java to easily differentiate the end-of-file condition from file errors when

input is being performed. In C/C++, many input functions return the same value when an

error occurs and when the end of the file is reached. (That is, in C/C++, an EOF condition

often is mapped to the same value as an input error.) This usually means that the

programmer must include extra program statements to determine which event actually

occurred. In Java, input errors are passed to your program via exceptions, not by values

returned by read(). Thus, when read() returns –1, it means only one thing: the end of the

file has been encountered.

Automatically Closing a File
In the preceding section, the example programs have made explicit calls to close() to close

a file once it is no longer needed. As mentioned, this is the way files were closed when using

versions of Java prior to JDK 7. Although this approach is still valid and useful, JDK 7 adds a

new feature that offers another way to manage resources, such as file streams, by automating

the closing process. This feature, sometimes referred to as automatic resource management, or

ARM for short, is based on an expanded version of the try statement. The principal advantage

304 PART I The Java Language

of automatic resource management is that it prevents situations in which a file (or other

resource) is inadvertently not released after it is no longer needed. As explained, forgetting

to close a file can result in memory leaks, and could lead to other problems.

Automatic resource management is based on an expanded form of the try statement.

Here is its general form:

try (resource-specification) {

 // use the resource

}

Here, resource-specification is a statement that declares and initializes a resource, such as a file

stream. It consists of a variable declaration in which the variable is initialized with a reference

to the object being managed. When the try block ends, the resource is automatically released.

In the case of a file, this means that the file is automatically closed. (Thus, there is no need to

call close() explicitly.) Of course, this form of try can also include catch and finally clauses.

This new form of try is called the try-with-resources statement.

The try-with-resources statement can be used only with those resources that implement

the AutoCloseable interface defined by java.lang. This interface defines the close()
method. AutoCloseable is inherited by the Closeable interface in java.io. Both interfaces

are implemented by the stream classes. Thus, try-with-resources can be used when working

with streams, including file streams.

As a first example of automatically closing a file, here is a reworked version of the

ShowFile program that uses it:

/* This version of the ShowFile program uses a try-with-resources
 statement to automatically close a file after it is no longer needed.

 Note: This code requires JDK 7 or later.
*/

import java.io.*;

class ShowFile {
 public static void main(String args[])
 {
 int i;

 // First, confirm that a filename has been specified.
 if(args.length != 1) {
 System.out.println("Usage: ShowFile filename");
 return;
 }

 // The following code uses a try-with-resources statement to open
 // a file and then automatically close it when the try block is left.
 try(FileInputStream fin = new FileInputStream(args[0])) {

 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);

 Chapter 13 I/O, Applets, and Other Topics 305

P
a

rt
 I

 } catch(FileNotFoundException e) {
 System.out.println("File Not Found.");
 } catch(IOException e) {
 System.out.println("An I/O Error Occurred");
 }

 }
}

In the program, pay special attention to how the file is opened within the try statement:

try(FileInputStream fin = new FileInputStream(args[0])) {

Notice how the resource-specification portion of the try declares a FileInputStream called

fin, which is then assigned a reference to the file opened by its constructor. Thus, in this

version of the program, the variable fin is local to the try block, being created when the try

is entered. When the try is left, the stream associated with fin is automatically closed by an

implicit call to close(). You don’t need to call close() explicitly, which means that you can’t

forget to close the file. This is a key advantage of using try-with-resources.

It is important to understand that the resource declared in the try statement is implicitly

final. This means that you can’t assign to the resource after it has been created. Also, the

scope of the resource is limited to the try-with-resources statement.

You can manage more than one resource within a single try statement. To do so, simply

separate each resource specification with a semicolon. The following program shows an

example. It reworks the CopyFile program shown earlier so that it uses a single try-with-

resources statement to manage both fin and fout.

/* A version of CopyFile that uses try-with-resources.
 It demonstrates two resources (in this case files) being
 managed by a single try statement.
*/

import java.io.*;

class CopyFile {
 public static void main(String args[]) throws IOException
 {
 int i;

 // First, confirm that both files have been specified.
 if(args.length != 2) {
 System.out.println("Usage: CopyFile from to");
 return;
 }

 // Open and manage two files via the try statement.
 try (FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout = new FileOutputStream(args[1]))
 {

306 PART I The Java Language

 do {
 i = fin.read();
 if(i != -1) fout.write(i);
 } while(i != -1);

 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

In this program, notice how the input and output files are opened within the try block:

try (FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout = new FileOutputStream(args[1]))
{
 // ...

After this try block ends, both fin and fout will have been closed. If you compare this

version of the program to the previous version, you will see that it is much shorter. The

ability to streamline source code is a side-benefit of automatic resource management.

There is one other aspect to try-with-resources that needs to be mentioned. In general,

when a try block executes, it is possible that an exception inside the try block will lead to

another exception that occurs when the resource is closed in a finally clause. In the case

of a “normal” try statement, the original exception is lost, being preempted by the second

exception. However, when using try-with-resources, the second exception is suppressed. It

is not, however, lost. Instead, it is added to the list of suppressed exceptions associated

with the first exception. The list of suppressed exceptions can be obtained by using the

getSuppressed() method defined by Throwable.

Because of the benefits that the try-with-resources statement offers, it will be used

by many, but not all, of the example programs in this edition of this book. Some of the

examples will still use the traditional approach to closing a resource. There are several

reasons for this. First, there are millions of lines of legacy code in widespread use that rely

on the traditional approach. It is important that all Java programmers be fully versed in,

and comfortable with, the traditional approach when maintaining this older code. Second,

because not all project development will immediately switch to a new version of the JDK, it

is likely that some programmers will continue to work in a pre-JDK 7 environment for a

period of time. In such situations, the expanded form of try is not available. Finally, there

may be cases in which explicitly closing a resource is more appropriate than the automated

approach. For these reasons, some of the examples in this book will continue to use the

traditional approach, explicitly calling close(). In addition to illustrating the traditional

technique, these examples can also be compiled and run by all readers in all environments.

REMEMBER A few examples in this book use the traditional approach to closing files as a means of
illustrating this technique, which is widely used in legacy code. However, for new code, you will
usually want to use the new automated approach supported by the try-with-resources statement
just described.

 Chapter 13 I/O, Applets, and Other Topics 307

P
a

rt
 I

Applet Fundamentals
All of the preceding examples in this book have been Java console-based applications.

However, these types of applications constitute only one class of Java programs. Another

type of program is the applet. As mentioned in Chapter 1, applets are small applications that

are accessed on an Internet server, transported over the Internet, automatically installed,

and run as part of a web document. After an applet arrives on the client, it has limited

access to resources so that it can produce a graphical user interface and run complex

computations without introducing the risk of viruses or breaching data integrity.

Many of the issues connected with the creation and use of applets are found in Part II,

when the applet package is examined, and also when Swing is described in Part III. However,

the fundamentals connected to the creation of an applet are presented here, because applets

are not structured in the same way as the programs that have been used thus far. As you will

see, applets differ from console-based applications in several key areas.

Let’s begin with the simple applet shown here:

import java.awt.*;
import java.applet.*;

public class SimpleApplet extends Applet {
 public void paint(Graphics g) {
 g.drawString("A Simple Applet", 20, 20);
 }
}

This applet begins with two import statements. The first imports the Abstract Window

Toolkit (AWT) classes. Applets interact with the user (either directly or indirectly) through

the AWT, not through the console-based I/O classes. The AWT contains support for a

window-based, graphical user interface. As you might expect, the AWT is quite large and

sophisticated, and a complete discussion of it consumes several chapters in Part II of this

book. Fortunately, this simple applet makes very limited use of the AWT. (Applets can also

use Swing to provide the graphical user interface, but this approach is described later in

this book.) The second import statement imports the applet package, which contains the

class Applet. Every applet that you create must be a subclass (either directly or indirectly)

of Applet.
The next line in the program declares the class SimpleApplet. This class must be

declared as public, because it will be accessed by code that is outside the program.

Inside SimpleApplet, paint() is declared. This method is defined by the AWT and must

be overridden by the applet. paint() is called each time that the applet must redisplay its

output. This situation can occur for several reasons. For example, the window in which the

applet is running can be overwritten by another window and then uncovered. Or, the

applet window can be minimized and then restored. paint() is also called when the applet

begins execution. Whatever the cause, whenever the applet must redraw its output, paint()
is called. The paint() method has one parameter of type Graphics. This parameter contains

the graphics context, which describes the graphics environment in which the applet is

running. This context is used whenever output to the applet is required.

308 PART I The Java Language

Inside paint() is a call to drawString(), which is a member of the Graphics class. This

method outputs a string beginning at the specified X,Y location. It has the following

general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window, the upper-left

corner is location 0,0. The call to drawString() in the applet causes the message "A Simple

Applet" to be displayed beginning at location 20,20.

Notice that the applet does not have a main() method. Unlike Java programs, applets

do not begin execution at main(). In fact, most applets don’t even have a main() method.

Instead, an applet begins execution when the name of its class is passed to an applet viewer

or to a network browser.

After you enter the source code for SimpleApplet, compile in the same way that you

have been compiling programs. However, running SimpleApplet involves a different

process. In fact, there are two ways in which you can run an applet:

• Executing the applet within a Java-compatible web browser.

• Using an applet viewer, such as the standard tool, appletviewer. An applet viewer

executes your applet in a window. This is generally the fastest and easiest way to test

your applet.

Each of these methods is described next.

One way to execute an applet in a web browser is to write a short HTML text file that

contains a tag that loads the applet. Currently, Oracle recommends using the APPLET tag

for this purpose. (The OBJECT tag can also be used. See Chapter 22 for further information

regarding applet deployment strategies.) Using APPLET, here is the HTML file that executes

SimpleApplet:

<applet code="SimpleApplet" width=200 height=60>
</applet>

The width and height statements specify the dimensions of the display area used by the

applet. (The APPLET tag contains several other options that are examined more closely in

Part II.) After you create this file, you can execute your browser and then load this file,

which causes SimpleApplet to be executed.

To execute SimpleApplet with an applet viewer, you may also execute the HTML file

shown earlier. For example, if the preceding HTML file is called RunApp.html, then the

following command line will run SimpleApplet:

C:\>appletviewer RunApp.html

However, a more convenient method exists that you can use to speed up testing. Simply

include a comment at the head of your Java source code file that contains the APPLET tag.

By doing so, your code is documented with a prototype of the necessary HTML statements,

and you can test your compiled applet merely by starting the applet viewer with your Java

source code file. If you use this method, the SimpleApplet source file looks like this:

import java.awt.*;
import java.applet.*;
/*

 Chapter 13 I/O, Applets, and Other Topics 309

P
a

rt
 I

<applet code="SimpleApplet" width=200 height=60>
</applet>
*/

public class SimpleApplet extends Applet {
 public void paint(Graphics g) {
 g.drawString("A Simple Applet", 20, 20);
 }
}

With this approach, you can quickly iterate through applet development by using these

three steps:

 1. Edit a Java source file.

 2. Compile your program.

 3. Execute the applet viewer, specifying the name of your applet’s source file. The

applet viewer will encounter the APPLET tag within the comment and execute

your applet.

The window produced by SimpleApplet, as displayed by the applet viewer, is shown in

the following illustration:

While the subject of applets is more fully discussed later in this book, here are the key

points that you should remember now:

• Applets do not need a main() method.

• Applets must be run under an applet viewer or a Java-compatible browser.

• User I/O is not accomplished with Java’s stream I/O classes. Instead, applets use

the interface provided by the AWT or Swing.

The transient and volatile Modifiers
Java defines two interesting type modifiers: transient and volatile. These modifiers are used

to handle somewhat specialized situations.

When an instance variable is declared as transient, then its value need not persist when

an object is stored. For example:

class T {
 transient int a; // will not persist
 int b; // will persist
}

Here, if an object of type T is written to a persistent storage area, the contents of a would

not be saved, but the contents of b would.

310 PART I The Java Language

The volatile modifier tells the compiler that the variable modified by volatile can be

changed unexpectedly by other parts of your program. One of these situations involves

multithreaded programs. In a multithreaded program, sometimes two or more threads

share the same variable. For efficiency considerations, each thread can keep its own, private

copy of such a shared variable. The real (or master) copy of the variable is updated at

various times, such as when a synchronized method is entered. While this approach works

fine, it may be inefficient at times. In some cases, all that really matters is that the master

copy of a variable always reflects its current state. To ensure this, simply specify the variable

as volatile, which tells the compiler that it must always use the master copy of a volatile

variable (or, at least, always keep any private copies up-to-date with the master copy, and

vice versa). Also, accesses to the master variable must be executed in the precise order in

which they are executed on any private copy.

Using instanceof
Sometimes, knowing the type of an object during run time is useful. For example, you

might have one thread of execution that generates various types of objects, and another

thread that processes these objects. In this situation, it might be useful for the processing

thread to know the type of each object when it receives it. Another situation in which

knowledge of an object’s type at run time is important involves casting. In Java, an invalid

cast causes a run-time error. Many invalid casts can be caught at compile time. However,

casts involving class hierarchies can produce invalid casts that can be detected only at run

time. For example, a superclass called A can produce two subclasses, called B and C. Thus,

casting a B object into type A or casting a C object into type A is legal, but casting a B object

into type C (or vice versa) isn’t legal. Because an object of type A can refer to objects of

either B or C, how can you know, at run time, what type of object is actually being referred

to before attempting the cast to type C? It could be an object of type A, B, or C. If it is an

object of type B, a run-time exception will be thrown. Java provides the run-time operator

instanceof to answer this question.

The instanceof operator has this general form:

objref instanceof type

Here, objref is a reference to an instance of a class, and type is a class type. If objref is of

the specified type or can be cast into the specified type, then the instanceof operator

evaluates to true. Otherwise, its result is false. Thus, instanceof is the means by which your

program can obtain run-time type information about an object.

The following program demonstrates instanceof:

// Demonstrate instanceof operator.
class A {
 int i, j;
}

class B {
 int i, j;
}

class C extends A {
 int k;
}

 Chapter 13 I/O, Applets, and Other Topics 311

P
a

rt
 I

class D extends A {
 int k;
}

class InstanceOf {
 public static void main(String args[]) {
 A a = new A();
 B b = new B();
 C c = new C();
 D d = new D();
 if(a instanceof A)
 System.out.println("a is instance of A");
 if(b instanceof B)
 System.out.println("b is instance of B");
 if(c instanceof C)
 System.out.println("c is instance of C");
 if(c instanceof A)
 System.out.println("c can be cast to A");

 if(a instanceof C)
 System.out.println("a can be cast to C");

 System.out.println();

 // compare types of derived types
 A ob;

 ob = d; // A reference to d
 System.out.println("ob now refers to d");
 if(ob instanceof D)
 System.out.println("ob is instance of D");

 System.out.println();

 ob = c; // A reference to c
 System.out.println("ob now refers to c");

 if(ob instanceof D)
 System.out.println("ob can be cast to D");
 else
 System.out.println("ob cannot be cast to D");

 if(ob instanceof A)
 System.out.println("ob can be cast to A");

 System.out.println();

 // all objects can be cast to Object
 if(a instanceof Object)
 System.out.println("a may be cast to Object");
 if(b instanceof Object)
 System.out.println("b may be cast to Object");
 if(c instanceof Object)
 System.out.println("c may be cast to Object");
 if(d instanceof Object)

312 PART I The Java Language

 System.out.println("d may be cast to Object");
 }
}

The output from this program is shown here:

 a is instance of A
 b is instance of B
 c is instance of C
 c can be cast to A

 ob now refers to d
 ob is instance of D

 ob now refers to c
 ob cannot be cast to D
 ob can be cast to A

 a may be cast to Object
 b may be cast to Object
 c may be cast to Object
 d may be cast to Object

The instanceof operator isn’t needed by most programs, because, generally, you know

the type of object with which you are working. However, it can be very useful when you’re

writing generalized routines that operate on objects of a complex class hierarchy.

strictfp
A relatively new keyword is strictfp. With the creation of Java 2, the floating-point

computation model was relaxed slightly. Specifically, the new model does not require the

truncation of certain intermediate values that occur during a computation. This prevents

overflow or underflow in some cases. By modifying a class, a method, or interface with

strictfp, you ensure that floating-point calculations (and thus all truncations) take place

precisely as they did in earlier versions of Java. When a class is modified by strictfp, all the

methods in the class are also modified by strictfp automatically.

For example, the following fragment tells Java to use the original floating-point model

for calculations in all methods defined within MyClass:

strictfp class MyClass { //...

Frankly, most programmers never need to use strictfp, because it affects only a very small

class of problems.

Native Methods
Although it is rare, occasionally you may want to call a subroutine that is written in a

language other than Java. Typically, such a subroutine exists as executable code for the

CPU and environment in which you are working—that is, native code. For example, you

may want to call a native code subroutine to achieve faster execution time. Or, you may

want to use a specialized, third-party library, such as a statistical package. However, because

Java programs are compiled to bytecode, which is then interpreted (or compiled on-the-fly)

 Chapter 13 I/O, Applets, and Other Topics 313

P
a

rt
 I

by the Java run-time system, it would seem impossible to call a native code subroutine from

within your Java program. Fortunately, this conclusion is false. Java provides the native

keyword, which is used to declare native code methods. Once declared, these methods

can be called from inside your Java program just as you call any other Java method.

To declare a native method, precede the method with the native modifier, but do not

define any body for the method. For example:

public native int meth() ;

After you declare a native method, you must write the native method and follow a rather

complex series of steps to link it with your Java code.

Most native methods are written in C. The mechanism used to integrate C code with

a Java program is called the Java Native Interface (JNI). A detailed description of the JNI is

beyond the scope of this book, but the following description provides sufficient information

for most applications.

NOTE The precise steps that you need to follow will vary between different Java environments. They also
depend on the language that you are using to implement the native method. The following discussion
assumes a Windows environment. The language used to implement the native method is C.

The easiest way to understand the process is to work through an example. To begin,

enter the following short program, which uses a native method called test():

// A simple example that uses a native method.
public class NativeDemo {
 int i;
 public static void main(String args[]) {
 NativeDemo ob = new NativeDemo();

 ob.i = 10;
 System.out.println("This is ob.i before the native method:" +
 ob.i);
 ob.test(); // call a native method
 System.out.println("This is ob.i after the native method:" +
 ob.i);
 }

 // declare native method
 public native void test() ;

 // load DLL that contains static method
 static {
 System.loadLibrary("NativeDemo");
 }
}

Notice that the test() method is declared as native and has no body. This is the method

that we will implement in C shortly. Also notice the static block. As explained earlier in this

book, a static block is executed only once, when your program begins execution (or, more

precisely, when its class is first loaded). In this case, it is used to load the dynamic link

library that contains the native implementation of test(). (You will see how to create

this library soon.)

314 PART I The Java Language

The library is loaded by the loadLibrary() method, which is part of the System class.

This is its general form:

static void loadLibrary(String filename)

Here, filename is a string that specifies the name of the file that holds the library. For the

Windows environment, this file is assumed to have the .DLL extension.

After you enter the program, compile it to produce NativeDemo.class. Next, you must

use javah.exe to produce one file: NativeDemo.h. (javah.exe is included in the JDK.) You

will include NativeDemo.h in your implementation of test(). To produce NativeDemo.h,

use the following command:

javah -jni NativeDemo

This command produces a header file called NativeDemo.h. This file must be included in

the C file that implements test(). The output produced by this command is shown here:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class NativeDemo */

#ifndef _Included_NativeDemo
#define _Included_NativeDemo
#ifdef _ _cplusplus
extern "C" {
#endif
/*
 * Class: NativeDemo
 * Method: test
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_NativeDemo_test
 (JNIEnv *, jobject);

#ifdef _ _cplusplus
}
#endif
#endif

Pay special attention to the following line, which defines the prototype for the test()
function that you will create:

JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *, jobject);

Notice that the name of the function is Java_NativeDemo_test(). You must use this as the

name of the native function that you implement. That is, instead of creating a C function

called test(), you will create one called Java_NativeDemo_test(). The NativeDemo

component of the prefix is added because it identifies the test() method as being part of

the NativeDemo class. Remember, another class may define its own native test() method

that is completely different from the one declared by NativeDemo. Including the class

name in the prefix provides a way to differentiate between differing versions. As a general

rule, native functions will be given a name whose prefix includes the name of the class in

which they are declared.

 Chapter 13 I/O, Applets, and Other Topics 315

P
a

rt
 I

After producing the necessary header file, you can write your implementation of test()
and store it in a file named NativeDemo.c:

/* This file contains the C version of the
 test() method.
*/

#include <jni.h>
#include "NativeDemo.h"
#include <stdio.h>

JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *env, jobject obj)
{
 jclass cls;
 jfieldID fid;
 jint i;

 printf("Starting the native method.\n");
 cls = (*env)->GetObjectClass(env, obj);
 fid = (*env)->GetFieldID(env, cls, "i", "I");

 if(fid == 0) {
 printf("Could not get field id.\n");
 return;
 }
 i = (*env)->GetIntField(env, obj, fid);
 printf("i = %d\n", i);
 (*env)->SetIntField(env, obj, fid, 2*i);
 printf("Ending the native method.\n");
}

Notice that this file includes jni.h, which contains interfacing information. This file is

provided by your Java compiler. The header file NativeDemo.h was created by javah earlier.

In this function, the GetObjectClass() method is used to obtain a C structure that has

information about the class NativeDemo. The GetFieldID() method returns a C structure

with information about the field named "i" for the class. GetIntField() retrieves the original

value of that field. SetIntField() stores an updated value in that field. (See the file jni.h for

additional methods that handle other types of data.)

After creating NativeDemo.c, you must compile it and create a DLL. To do this by using

the Microsoft C/C++ compiler, use the following command line. (You might need to specify

the path to jni.h and its subordinate file jni_md.h.)

Cl /LD NativeDemo.c

This produces a file called NativeDemo.dll. Once this is done, you can execute the Java

program, which will produce the following output:

 This is ob.i before the native method: 10
 Starting the native method.
 i = 10
 Ending the native method.
 This is ob.i after the native method: 20

316 PART I The Java Language

Problems with Native Methods
Native methods seem to offer great promise, because they enable you to gain access to an

existing base of library routines, and they offer the possibility of faster run-time execution.

But native methods also introduce two significant problems:

• Potential security risk Because a native method executes actual machine code, it

can gain access to any part of the host system. That is, native code is not confined to

the Java execution environment. This could allow a virus infection, for example.

For this reason, applets cannot use native methods. Also, the loading of DLLs can

be restricted, and their loading is subject to the approval of the security manager.

• Loss of portability Because the native code is contained in a DLL, it must be

present on the machine that is executing the Java program. Further, because each

native method is CPU- and operating system–dependent, each DLL is inherently

nonportable. Thus, a Java application that uses native methods will be able to run

only on a machine for which a compatible DLL has been installed.

The use of native methods should be restricted, because they render your Java

programs nonportable and pose significant security risks.

Using assert
Another relatively new addition to Java is the keyword assert. It is used during program

development to create an assertion, which is a condition that should be true during the

execution of the program. For example, you might have a method that should always

return a positive integer value. You might test this by asserting that the return value is

greater than zero using an assert statement. At run time, if the condition is true, no other

action takes place. However, if the condition is false, then an AssertionError is thrown.

Assertions are often used during testing to verify that some expected condition is actually

met. They are not usually used for released code.

The assert keyword has two forms. The first is shown here:

assert condition;

Here, condition is an expression that must evaluate to a Boolean result. If the result is true,

then the assertion is true and no other action takes place. If the condition is false, then the

assertion fails and a default AssertionError object is thrown.

The second form of assert is shown here:

assert condition: expr ;

In this version, expr is a value that is passed to the AssertionError constructor. This value is

converted to its string format and displayed if an assertion fails. Typically, you will specify a

string for expr, but any non-void expression is allowed as long as it defines a reasonable

string conversion.

Here is an example that uses assert. It verifies that the return value of getnum() is
positive.

 Chapter 13 I/O, Applets, and Other Topics 317

P
a

rt
 I

// Demonstrate assert.
class AssertDemo {
 static int val = 3;

 // Return an integer.
 static int getnum() {
 return val--;
 }

 public static void main(String args[])
 {
 int n;

 for(int i=0; i < 10; i++) {
 n = getnum();

 assert n > 0; // will fail when n is 0

 System.out.println("n is " + n);
 }
 }
}

To enable assertion checking at run time, you must specify the -ea option. For example, to

enable assertions for AssertDemo, execute it using this line:

java -ea AssertDemo

After compiling and running as just described, the program creates the following

output:

 n is 3
 n is 2
 n is 1
 Exception in thread "main" java.lang.AssertionError
 at AssertDemo.main(AssertDemo.java:17)

In main(), repeated calls are made to the method getnum(), which returns an integer

value. The return value of getnum() is assigned to n and then tested using this assert
statement:

assert n > 0; // will fail when n is 0

This statement will fail when n equals 0, which it will after the fourth call. When this

happens, an exception is thrown.

As explained, you can specify the message displayed when an assertion fails. For

example, if you substitute

assert n > 0 : "n is negative!";

318 PART I The Java Language

for the assertion in the preceding program, then the following output will be generated:

 n is 3
 n is 2
 n is 1
 Exception in thread "main" java.lang.AssertionError: n is
 negative!
 at AssertDemo.main(AssertDemo.java:17)

One important point to understand about assertions is that you must not rely on them

to perform any action actually required by the program. The reason is that normally,

released code will be run with assertions disabled. For example, consider this variation of

the preceding program:

// A poor way to use assert!!!
class AssertDemo {
 // get a random number generator
 static int val = 3;

 // Return an integer.
 static int getnum() {
 return val--;
 }

 public static void main(String args[])
 {
 int n = 0;

 for(int i=0; i < 10; i++) {

 assert (n = getnum()) > 0; // This is not a good idea!

 System.out.println("n is " + n);
 }
 }
}

In this version of the program, the call to getnum() is moved inside the assert statement.

Although this works fine if assertions are enabled, it will cause a malfunction when assertions

are disabled, because the call to getnum() will never be executed! In fact, n must now be

initialized, because the compiler will recognize that it might not be assigned a value by the

assert statement.

Assertions are a good addition to Java because they streamline the type of error

checking that is common during development. For example, prior to assert, if you wanted

to verify that n was positive in the preceding program, you had to use a sequence of code

similar to this:

if(n < 0) {
 System.out.println("n is negative!");
 return; // or throw an exception
}

With assert, you need only one line of code. Furthermore, you don’t have to remove the

assert statements from your released code.

 Chapter 13 I/O, Applets, and Other Topics 319

P
a

rt
 I

Assertion Enabling and Disabling Options

When executing code, you can disable all assertions by using the -da option. You can enable

or disable a specific package (and all of its subpackages) by specifying its name followed by

three periods after the -ea or -da option. For example, to enable assertions in a package

called MyPack, use

-ea:MyPack...

To disable assertions in MyPack, use

-da:MyPack...

You can also specify a class with the -ea or -da option. For example, this enables

AssertDemo individually:

-ea:AssertDemo

Static Import
Java includes a feature called static import that expands the capabilities of the import
keyword. By following import with the keyword static, an import statement can be used to

import the static members of a class or interface. When using static import, it is possible

to refer to static members directly by their names, without having to qualify them with the

name of their class. This simplifies and shortens the syntax required to use a static member.

To understand the usefulness of static import, let’s begin with an example that does not
use it. The following program computes the hypotenuse of a right triangle. It uses two

static methods from Java’s built-in math class Math, which is part of java.lang. The first is

Math.pow(), which returns a value raised to a specified power. The second is Math.sqrt(),
which returns the square root of its argument.

// Compute the hypotenuse of a right triangle.
class Hypot {
 public static void main(String args[]) {
 double side1, side2;
 double hypot;
 side1 = 3.0;
 side2 = 4.0;

 // Notice how sqrt() and pow() must be qualified by
 // their class name, which is Math.
 hypot = Math.sqrt(Math.pow(side1, 2) +
 Math.pow(side2, 2));

 System.out.println("Given sides of lengths " +
 side1 + " and " + side2 +
 " the hypotenuse is " +
 hypot);
 }
}

320 PART I The Java Language

Because pow() and sqrt() are static methods, they must be called through the use

of their class’ name, Math. This results in a somewhat unwieldy hypotenuse calculation:

hypot = Math.sqrt(Math.pow(side1, 2) +
 Math.pow(side2, 2));

As this simple example illustrates, having to specify the class name each time pow() or sqrt()
(or any of Java’s other math methods, such as sin(), cos(), and tan()) is used can grow

tedious.

You can eliminate the tedium of specifying the class name through the use of static

import, as shown in the following version of the preceding program:

// Use static import to bring sqrt() and pow() into view.
import static java.lang.Math.sqrt;
import static java.lang.Math.pow;

// Compute the hypotenuse of a right triangle.
class Hypot {
 public static void main(String args[]) {
 double side1, side2;
 double hypot;

 side1 = 3.0;
 side2 = 4.0;

 // Here, sqrt() and pow() can be called by themselves,
 // without their class name.
 hypot = sqrt(pow(side1, 2) + pow(side2, 2));

 System.out.println("Given sides of lengths " +
 side1 + " and " + side2 +
 " the hypotenuse is " +
 hypot);
 }
}

In this version, the names sqrt and pow are brought into view by these static import

statements:

import static java.lang.Math.sqrt;
import static java.lang.Math.pow;

After these statements, it is no longer necessary to qualify sqrt() or pow() with their class

name. Therefore, the hypotenuse calculation can more conveniently be specified, as shown

here:

hypot = sqrt(pow(side1, 2) + pow(side2, 2));

As you can see, this form is considerably more readable.

There are two general forms of the import static statement. The first, which is used by

the preceding example, brings into view a single name. Its general form is shown here:

import static pkg.type-name.static-member-name ;

 Chapter 13 I/O, Applets, and Other Topics 321

P
a

rt
 I

Here, type-name is the name of a class or interface that contains the desired static member.

Its full package name is specified by pkg. The name of the member is specified by static-
member-name.

The second form of static import imports all static members of a given class or

interface. Its general form is shown here:

import static pkg.type-name.*;

If you will be using many static methods or fields defined by a class, then this form lets you

bring them into view without having to specify each individually. Therefore, the preceding

program could have used this single import statement to bring both pow() and sqrt() (and

all other static members of Math) into view:

import static java.lang.Math.*;

Of course, static import is not limited just to the Math class or just to methods. For

example, this brings the static field System.out into view:

import static java.lang.System.out;

After this statement, you can output to the console without having to qualify out with

System, as shown here:

out.println("After importing System.out, you can use out directly.");

Whether importing System.out as just shown is a good idea is subject to debate. Although

it does shorten the statement, it is no longer instantly clear to anyone reading the program

that the out being referred to is System.out.
One other point: in addition to importing the static members of classes and interfaces

defined by the Java API, you can also use static import to import the static members of

classes and interfaces that you create.

As convenient as static import can be, it is important not to abuse it. Remember, the

reason that Java organizes its libraries into packages is to avoid namespace collisions. When

you import static members, you are bringing those members into the global namespace.

Thus, you are increasing the potential for namespace conflicts and for the inadvertent

hiding of other names. If you are using a static member once or twice in the program,

it’s best not to import it. Also, some static names, such as System.out, are so recognizable

that you might not want to import them. Static import is designed for those situations in

which you are using a static member repeatedly, such as when performing a series of

mathematical computations. In essence, you should use, but not abuse, this feature.

Invoking Overloaded Constructors Through this()
When working with overloaded constructors, it is sometimes useful for one constructor

to invoke another. In Java, this is accomplished by using another form of the this keyword.

The general form is shown here:

this(arg-list)

When this() is executed, the overloaded constructor that matches the parameter list

specified by arg-list is executed first. Then, if there are any statements inside the original

322 PART I The Java Language

constructor, they are executed. The call to this() must be the first statement within

the constructor.

To understand how this() can be used, let’s work through a short example. First,

consider the following class that does not use this():

class MyClass {
 int a;
 int b;

 // initialize a and b individually
 MyClass(int i, int j) {
 a = i;
 b = j;
 }

 // initialize a and b to the same value
 MyClass(int i) {
 a = i;
 b = i;
 }

 // give a and b default values of 0
 MyClass() {
 a = 0;
 b = 0;
 }
}

This class contains three constructors, each of which initializes the values of a and b. The

first is passed individual values for a and b. The second is passed just one value, which is

assigned to both a and b. The third gives a and b default values of zero.

By using this(), it is possible to rewrite MyClass as shown here:

class MyClass {
 int a;
 int b;

 // initialize a and b individually
 MyClass(int i, int j) {
 a = i;
 b = j;
 }

 // initialize a and b to the same value
 MyClass(int i) {
 this(i, i); // invokes MyClass(i, i)
 }

 // give a and b default values of 0
 MyClass() {
 this(0); // invokes MyClass(0)
 }
}

 Chapter 13 I/O, Applets, and Other Topics 323

P
a

rt
 I

In this version of MyClass, the only constructor that actually assigns values to the a and

b fields is MyClass(int, int). The other two constructors simply invoke that constructor

(either directly or indirectly) through this(). For example, consider what happens when

this statement executes:

MyClass mc = new MyClass(8);

The call to MyClass(8) causes this(8, 8) to be executed, which translates into a call to

MyClass(8, 8), because this is the version of the MyClass constructor whose parameter list

matches the arguments passed via this(). Now, consider the following statement, which uses

the default constructor:

MyClass mc2 = new MyClass();

In this case, this(0) is called. This causes MyClass(0) to be invoked because it is the

constructor with the matching parameter list. Of course, MyClass(0) then calls MyClass(0,0)
as just described.

One reason why invoking overloaded constructors through this() can be useful is that

it can prevent the unnecessary duplication of code. In many cases, reducing duplicate code

decreases the time it takes to load your class because often the object code is smaller. This

is especially important for programs delivered via the Internet in which load times are an

issue. Using this() can also help structure your code when constructors contain a large

amount of duplicate code.

However, you need to be careful. Constructors that call this() will execute a bit slower

than those that contain all of their initialization code inline. This is because the call and

return mechanism used when the second constructor is invoked adds overhead. If your

class will be used to create only a handful of objects, or if the constructors in the class that

call this() will be seldom used, then this decrease in run-time performance is probably

insignificant. However, if your class will be used to create a large number of objects (on the

order of thousands) during program execution, then the negative impact of the increased

overhead could be meaningful. Because object creation affects all users of your class, there

will be cases in which you must carefully weigh the benefits of faster load time against the

increased time it takes to create an object.

Here is another consideration: for very short constructors, such as those used by MyClass,

there is often little difference in the size of the object code whether this() is used or not.

(Actually, there are cases in which no reduction in the size of the object code is achieved.)

This is because the bytecode that sets up and returns from the call to this() adds instructions

to the object file. Therefore, in these types of situations, even though duplicate code is

eliminated, using this() will not obtain significant savings in terms of load time. However, the

added cost in terms of overhead to each object’s construction will still be incurred. Therefore,

this() is most applicable to constructors that contain large amounts of initialization code, not

those that simply set the value of a handful of fields.

There are two restrictions you need to keep in mind when using this(). First, you

cannot use any instance variable of the constructor’s class in a call to this(). Second, you

cannot use super() and this() in the same constructor because each must be the first

statement in the constructor.

This page intentionally left blank

14
CHAPTER

 325

Generics

Since the original 1.0 release in 1995, many new features have been added to Java. The one

that has had the most profound impact is generics. Introduced by JDK 5, generics changed

Java in two important ways. First, it added a new syntactical element to the language. Second,

it caused changes to many of the classes and methods in the core API. Today, generics are

an integral part of Java programming, and a solid understanding of this important feature

is required. It is examined here in detail.

Through the use of generics, it is possible to create classes, interfaces, and methods that

will work in a type-safe manner with various kinds of data. Many algorithms are logically the

same no matter what type of data they are being applied to. For example, the mechanism

that supports a stack is the same whether that stack is storing items of type Integer, String,

Object, or Thread. With generics, you can define an algorithm once, independently of any

specific type of data, and then apply that algorithm to a wide variety of data types without

any additional effort. The expressive power generics added to the language fundamentally

changed the way that Java code is written.

Perhaps the one feature of Java that has been most significantly affected by generics is

the Collections Framework. The Collections Framework is part of the Java API and is described

in detail in Chapter 17, but a brief mention is useful now. A collection is a group of objects.

The Collections Framework defines several classes, such as lists and maps, that manage

collections. The collection classes have always been able to work with any type of object.

The benefit that generics add is that the collection classes can now be used with complete

type safety. Thus, in addition to being a powerful language element on its own, generics

also enabled an existing feature to be substantially improved. This is another reason why

generics represent such an important addition to Java.

This chapter describes the syntax, theory, and use of generics. It also shows how

generics provide type safety for some previously difficult cases. Once you have completed

this chapter, you will want to examine Chapter 17, which covers the Collections Framework.

There you will find many examples of generics at work.

REMEMBER Generics were added by JDK 5. Source code using generics cannot be compiled by earlier
versions of javac.

326 PART I The Java Language

What Are Generics?
At its core, the term generics means parameterized types. Parameterized types are important

because they enable you to create classes, interfaces, and methods in which the type of data

upon which they operate is specified as a parameter. Using generics, it is possible to create

a single class, for example, that automatically works with different types of data. A class,

interface, or method that operates on a parameterized type is called generic, as in generic
class or generic method.

It is important to understand that Java has always given you the ability to create

generalized classes, interfaces, and methods by operating through references of type

Object. Because Object is the superclass of all other classes, an Object reference can refer

to any type object. Thus, in pre-generics code, generalized classes, interfaces, and methods

used Object references to operate on various types of objects. The problem was that they

could not do so with type safety.

Generics added the type safety that was lacking. They also streamlined the process,

because it is no longer necessary to explicitly employ casts to translate between Object and

the type of data that is actually being operated upon. With generics, all casts are automatic

and implicit. Thus, generics expanded your ability to reuse code and let you do so safely

and easily.

NOTE A Warning to C++ Programmers: Although generics are similar to templates in C++, they are not
the same. There are some fundamental differences between the two approaches to generic types.
If you have a background in C++, it is important not to jump to conclusions about how generics work
in Java.

A Simple Generics Example
Let’s begin with a simple example of a generic class. The following program defines two

classes. The first is the generic class Gen, and the second is GenDemo, which uses Gen.

// A simple generic class.
// Here, T is a type parameter that
// will be replaced by a real type
// when an object of type Gen is created.
class Gen<T> {
 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }

 // Show type of T.

 Chapter 14 Generics 327

P
a

rt
 I

 void showType() {
 System.out.println("Type of T is " +
 ob.getClass().getName());
 }
}

// Demonstrate the generic class.
class GenDemo {
 public static void main(String args[]) {
 // Create a Gen reference for Integers.
 Gen<Integer> iOb;

 // Create a Gen<Integer> object and assign its
 // reference to iOb. Notice the use of autoboxing
 // to encapsulate the value 88 within an Integer object.
 iOb = new Gen<Integer>(88);

 // Show the type of data used by iOb.
 iOb.showType();

 // Get the value in iOb. Notice that
 // no cast is needed.
 int v = iOb.getob();
 System.out.println("value: " + v);

 System.out.println();

 // Create a Gen object for Strings.
 Gen<String> strOb = new Gen<String> ("Generics Test");

 // Show the type of data used by strOb.
 strOb.showType();

 // Get the value of strOb. Again, notice
 // that no cast is needed.
 String str = strOb.getob();
 System.out.println("value: " + str);
 }
}

The output produced by the program is shown here:

 Type of T is java.lang.Integer
 value: 88

 Type of T is java.lang.String
 value: Generics Test

Let’s examine this program carefully.

First, notice how Gen is declared by the following line:

class Gen<T> {

328 PART I The Java Language

Here, T is the name of a type parameter. This name is used as a placeholder for the actual

type that will be passed to Gen when an object is created. Thus, T is used within Gen

whenever the type parameter is needed. Notice that T is contained within < >. This syntax

can be generalized. Whenever a type parameter is being declared, it is specified within

angle brackets. Because Gen uses a type parameter, Gen is a generic class, which is also

called a parameterized type.
Next, T is used to declare an object called ob, as shown here:

T ob; // declare an object of type T

As explained, T is a placeholder for the actual type that will be specified when a Gen object

is created. Thus, ob will be an object of the type passed to T. For example, if type String is

passed to T, then in that instance, ob will be of type String.

Now consider Gen’s constructor:

Gen(T o) {
 ob = o;
}

Notice that its parameter, o, is of type T. This means that the actual type of o is determined

by the type passed to T when a Gen object is created. Also, because both the parameter o

and the member variable ob are of type T, they will both be of the same actual type when a

Gen object is created.

The type parameter T can also be used to specify the return type of a method, as is the

case with the getob() method, shown here:

T getob() {
 return ob;
}

Because ob is also of type T, its type is compatible with the return type specified by getob().
The showType() method displays the type of T by calling getName() on the Class object

returned by the call to getClass() on ob. The getClass() method is defined by Object and is

thus a member of all class types. It returns a Class object that corresponds to the type of the

class of the object on which it is called. Class defines the getName() method, which returns

a string representation of the class name.

The GenDemo class demonstrates the generic Gen class. It first creates a version of Gen

for integers, as shown here:

Gen<Integer> iOb;

Look closely at this declaration. First, notice that the type Integer is specified within the

angle brackets after Gen. In this case, Integer is a type argument that is passed to Gen’s type

parameter, T. This effectively creates a version of Gen in which all references to T are

translated into references to Integer. Thus, for this declaration, ob is of type Integer, and

the return type of getob() is of type Integer.

Before moving on, it’s necessary to state that the Java compiler does not actually create

different versions of Gen, or of any other generic class. Although it’s helpful to think in

these terms, it is not what actually happens. Instead, the compiler removes all generic type

information, substituting the necessary casts, to make your code behave as if a specific

 Chapter 14 Generics 329

P
a

rt
 I

version of Gen were created. Thus, there is really only one version of Gen that actually

exists in your program. The process of removing generic type information is called erasure,
and we will return to this topic later in this chapter.

The next line assigns to iOb a reference to an instance of an Integer version of the

Gen class:

iOb = new Gen<Integer>(88);

Notice that when the Gen constructor is called, the type argument Integer is also specified.

This is necessary because the type of the object (in this case iOb) to which the reference is

being assigned is of type Gen<Integer>. Thus, the reference returned by new must also be

of type Gen<Integer>. If it isn’t, a compile-time error will result. For example, the following

assignment will cause a compile-time error:

iOb = new Gen<Double>(88.0); // Error!

Because iOb is of type Gen<Integer>, it can’t be used to refer to an object of Gen<Double>.

This type checking is one of the main benefits of generics because it ensures type safety.

As the comments in the program state, the assignment

iOb = new Gen<Integer>(88);

makes use of autoboxing to encapsulate the value 88, which is an int, into an Integer. This

works because Gen<Integer> creates a constructor that takes an Integer argument. Because

an Integer is expected, Java will automatically box 88 inside one. Of course, the assignment

could also have been written explicitly, like this:

iOb = new Gen<Integer>(new Integer(88));

However, there would be no benefit to using this version.

The program then displays the type of ob within iOb, which is Integer. Next, the

program obtains the value of ob by use of the following line:

int v = iOb.getob();

Because the return type of getob() is T, which was replaced by Integer when iOb was

declared, the return type of getob() is also Integer, which unboxes into int when assigned

to v (which is an int). Thus, there is no need to cast the return type of getob() to Integer.

Of course, it’s not necessary to use the auto-unboxing feature. The preceding line could

have been written like this, too:

int v = iOb.getob().intValue();

However, the auto-unboxing feature makes the code more compact.

Next, GenDemo declares an object of type Gen<String>:

Gen<String> strOb = new Gen<String>("Generics Test");

Because the type argument is String, String is substituted for T inside Gen. This creates

(conceptually) a String version of Gen, as the remaining lines in the program demonstrate.

330 PART I The Java Language

Generics Work Only with Objects

When declaring an instance of a generic type, the type argument passed to the type

parameter must be a class type. You cannot use a primitive type, such as int or char. For

example, with Gen, it is possible to pass any class type to T, but you cannot pass a primitive

type to a type parameter. Therefore, the following declaration is illegal:

Gen<int> intOb = new Gen<int>(53); // Error, can't use primitive type

Of course, not being able to specify a primitive type is not a serious restriction because you

can use the type wrappers (as the preceding example did) to encapsulate a primitive type.

Further, Java’s autoboxing and auto-unboxing mechanism makes the use of the type

wrapper transparent.

Generic Types Differ Based on Their Type Arguments

A key point to understand about generic types is that a reference of one specific version of

a generic type is not type compatible with another version of the same generic type. For

example, assuming the program just shown, the following line of code is in error and will

not compile:

iOb = strOb; // Wrong!

Even though both iOb and strOb are of type Gen<T>, they are references to different types

because their type parameters differ. This is part of the way that generics add type safety

and prevent errors.

How Generics Improve Type Safety

At this point, you might be asking yourself the following question: Given that the same

functionality found in the generic Gen class can be achieved without generics, by simply

specifying Object as the data type and employing the proper casts, what is the benefit of

making Gen generic? The answer is that generics automatically ensure the type safety of all

operations involving Gen. In the process, they eliminate the need for you to enter casts and

to type-check code by hand.

To understand the benefits of generics, first consider the following program that

creates a non-generic equivalent of Gen:

// NonGen is functionally equivalent to Gen
// but does not use generics.
class NonGen {
 Object ob; // ob is now of type Object

 // Pass the constructor a reference to
 // an object of type Object
 NonGen(Object o) {
 ob = o;
 }

 // Return type Object.
 Object getob() {

 Chapter 14 Generics 331

P
a

rt
 I

 return ob;
 }

 // Show type of ob.
 void showType() {
 System.out.println("Type of ob is " +
 ob.getClass().getName());
 }
}

// Demonstrate the non-generic class.
class NonGenDemo {
 public static void main(String args[]) {
 NonGen iOb;

 // Create NonGen Object and store
 // an Integer in it. Autoboxing still occurs.
 iOb = new NonGen(88);

 // Show the type of data used by iOb.
 iOb.showType();

 // Get the value of iOb.
 // This time, a cast is necessary.
 int v = (Integer) iOb.getob();
 System.out.println("value: " + v);

 System.out.println();

 // Create another NonGen object and
 // store a String in it.
 NonGen strOb = new NonGen("Non-Generics Test");

 // Show the type of data used by strOb.
 strOb.showType();

 // Get the value of strOb.
 // Again, notice that a cast is necessary.
 String str = (String) strOb.getob();
 System.out.println("value: " + str);

 // This compiles, but is conceptually wrong!
 iOb = strOb;
 v = (Integer) iOb.getob(); // run-time error!
 }
}

There are several things of interest in this version. First, notice that NonGen replaces all

uses of T with Object. This makes NonGen able to store any type of object, as can the generic

version. However, it also prevents the Java compiler from having any real knowledge about

the type of data actually stored in NonGen, which is bad for two reasons. First, explicit casts

must be employed to retrieve the stored data. Second, many kinds of type mismatch errors

cannot be found until run time. Let’s look closely at each problem.

332 PART I The Java Language

Notice this line:

int v = (Integer) iOb.getob();

Because the return type of getob() is Object, the cast to Integer is necessary to enable that

value to be auto-unboxed and stored in v. If you remove the cast, the program will not

compile. With the generic version, this cast was implicit. In the non-generic version, the cast

must be explicit. This is not only an inconvenience, but also a potential source of error.

Now, consider the following sequence from near the end of the program:

// This compiles, but is conceptually wrong!
iOb = strOb;
v = (Integer) iOb.getob(); // run-time error!

Here, strOb is assigned to iOb. However, strOb refers to an object that contains a string,

not an integer. This assignment is syntactically valid because all NonGen references are

the same, and any NonGen reference can refer to any other NonGen object. However, the

statement is semantically wrong, as the next line shows. Here, the return type of getob() is
cast to Integer, and then an attempt is made to assign this value to v. The trouble is that

iOb now refers to an object that stores a String, not an Integer. Unfortunately, without the

use of generics, the Java compiler has no way to know this. Instead, a run-time exception

occurs when the cast to Integer is attempted. As you know, it is extremely bad to have

run-time exceptions occur in your code!

The preceding sequence can’t occur when generics are used. If this sequence were

attempted in the generic version of the program, the compiler would catch it and report

an error, thus preventing a serious bug that results in a run-time exception. The ability to

create type-safe code in which type-mismatch errors are caught at compile time is a key

advantage of generics. Although using Object references to create “generic” code has

always been possible, that code was not type safe, and its misuse could result in run-time

exceptions. Generics prevent this from occurring. In essence, through generics, run-time

errors are converted into compile-time errors. This is a major advantage.

A Generic Class with Two Type Parameters
You can declare more than one type parameter in a generic type. To specify two or more

type parameters, simply use a comma-separated list. For example, the following TwoGen

class is a variation of the Gen class that has two type parameters:

// A simple generic class with two type
// parameters: T and V.
class TwoGen<T, V> {
 T ob1;
 V ob2;

 // Pass the constructor a reference to
 // an object of type T and an object of type V.
 TwoGen(T o1, V o2) {
 ob1 = o1;
 ob2 = o2;
 }

 // Show types of T and V.

 Chapter 14 Generics 333

P
a

rt
 I

 void showTypes() {
 System.out.println("Type of T is " +
 ob1.getClass().getName());

 System.out.println("Type of V is " +
 ob2.getClass().getName());
 }

 T getob1() {
 return ob1;
 }

 V getob2() {
 return ob2;
 }
}

// Demonstrate TwoGen.
class SimpGen {
 public static void main(String args[]) {

 TwoGen<Integer, String> tgObj =
 new TwoGen<Integer, String>(88, "Generics");

 // Show the types.
 tgObj.showTypes();

 // Obtain and show values.
 int v = tgObj.getob1();
 System.out.println("value: " + v);

 String str = tgObj.getob2();
 System.out.println("value: " + str);
 }
}

The output from this program is shown here:

 Type of T is java.lang.Integer
 Type of V is java.lang.String
 value: 88
 value: Generics

Notice how TwoGen is declared:

class TwoGen<T, V> {

It specifies two type parameters: T and V, separated by a comma. Because it has two type

parameters, two type arguments must be passed to TwoGen when an object is created, as

shown next:

TwoGen<Integer, String> tgObj =
 new TwoGen<Integer, String>(88, "Generics");

In this case, Integer is substituted for T, and String is substituted for V.

334 PART I The Java Language

Although the two type arguments differ in this example, it is possible for both types to

be the same. For example, the following line of code is valid:

TwoGen<String, String> x = new TwoGen<String, String> ("A", "B");

In this case, both T and V would be of type String. Of course, if the type arguments were

always the same, then two type parameters would be unnecessary.

The General Form of a Generic Class
The generics syntax shown in the preceding examples can be generalized. Here is the

syntax for declaring a generic class:

class class-name<type-param-list > { // …

Here is the syntax for declaring a reference to a generic class:

class-name<type-arg-list > var-name =
 new class-name<type-arg-list >(cons-arg-list);

Bounded Types
In the preceding examples, the type parameters could be replaced by any class type. This is

fine for many purposes, but sometimes it is useful to limit the types that can be passed to a

type parameter. For example, assume that you want to create a generic class that contains a

method that returns the average of an array of numbers. Furthermore, you want to use the

class to obtain the average of an array of any type of number, including integers, floats, and

doubles. Thus, you want to specify the type of the numbers generically, using a type parameter.

To create such a class, you might try something like this:

// Stats attempts (unsuccessfully) to
// create a generic class that can compute
// the average of an array of numbers of
// any given type.
//
// The class contains an error!
class Stats<T> {
 T[] nums; // nums is an array of type T

 // Pass the constructor a reference to
 // an array of type T.
 Stats(T[] o) {
 nums = o;
 }

 // Return type double in all cases.
 double average() {
 double sum = 0.0;
 for(int i=0; i < nums.length; i++)
 sum += nums[i].doubleValue(); // Error!!!

 Chapter 14 Generics 335

P
a

rt
 I

 return sum / nums.length;
 }
}

In Stats, the average() method attempts to obtain the double version of each number in

the nums array by calling doubleValue(). Because all numeric classes, such as Integer and

Double, are subclasses of Number, and Number defines the doubleValue() method, this

method is available to all numeric wrapper classes. The trouble is that the compiler has no

way to know that you are intending to create Stats objects using only numeric types. Thus,

when you try to compile Stats, an error is reported that indicates that the doubleValue()
method is unknown. To solve this problem, you need some way to tell the compiler that you

intend to pass only numeric types to T. Furthermore, you need some way to ensure that only
numeric types are actually passed.

To handle such situations, Java provides bounded types. When specifying a type parameter,

you can create an upper bound that declares the superclass from which all type arguments

must be derived. This is accomplished through the use of an extends clause when specifying

the type parameter, as shown here:

<T extends superclass>

This specifies that T can only be replaced by superclass, or subclasses of superclass. Thus,

superclass defines an inclusive, upper limit.

You can use an upper bound to fix the Stats class shown earlier by specifying Number as

an upper bound, as shown here:

// In this version of Stats, the type argument for
// T must be either Number, or a class derived
// from Number.
class Stats<T extends Number> {
 T[] nums; // array of Number or subclass

 // Pass the constructor a reference to
 // an array of type Number or subclass.
 Stats(T[] o) {
 nums = o;
 }

 // Return type double in all cases.
 double average() {
 double sum = 0.0;

 for(int i=0; i < nums.length; i++)
 sum += nums[i].doubleValue();

 return sum / nums.length;
 }
}

// Demonstrate Stats.
class BoundsDemo {
 public static void main(String args[]) {

336 PART I The Java Language

 Integer inums[] = { 1, 2, 3, 4, 5 };
 Stats<Integer> iob = new Stats<Integer>(inums);
 double v = iob.average();
 System.out.println("iob average is " + v);

 Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
 Stats<Double> dob = new Stats<Double>(dnums);
 double w = dob.average();
 System.out.println("dob average is " + w);

 // This won't compile because String is not a
 // subclass of Number.
// String strs[] = { "1", "2", "3", "4", "5" };
// Stats<String> strob = new Stats<String>(strs);

// double x = strob.average();
// System.out.println("strob average is " + v);

 }
}

The output is shown here:

 Average is 3.0
 Average is 3.3

Notice how Stats is now declared by this line:

class Stats<T extends Number> {

Because the type T is now bounded by Number, the Java compiler knows that all objects

of type T can call doubleValue() because it is a method declared by Number. This is, by

itself, a major advantage. However, as an added bonus, the bounding of T also prevents

nonnumeric Stats objects from being created. For example, if you try removing the

comments from the lines at the end of the program, and then try recompiling, you will

receive compile-time errors because String is not a subclass of Number.

In addition to using a class type as a bound, you can also use an interface type. In fact,

you can specify multiple interfaces as bounds. Furthermore, a bound can include both a

class type and one or more interfaces. In this case, the class type must be specified first.

When a bound includes an interface type, only type arguments that implement that

interface are legal. When specifying a bound that has a class and an interface, or multiple

interfaces, use the & operator to connect them. For example,

class Gen<T extends MyClass & MyInterface> { // ...

Here, T is bounded by a class called MyClass and an interface called MyInterface. Thus,

any type argument passed to T must be a subclass of MyClass and implement MyInterface.

 Chapter 14 Generics 337

P
a

rt
 I

Using Wildcard Arguments
As useful as type safety is, sometimes it can get in the way of perfectly acceptable constructs.

For example, given the Stats class shown at the end of the preceding section, assume that

you want to add a method called sameAvg() that determines if two Stats objects contain

arrays that yield the same average, no matter what type of numeric data each object holds.

For example, if one object contains the double values 1.0, 2.0, and 3.0, and the other object

contains the integer values 2, 1, and 3, then the averages will be the same. One way to

implement sameAvg() is to pass it a Stats argument, and then compare the average of that

argument against the invoking object, returning true only if the averages are the same. For

example, you want to be able to call sameAvg(), as shown here:

Integer inums[] = { 1, 2, 3, 4, 5 };
Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };

Stats<Integer> iob = new Stats<Integer>(inums);
Stats<Double> dob = new Stats<Double>(dnums);

if(iob.sameAvg(dob))
 System.out.println("Averages are the same.");
else
 System.out.println("Averages differ.");

At first, creating sameAvg() seems like an easy problem. Because Stats is generic and its

average() method can work on any type of Stats object, it seems that creating sameAvg()
would be straightforward. Unfortunately, trouble starts as soon as you try to declare a

parameter of type Stats. Because Stats is a parameterized type, what do you specify for

Stats’ type parameter when you declare a parameter of that type?

At first, you might think of a solution like this, in which T is used as the type parameter:

// This won't work!
// Determine if two averages are the same.
boolean sameAvg(Stats<T> ob) {
 if(average() == ob.average())
 return true;

 return false;
}

The trouble with this attempt is that it will work only with other Stats objects whose type is the

same as the invoking object. For example, if the invoking object is of type Stats<Integer>,

then the parameter ob must also be of type Stats<Integer>. It can’t be used to compare the

average of an object of type Stats<Double> with the average of an object of type Stats<Short>,

for example. Therefore, this approach won’t work except in a very narrow context and does

not yield a general (that is, generic) solution.

338 PART I The Java Language

To create a generic sameAvg() method, you must use another feature of Java generics:

the wildcard argument. The wildcard argument is specified by the ?, and it represents an

unknown type. Using a wildcard, here is one way to write the sameAvg() method:

// Determine if two averages are the same.
// Notice the use of the wildcard.
boolean sameAvg(Stats<?> ob) {
 if(average() == ob.average())
 return true;

 return false;
}

Here, Stats<?> matches any Stats object, allowing any two Stats objects to have their

averages compared. The following program demonstrates this:

// Use a wildcard.
class Stats<T extends Number> {
 T[] nums; // array of Number or subclass

 // Pass the constructor a reference to
 // an array of type Number or subclass.
 Stats(T[] o) {
 nums = o;
 }

 // Return type double in all cases.
 double average() {
 double sum = 0.0;

 for(int i=0; i < nums.length; i++)
 sum += nums[i].doubleValue();

 return sum / nums.length;
 }

 // Determine if two averages are the same.
 // Notice the use of the wildcard.
 boolean sameAvg(Stats<?> ob) {
 if(average() == ob.average())
 return true;

 return false;
 }
}

// Demonstrate wildcard.
class WildcardDemo {
 public static void main(String args[]) {
 Integer inums[] = { 1, 2, 3, 4, 5 };
 Stats<Integer> iob = new Stats<Integer>(inums);
 double v = iob.average();
 System.out.println("iob average is " + v);

 Chapter 14 Generics 339

P
a

rt
 I

 Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
 Stats<Double> dob = new Stats<Double>(dnums);
 double w = dob.average();
 System.out.println("dob average is " + w);

 Float fnums[] = { 1.0F, 2.0F, 3.0F, 4.0F, 5.0F };
 Stats<Float> fob = new Stats<Float>(fnums);
 double x = fob.average();
 System.out.println("fob average is " + x);

 // See which arrays have same average.
 System.out.print("Averages of iob and dob ");
 if(iob.sameAvg(dob))
 System.out.println("are the same.");
 else
 System.out.println("differ.");

 System.out.print("Averages of iob and fob ");
 if(iob.sameAvg(fob))
 System.out.println("are the same.");
 else
 System.out.println("differ.");
 }
}

The output is shown here:

 iob average is 3.0
 dob average is 3.3
 fob average is 3.0
 Averages of iob and dob differ.
 Averages of iob and fob are the same.

One last point: It is important to understand that the wildcard does not affect what type

of Stats objects can be created. This is governed by the extends clause in the Stats declaration.

The wildcard simply matches any valid Stats object.

Bounded Wildcards

Wildcard arguments can be bounded in much the same way that a type parameter can be

bounded. A bounded wildcard is especially important when you are creating a generic type

that will operate on a class hierarchy. To understand why, let’s work through an example.

Consider the following hierarchy of classes that encapsulate coordinates:

// Two-dimensional coordinates.
class TwoD {
 int x, y;

 TwoD(int a, int b) {
 x = a;
 y = b;
 }
}

340 PART I The Java Language

// Three-dimensional coordinates.
class ThreeD extends TwoD {
 int z;

 ThreeD(int a, int b, int c) {
 super(a, b);
 z = c;
 }
}

// Four-dimensional coordinates.
class FourD extends ThreeD {
 int t;

 FourD(int a, int b, int c, int d) {
 super(a, b, c);
 t = d;
 }
}

At the top of the hierarchy is TwoD, which encapsulates a two-dimensional, XY

coordinate. TwoD is inherited by ThreeD, which adds a third dimension, creating an XYZ

coordinate. ThreeD is inherited by FourD, which adds a fourth dimension (time), yielding

a four-dimensional coordinate.

Shown next is a generic class called Coords, which stores an array of coordinates:

// This class holds an array of coordinate objects.
class Coords<T extends TwoD> {
 T[] coords;

 Coords(T[] o) { coords = o; }
}

Notice that Coords specifies a type parameter bounded by TwoD. This means that any array

stored in a Coords object will contain objects of type TwoD or one of its subclasses.

Now, assume that you want to write a method that displays the X and Y coordinates for

each element in the coords array of a Coords object. Because all types of Coords objects

have at least two coordinates (X and Y), this is easy to do using a wildcard, as shown here:

static void showXY(Coords<?> c) {
 System.out.println("X Y Coordinates:");
 for(int i=0; i < c.coords.length; i++)
 System.out.println(c.coords[i].x + " " +
 c.coords[i].y);
 System.out.println();
}

Because Coords is a bounded generic type that specifies TwoD as an upper bound, all

objects that can be used to create a Coords object will be arrays of type TwoD, or of classes

derived from TwoD. Thus, showXY() can display the contents of any Coords object.

However, what if you want to create a method that displays the X, Y, and Z coordinates

of a ThreeD or FourD object? The trouble is that not all Coords objects will have three

 Chapter 14 Generics 341

P
a

rt
 I

coordinates, because a Coords<TwoD> object will only have X and Y. Therefore, how do

you write a method that displays the X, Y, and Z coordinates for Coords<ThreeD> and

Coords<FourD> objects, while preventing that method from being used with Coords<TwoD>

objects? The answer is the bounded wildcard argument.
A bounded wildcard specifies either an upper bound or a lower bound for the type

argument. This enables you to restrict the types of objects upon which a method will

operate. The most common bounded wildcard is the upper bound, which is created using

an extends clause in much the same way it is used to create a bounded type.

Using a bounded wildcard, it is easy to create a method that displays the X, Y, and Z

coordinates of a Coords object, if that object actually has those three coordinates. For

example, the following showXYZ() method shows the X, Y, and Z coordinates of the

elements stored in a Coords object, if those elements are actually of type ThreeD (or

are derived from ThreeD):

static void showXYZ(Coords<? extends ThreeD> c) {
 System.out.println("X Y Z Coordinates:");
 for(int i=0; i < c.coords.length; i++)
 System.out.println(c.coords[i].x + " " +
 c.coords[i].y + " " +
 c.coords[i].z);
 System.out.println();
}

Notice that an extends clause has been added to the wildcard in the declaration of

parameter c. It states that the ? can match any type as long as it is ThreeD, or a class derived

from ThreeD. Thus, the extends clause establishes an upper bound that the ? can match.

Because of this bound, showXYZ() can be called with references to objects of type

Coords<ThreeD> or Coords<FourD>, but not with a reference of type Coords<TwoD>.

Attempting to call showXZY() with a Coords<TwoD> reference results in a compile-time

error, thus ensuring type safety.

Here is an entire program that demonstrates the actions of a bounded wildcard

argument:

// Bounded Wildcard arguments.

// Two-dimensional coordinates.
class TwoD {
 int x, y;

 TwoD(int a, int b) {
 x = a;
 y = b;
 }
}

// Three-dimensional coordinates.
class ThreeD extends TwoD {
 int z;

 ThreeD(int a, int b, int c) {
 super(a, b);

342 PART I The Java Language

 z = c;
 }
}

// Four-dimensional coordinates.
class FourD extends ThreeD {
 int t;

 FourD(int a, int b, int c, int d) {
 super(a, b, c);
 t = d;
 }
}

// This class holds an array of coordinate objects.
class Coords<T extends TwoD> {
 T[] coords;

 Coords(T[] o) { coords = o; }
}

// Demonstrate a bounded wildcard.
class BoundedWildcard {
 static void showXY(Coords<?> c) {
 System.out.println("X Y Coordinates:");
 for(int i=0; i < c.coords.length; i++)
 System.out.println(c.coords[i].x + " " +
 c.coords[i].y);
 System.out.println();
 }

 static void showXYZ(Coords<? extends ThreeD> c) {
 System.out.println("X Y Z Coordinates:");
 for(int i=0; i < c.coords.length; i++)
 System.out.println(c.coords[i].x + " " +
 c.coords[i].y + " " +
 c.coords[i].z);
 System.out.println();
 }

 static void showAll(Coords<? extends FourD> c) {
 System.out.println("X Y Z T Coordinates:");
 for(int i=0; i < c.coords.length; i++)
 System.out.println(c.coords[i].x + " " +
 c.coords[i].y + " " +
 c.coords[i].z + " " +
 c.coords[i].t);
 System.out.println();
 }

 public static void main(String args[]) {
 TwoD td[] = {
 new TwoD(0, 0),
 new TwoD(7, 9),
 new TwoD(18, 4),

 Chapter 14 Generics 343

P
a

rt
 I

 new TwoD(-1, -23)
 };

 Coords<TwoD> tdlocs = new Coords<TwoD>(td);

 System.out.println("Contents of tdlocs.");
 showXY(tdlocs); // OK, is a TwoD
// showXYZ(tdlocs); // Error, not a ThreeD
// showAll(tdlocs); // Error, not a FourD

 // Now, create some FourD objects.
 FourD fd[] = {
 new FourD(1, 2, 3, 4),
 new FourD(6, 8, 14, 8),
 new FourD(22, 9, 4, 9),
 new FourD(3, -2, -23, 17)
 };

 Coords<FourD> fdlocs = new Coords<FourD>(fd);

 System.out.println("Contents of fdlocs.");
 // These are all OK.
 showXY(fdlocs);
 showXYZ(fdlocs);
 showAll(fdlocs);
 }
}

The output from the program is shown here:

 Contents of tdlocs.
 X Y Coordinates:
 0 0
 7 9
 18 4
 -1 -23

 Contents of fdlocs.
 X Y Coordinates:
 1 2
 6 8
 22 9
 3 -2

 X Y Z Coordinates:
 1 2 3
 6 8 14
 22 9 4
 3 -2 -23

 X Y Z T Coordinates:
 1 2 3 4
 6 8 14 8
 22 9 4 9
 3 -2 -23 17

344 PART I The Java Language

Notice these commented-out lines:

// showXYZ(tdlocs); // Error, not a ThreeD
// showAll(tdlocs); // Error, not a FourD

Because tdlocs is a Coords(TwoD) object, it cannot be used to call showXYZ() or showAll()
because bounded wildcard arguments in their declarations prevent it. To prove this to

yourself, try removing the comment symbols, and then attempt to compile the program.

You will receive compilation errors because of the type mismatches.

In general, to establish an upper bound for a wildcard, use the following type of

wildcard expression:

<? extends superclass>

where superclass is the name of the class that serves as the upper bound. Remember, this is

an inclusive clause because the class forming the upper bound (that is, specified by superclass)

is also within bounds.

You can also specify a lower bound for a wildcard by adding a super clause to a wildcard

declaration. Here is its general form:

<? super subclass>

In this case, only classes that are superclasses of subclass are acceptable arguments. This is

an exclusive clause, because it will not match the class specified by subclass.

Creating a Generic Method
As the preceding examples have shown, methods inside a generic class can make use of a

class’ type parameter and are, therefore, automatically generic relative to the type parameter.

However, it is possible to declare a generic method that uses one or more type parameters of

its own. Furthermore, it is possible to create a generic method that is enclosed within a

non-generic class.

Let’s begin with an example. The following program declares a non-generic class called

GenMethDemo and a static generic method within that class called isIn(). The isIn()
method determines if an object is a member of an array. It can be used with any type of

object and array as long as the array contains objects that are compatible with the type of

the object being sought.

// Demonstrate a simple generic method.
class GenMethDemo {

 // Determine if an object is in an array.
 static <T, V extends T> boolean isIn(T x, V[] y) {
 for(int i=0; i < y.length; i++)
 if(x.equals(y[i])) return true;

 return false;
 }

 public static void main(String args[]) {

 Chapter 14 Generics 345

P
a

rt
 I

 // Use isIn() on Integers.
 Integer nums[] = { 1, 2, 3, 4, 5 };

 if(isIn(2, nums))
 System.out.println("2 is in nums");

 if(!isIn(7, nums))
 System.out.println("7 is not in nums");

 System.out.println();

 // Use isIn() on Strings.
 String strs[] = { "one", "two", "three",
 "four", "five" };

 if(isIn("two", strs))
 System.out.println("two is in strs");

 if(!isIn("seven", strs))
 System.out.println("seven is not in strs");

 // Oops! Won't compile! Types must be compatible.
// if(isIn("two", nums))
// System.out.println("two is in strs");
 }
}

The output from the program is shown here:

 2 is in nums
 7 is not in nums

 two is in strs
 seven is not in strs

Let’s examine isIn() closely. First, notice how it is declared by this line:

static <T, V extends T> boolean isIn(T x, V[] y) {

The type parameters are declared before the return type of the method. Second, notice

that the type V is upper-bounded by T. Thus, V must either be the same as type T, or a

subclass of T. This relationship enforces that isIn() can be called only with arguments that

are compatible with each other. Also notice that isIn() is static, enabling it to be called

independently of any object. Understand, though, that generic methods can be either static

or non-static. There is no restriction in this regard.

Now, notice how isIn() is called within main() by use of the normal call syntax, without

the need to specify type arguments. This is because the types of the arguments are

automatically discerned, and the types of T and V are adjusted accordingly. For example,

in the first call:

if(isIn(2, nums))

346 PART I The Java Language

the type of the first argument is Integer (due to autoboxing), which causes Integer to be

substituted for T. The base type of the second argument is also Integer, which makes

Integer a substitute for V, too.

In the second call, String types are used, and the types of T and V are replaced by String.

Now, notice the commented-out code, shown here:

// if(isIn("two", nums))
// System.out.println("two is in strs");

If you remove the comments and then try to compile the program, you will receive an error.

The reason is that the type parameter V is bounded by T in the extends clause in V’s

declaration. This means that V must be either type T, or a subclass of T. In this case, the

first argument is of type String, making T into String, but the second argument is of type

Integer, which is not a subclass of String. This causes a compile-time type-mismatch error.

This ability to enforce type safety is one of the most important advantages of generic

methods.

The syntax used to create isIn() can be generalized. Here is the syntax for a generic

method:

<type-param-list > ret-type meth-name (param-list) { // …

In all cases, type-param-list is a comma-separated list of type parameters. Notice that for a

generic method, the type parameter list precedes the return type.

Generic Constructors

It is also possible for constructors to be generic, even if their class is not. For example,

consider the following short program:

// Use a generic constructor.
class GenCons {
 private double val;

 <T extends Number> GenCons(T arg) {
 val = arg.doubleValue();
 }

 void showval() {
 System.out.println("val: " + val);
 }
}

class GenConsDemo {
 public static void main(String args[]) {

 GenCons test = new GenCons(100);
 GenCons test2 = new GenCons(123.5F);

 test.showval();
 test2.showval();
 }
}

 Chapter 14 Generics 347

P
a

rt
 I

The output is shown here:

 val: 100.0
 val: 123.5

Because GenCons() specifies a parameter of a generic type, which must be a subclass

of Number, GenCons() can be called with any numeric type, including Integer, Float, or

Double. Therefore, even though GenCons is not a generic class, its constructor is generic.

Generic Interfaces
In addition to generic classes and methods, you can also have generic interfaces. Generic

interfaces are specified just like generic classes. Here is an example. It creates an interface

called MinMax that declares the methods min() and max(), which are expected to return

the minimum and maximum value of some set of objects.

// A generic interface example.

// A Min/Max interface.
interface MinMax<T extends Comparable<T>> {
 T min();
 T max();
}

// Now, implement MinMax
class MyClass<T extends Comparable<T>> implements MinMax<T> {
 T[] vals;

 MyClass(T[] o) { vals = o; }

 // Return the minimum value in vals.
 public T min() {
 T v = vals[0];

 for(int i=1; i < vals.length; i++)
 if(vals[i].compareTo(v) < 0) v = vals[i];

 return v;
 }

 // Return the maximum value in vals.
 public T max() {
 T v = vals[0];

 for(int i=1; i < vals.length; i++)
 if(vals[i].compareTo(v) > 0) v = vals[i];

 return v;
 }
}

348 PART I The Java Language

class GenIFDemo {
 public static void main(String args[]) {
 Integer inums[] = {3, 6, 2, 8, 6 };
 Character chs[] = {'b', 'r', 'p', 'w' };

 MyClass<Integer> iob = new MyClass<Integer>(inums);
 MyClass<Character> cob = new MyClass<Character>(chs);

 System.out.println("Max value in inums: " + iob.max());
 System.out.println("Min value in inums: " + iob.min());

 System.out.println("Max value in chs: " + cob.max());
 System.out.println("Min value in chs: " + cob.min());
 }
}

The output is shown here:

 Max value in inums: 8
 Min value in inums: 2
 Max value in chs: w
 Min value in chs: b

Although most aspects of this program should be easy to understand, a couple of key

points need to be made. First, notice that MinMax is declared like this:

interface MinMax<T extends Comparable<T>> {

In general, a generic interface is declared in the same way as is a generic class. In this case,

the type parameter is T, and its upper bound is Comparable, which is an interface defined

by java.lang. A class that implements Comparable defines objects that can be ordered.

Thus, requiring an upper bound of Comparable ensures that MinMax can be used only

with objects that are capable of being compared. (See Chapter 16 for more information

on Comparable.) Notice that Comparable is also generic. It takes a type parameter that

specifies the type of the objects being compared.

Next, MinMax is implemented by MyClass. Notice the declaration of MyClass,

shown here:

class MyClass<T extends Comparable<T>> implements MinMax<T> {

Pay special attention to the way that the type parameter T is declared by MyClass and then

passed to MinMax. Because MinMax requires a type that implements Comparable, the

implementing class (MyClass in this case) must specify the same bound. Furthermore, once

this bound has been established, there is no need to specify it again in the implements

clause. In fact, it would be wrong to do so. For example, this line is incorrect and won’t

compile:

// This is wrong!
class MyClass<T extends Comparable<T>>
 implements MinMax<T extends Comparable<T>> {

 Chapter 14 Generics 349

P
a

rt
 I

Once the type parameter has been established, it is simply passed to the interface without

further modification.

In general, if a class implements a generic interface, then that class must also be

generic, at least to the extent that it takes a type parameter that is passed to the interface.

For example, the following attempt to declare MyClass is in error:

class MyClass implements MinMax<T> { // Wrong!

Because MyClass does not declare a type parameter, there is no way to pass one to MinMax.

In this case, the identifier T is simply unknown, and the compiler reports an error. Of

course, if a class implements a specific type of generic interface, such as shown here:

class MyClass implements MinMax<Integer> { // OK

then the implementing class does not need to be generic.

The generic interface offers two benefits. First, it can be implemented for different

types of data. Second, it allows you to put constraints (that is, bounds) on the types of data

for which the interface can be implemented. In the MinMax example, only types that

implement the Comparable interface can be passed to T.

Here is the generalized syntax for a generic interface:

interface interface-name<type-param-list> { // …

Here, type-param-list is a comma-separated list of type parameters. When a generic interface

is implemented, you must specify the type arguments, as shown here:

class class-name<type-param-list>
 implements interface-name<type-arg-list> {

Raw Types and Legacy Code
Because support for generics did not exist prior to JDK 5, it was necessary to provide some

transition path from old, pre-generics code. At the time of this writing, there is still a large

amount of pre-generics legacy code that must remain both functional and compatible with

generics. Pre-generics code must be able to work with generics, and generic code must be

able to work with pre-generics code.

To handle the transition to generics, Java allows a generic class to be used without any

type arguments. This creates a raw type for the class. This raw type is compatible with legacy

code, which has no knowledge of generics. The main drawback to using the raw type is that

the type safety of generics is lost.

Here is an example that shows a raw type in action:

// Demonstrate a raw type.
class Gen<T> {

 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.

350 PART I The Java Language

 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// Demonstrate raw type.
class RawDemo {
 public static void main(String args[]) {

 // Create a Gen object for Integers.
 Gen<Integer> iOb = new Gen<Integer>(88);

 // Create a Gen object for Strings.
 Gen<String> strOb = new Gen<String>("Generics Test");

 // Create a raw-type Gen object and give it
 // a Double value.
 Gen raw = new Gen(new Double(98.6));

 // Cast here is necessary because type is unknown.
 double d = (Double) raw.getob();
 System.out.println("value: " + d);

 // The use of a raw type can lead to run-time
 // exceptions. Here are some examples.

 // The following cast causes a run-time error!
// int i = (Integer) raw.getob(); // run-time error

 // This assignment overrides type safety.
 strOb = raw; // OK, but potentially wrong
// String str = strOb.getob(); // run-time error

 // This assignment also overrides type safety.
 raw = iOb; // OK, but potentially wrong
// d = (Double) raw.getob(); // run-time error
 }
}

This program contains several interesting things. First, a raw type of the generic Gen

class is created by the following declaration:

Gen raw = new Gen(new Double(98.6));

Notice that no type arguments are specified. In essence, this creates a Gen object whose

type T is replaced by Object.
A raw type is not type safe. Thus, a variable of a raw type can be assigned a reference to

any type of Gen object. The reverse is also allowed; a variable of a specific Gen type can be

 Chapter 14 Generics 351

P
a

rt
 I

assigned a reference to a raw Gen object. However, both operations are potentially unsafe

because the type checking mechanism of generics is circumvented.

This lack of type safety is illustrated by the commented-out lines at the end of the

program. Let’s examine each case. First, consider the following situation:

// int i = (Integer) raw.getob(); // run-time error

In this statement, the value of ob inside raw is obtained, and this value is cast to Integer.

The trouble is that raw contains a Double value, not an integer value. However, this cannot

be detected at compile time because the type of raw is unknown. Thus, this statement fails

at run time.

The next sequence assigns to a strOb (a reference of type Gen<String>) a reference to

a raw Gen object:

 strOb = raw; // OK, but potentially wrong
// String str = strOb.getob(); // run-time error

The assignment, itself, is syntactically correct, but questionable. Because strOb is of type

Gen<String>, it is assumed to contain a String. However, after the assignment, the object

referred to by strOb contains a Double. Thus, at run time, when an attempt is made to

assign the contents of strOb to str, a run-time error results because strOb now contains a

Double. Thus, the assignment of a raw reference to a generic reference bypasses the type-

safety mechanism.

The following sequence inverts the preceding case:

 raw = iOb; // OK, but potentially wrong
// d = (Double) raw.getob(); // run-time error

Here, a generic reference is assigned to a raw reference variable. Although this is

syntactically correct, it can lead to problems, as illustrated by the second line. In this case,

raw now refers to an object that contains an Integer object, but the cast assumes that it

contains a Double. This error cannot be prevented at compile time. Rather, it causes a

run-time error.

Because of the potential for danger inherent in raw types, javac displays unchecked
warnings when a raw type is used in a way that might jeopardize type safety. In the preceding

program, these lines generate unchecked warnings:

Gen raw = new Gen(new Double(98.6));

strOb = raw; // OK, but potentially wrong

In the first line, it is the call to the Gen constructor without a type argument that causes the

warning. In the second line, it is the assignment of a raw reference to a generic variable that

generates the warning.

At first, you might think that this line should also generate an unchecked warning, but

it does not:

raw = iOb; // OK, but potentially wrong

No compiler warning is issued because the assignment does not cause any further loss of

type safety than had already occurred when raw was created.

352 PART I The Java Language

One final point: You should limit the use of raw types to those cases in which you must

mix legacy code with newer, generic code. Raw types are simply a transitional feature and

not something that should be used for new code.

Generic Class Hierarchies
Generic classes can be part of a class hierarchy in just the same way as a non-generic class.

Thus, a generic class can act as a superclass or be a subclass. The key difference between

generic and non-generic hierarchies is that in a generic hierarchy, any type arguments

needed by a generic superclass must be passed up the hierarchy by all subclasses. This is

similar to the way that constructor arguments must be passed up a hierarchy.

Using a Generic Superclass

Here is a simple example of a hierarchy that uses a generic superclass:

// A simple generic class hierarchy.
class Gen<T> {
 T ob;

 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// A subclass of Gen.
class Gen2<T> extends Gen<T> {
 Gen2(T o) {
 super(o);
 }
}

In this hierarchy, Gen2 extends the generic class Gen. Notice how Gen2 is declared by

the following line:

class Gen2<T> extends Gen<T> {

The type parameter T is specified by Gen2 and is also passed to Gen in the extends clause.

This means that whatever type is passed to Gen2 will also be passed to Gen. For example,

this declaration,

Gen2<Integer> num = new Gen2<Integer>(100);

passes Integer as the type parameter to Gen. Thus, the ob inside the Gen portion of Gen2

will be of type Integer.

 Chapter 14 Generics 353

P
a

rt
 I

Notice also that Gen2 does not use the type parameter T except to pass it to the Gen

superclass. Thus, even if a subclass of a generic superclass would otherwise not need to be

generic, it still must specify the type parameter(s) required by its generic superclass.

Of course, a subclass is free to add its own type parameters, if needed. For example, here

is a variation on the preceding hierarchy in which Gen2 adds a type parameter of its own:

// A subclass can add its own type parameters.
class Gen<T> {
 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// A subclass of Gen that defines a second
// type parameter, called V.
class Gen2<T, V> extends Gen<T> {
 V ob2;

 Gen2(T o, V o2) {
 super(o);
 ob2 = o2;
 }

 V getob2() {
 return ob2;
 }
}

// Create an object of type Gen2.
class HierDemo {
 public static void main(String args[]) {

 // Create a Gen2 object for String and Integer.
 Gen2<String, Integer> x =
 new Gen2<String, Integer>("Value is: ", 99);

 System.out.print(x.getob());
 System.out.println(x.getob2());
 }
}

Notice the declaration of this version of Gen2, which is shown here:

class Gen2<T, V> extends Gen<T> {

354 PART I The Java Language

Here, T is the type passed to Gen, and V is the type that is specific to Gen2. V is used to

declare an object called ob2, and as a return type for the method getob2(). In main(), a

Gen2 object is created in which type parameter T is String, and type parameter V is Integer.

The program displays the following, expected, result:

 Value is: 99

A Generic Subclass

It is perfectly acceptable for a non-generic class to be the superclass of a generic subclass.

For example, consider this program:

// A non-generic class can be the superclass
// of a generic subclass.

// A non-generic class.
class NonGen {
 int num;

 NonGen(int i) {
 num = i;
 }

 int getnum() {
 return num;
 }
}

// A generic subclass.
class Gen<T> extends NonGen {
 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o, int i) {
 super(i);
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// Create a Gen object.
class HierDemo2 {
 public static void main(String args[]) {

 // Create a Gen object for String.
 Gen<String> w = new Gen<String>("Hello", 47);

 Chapter 14 Generics 355

P
a

rt
 I

 System.out.print(w.getob() + " ");
 System.out.println(w.getnum());
 }
}

The output from the program is shown here:

 Hello 47

In the program, notice how Gen inherits NonGen in the following declaration:

class Gen<T> extends NonGen {

Because NonGen is not generic, no type argument is specified. Thus, even though Gen

declares the type parameter T, it is not needed by (nor can it be used by) NonGen. Thus,

NonGen is inherited by Gen in the normal way. No special conditions apply.

Run-Time Type Comparisons Within a Generic Hierarchy

Recall the run-time type information operator instanceof that was described in Chapter 13.

As explained, instanceof determines if an object is an instance of a class. It returns true if

an object is of the specified type or can be cast to the specified type. The instanceof

operator can be applied to objects of generic classes. The following class demonstrates

some of the type compatibility implications of a generic hierarchy:

// Use the instanceof operator with a generic class hierarchy.
class Gen<T> {
 T ob;

 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// A subclass of Gen.
class Gen2<T> extends Gen<T> {
 Gen2(T o) {
 super(o);
 }
}

// Demonstrate run-time type ID implications of generic
// class hierarchy.
class HierDemo3 {
 public static void main(String args[]) {

356 PART I The Java Language

 // Create a Gen object for Integers.
 Gen<Integer> iOb = new Gen<Integer>(88);

 // Create a Gen2 object for Integers.
 Gen2<Integer> iOb2 = new Gen2<Integer>(99);

 // Create a Gen2 object for Strings.
 Gen2<String> strOb2 = new Gen2<String>("Generics Test");

 // See if iOb2 is some form of Gen2.
 if(iOb2 instanceof Gen2<?>)
 System.out.println("iOb2 is instance of Gen2");

 // See if iOb2 is some form of Gen.
 if(iOb2 instanceof Gen<?>)
 System.out.println("iOb2 is instance of Gen");

 System.out.println();

 // See if strOb2 is a Gen2.
 if(strOb2 instanceof Gen2<?>)
 System.out.println("strOb2 is instance of Gen2");

 // See if strOb2 is a Gen.
 if(strOb2 instanceof Gen<?>)
 System.out.println("strOb2 is instance of Gen");

 System.out.println();

 // See if iOb is an instance of Gen2, which it is not.
 if(iOb instanceof Gen2<?>)
 System.out.println("iOb is instance of Gen2");

 // See if iOb is an instance of Gen, which it is.
 if(iOb instanceof Gen<?>)
 System.out.println("iOb is instance of Gen");

 // The following can't be compiled because
 // generic type info does not exist at run time.
// if(iOb2 instanceof Gen2<Integer>)
// System.out.println("iOb2 is instance of Gen2<Integer>");
 }
}

The output from the program is shown here:

 iOb2 is instance of Gen2
 iOb2 is instance of Gen

 strOb2 is instance of Gen2
 strOb2 is instance of Gen

 iOb is instance of Gen

 Chapter 14 Generics 357

P
a

rt
 I

In this program, Gen2 is a subclass of Gen, which is generic on type parameter T. In

main(), three objects are created. The first is iOb, which is an object of type Gen<Integer>.

The second is iOb2, which is an instance of Gen2<Integer>. Finally, strOb2 is an object of

type Gen2<String>.

Then, the program performs these instanceof tests on the type of iOb2:

// See if iOb2 is some form of Gen2.
if(iOb2 instanceof Gen2<?>)
 System.out.println("iOb2 is instance of Gen2");

// See if iOb2 is some form of Gen.
if(iOb2 instanceof Gen<?>)
 System.out.println("iOb2 is instance of Gen");

As the output shows, both succeed. In the first test, iOb2 is checked against Gen2<?>. This

test succeeds because it simply confirms that iOb2 is an object of some type of Gen2 object.

The use of the wildcard enables instanceof to determine if iOb2 is an object of any type of

Gen2. Next, iOb2 is tested against Gen<?>, the superclass type. This is also true because

iOb2 is some form of Gen, the superclass. The next few lines in main() show the same

sequence (and same results) for strOb2.

Next, iOb, which is an instance of Gen<Integer> (the superclass), is tested by these lines:

// See if iOb is an instance of Gen2, which it is not.
if(iOb instanceof Gen2<?>)
 System.out.println("iOb is instance of Gen2");

// See if iOb is an instance of Gen, which it is.
if(iOb instanceof Gen<?>)
 System.out.println("iOb is instance of Gen");

The first if fails because iOb is not some type of Gen2 object. The second test succeeds

because iOb is some type of Gen object.

Now, look closely at these commented-out lines:

 // The following can't be compiled because
 // generic type info does not exist at run time.
// if(iOb2 instanceof Gen2<Integer>)
// System.out.println("iOb2 is instance of Gen2<Integer>");

As the comments indicate, these lines can’t be compiled because they attempt to compare

iOb2 with a specific type of Gen2, in this case, Gen2<Integer>. Remember, there is no

generic type information available at run time. Therefore, there is no way for instanceof

to know if iOb2 is an instance of Gen2<Integer> or not.

Casting

You can cast one instance of a generic class into another only if the two are otherwise

compatible and their type arguments are the same. For example, assuming the foregoing

program, this cast is legal:

(Gen<Integer>) iOb2 // legal

358 PART I The Java Language

because iOb2 is an instance of Gen<Integer>. But, this cast:

(Gen<Long>) iOb2 // illegal

is not legal because iOb2 is not an instance of Gen<Long>.

Overriding Methods in a Generic Class

A method in a generic class can be overridden just like any other method. For example,

consider this program in which the method getob() is overridden:

// Overriding a generic method in a generic class.
class Gen<T> {
 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 System.out.print("Gen's getob(): ");
 return ob;
 }
}

// A subclass of Gen that overrides getob().
class Gen2<T> extends Gen<T> {

 Gen2(T o) {
 super(o);
 }

 // Override getob().
 T getob() {
 System.out.print("Gen2's getob(): ");
 return ob;
 }
}

// Demonstrate generic method override.
class OverrideDemo {
 public static void main(String args[]) {

 // Create a Gen object for Integers.
 Gen<Integer> iOb = new Gen<Integer>(88);

 // Create a Gen2 object for Integers.
 Gen2<Integer> iOb2 = new Gen2<Integer>(99);

 // Create a Gen2 object for Strings.
 Gen2<String> strOb2 = new Gen2<String> ("Generics Test");

 Chapter 14 Generics 359

P
a

rt
 I

 System.out.println(iOb.getob());
 System.out.println(iOb2.getob());
 System.out.println(strOb2.getob());
 }
}

The output is shown here:

 Gen's getob(): 88
 Gen2's getob(): 99
 Gen2's getob(): Generics Test

As the output confirms, the overridden version of getob() is called for objects of type Gen2,

but the superclass version is called for objects of type Gen.

Type Inference with Generics
Beginning with JDK 7, it is possible to shorten the syntax used to create an instance of a

generic type. To begin, consider the following generic class:

class MyClass<T, V> {
 T ob1;
 V ob2;

 MyClass(T o1, V o2) {
 ob1 = o1;
 ob2 = o2;
 }
 // ...
}

Prior to JDK 7, to create an instance of MyClass, you would have needed to use a

statement similar to the following:

MyClass<Integer, String> mcOb =
 new MyClass<Integer, String>(98, "A String");

Here, the type arguments (which are Integer and String) are specified twice: first, when

mcOb is declared, and second, when a MyClass instance is created via new. Since generics

were introduced by JDK 5, this is the form required by all versions of Java prior to JDK 7.

Although there is nothing wrong, per se, with this form, it is a bit more verbose than it

needs to be. In the new clause, the type of the type arguments can be readily inferred from

the type of mcOb; therefore, there is really no reason that they need to be specified a

second time. To address this situation, JDK 7 adds a syntactic element that lets you avoid

the second specification.

In JDK 7, the preceding declaration can be rewritten as shown here:

MyClass<Integer, String> mcOb = new MyClass<>(98, "A String");

Notice that the instance creation portion simply uses <>, which is an empty type argument

list. This is referred to as the diamond operator. It tells the compiler to infer the type

arguments needed by the constructor in the new expression. The principal advantage

360 PART I The Java Language

of this type-inference syntax is that it shortens what are sometimes quite long declaration

statements.

The preceding can be generalized. When type inference is used, the declaration syntax

for a generic reference and instance creation has this general form:

class-name<type-arg-list > var-name = new class-name <>(cons-arg-list);

Here, the type argument list of the constructor in the new clause is empty.

Type inference can also be applied to parameter passing. For example, if the following

method is added to MyClass,

boolean isSame(MyClass<T, V> o) {
 if(ob1 == o.ob1 && ob2 == o.ob2) return true;
 else return false;
}

then the following call is legal in JDK 7:

if(mcOb.isSame(new MyClass<>(1, "test"))) System.out.println("Same");

In this case, the type arguments for the argument passed to isSame() can be inferred.

It is important to understand that type inference won’t work in all cases. For example,

given the following class hierarchy,

class A<T, V> {}
class B<T, V> extends A<T, V>{ }

the following declaration (which does not use type inference) is legal:

MyClass<A<Integer, Long>, String> mcOb2 =
 new MyClass<A<Integer, Long>, String>(new B<Integer, Long>(), "Generics");

Here, because a base class reference can refer to a derived class object, it is legal for mcOb2

to refer to a MyClass object that has the type

MyClass<B<Integer, Long>, String>

even though the reference has the type

MyClass<A<Integer, Long>, String>

However, attempting to use type inference to shorten the line as shown here, won’t work:

// Won't Work!
MyClass<A<Integer, Long>, String> mcOb2 =
 new MyClass<>(new B<Integer, Long>(), "Generics");

In this case, a type mismatch error is reported.

Because the type-inference syntax is new to JDK 7 and won’t work with older compilers,

the examples in this book will continue to use the full syntax when declaring instances of

generic classes. This way, the examples will work with any Java compiler that supports

 Chapter 14 Generics 361

P
a

rt
 I

generics. Using the full-length syntax also makes it very clear precisely what is being

created, which is very important in example code shown in a book. However, in your own

code, the use of the type-inference syntax will streamline your declarations.

Erasure
Usually, it is not necessary to know the details about how the Java compiler transforms your

source code into object code. However, in the case of generics, some general understanding

of the process is important because it explains why the generic features work as they do—

and why their behavior is sometimes a bit surprising. For this reason, a brief discussion of

how generics are implemented in Java is in order.

An important constraint that governed the way that generics were added to Java was the

need for compatibility with previous versions of Java. Simply put, generic code had to be

compatible with preexisting, non-generic code. Thus, any changes to the syntax of the Java

language, or to the JVM, had to avoid breaking older code. The way Java implements

generics while satisfying this constraint is through the use of erasure.
In general, here is how erasure works. When your Java code is compiled, all generic

type information is removed (erased). This means replacing type parameters with their

bound type, which is Object if no explicit bound is specified, and then applying the

appropriate casts (as determined by the type arguments) to maintain type compatibility

with the types specified by the type arguments. The compiler also enforces this type

compatibility. This approach to generics means that no type parameters exist at run time.

They are simply a source-code mechanism.

To better understand how erasure works, consider the following two classes:

// Here, T is bound by Object by default.
class Gen<T> {
 T ob; // here, T will be replaced by Object

 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// Here, T is bound by String.
class GenStr<T extends String> {
 T str; // here, T will be replaced by String

 GenStr(T o) {
 str = o;
 }

 T getstr() { return str; }
}

362 PART I The Java Language

After these two classes are compiled, the T in Gen will be replaced by Object. The T in

GenStr will be replaced by String. Within the code for Gen and GenStr, casts are employed

to ensure proper typing. For example, this sequence:

Gen<Integer> iOb = new Gen<Integer>(99);

int x = iOb.getob();

would be compiled as if it were written like this:

Gen iOb = new Gen(99);

int x = (Integer) iOb.getob();

Because of erasure, some things work a bit differently than you might think. For example,

consider this short program that creates two objects of the generic Gen class just shown:

class GenTypeDemo {
 public static void main(String args[]) {
 Gen<Integer> iOb = new Gen<Integer>(99);
 Gen<Float> fOb = new Gen<Float>(102.2F);

 System.out.println(iOb.getClass().getName());
 System.out.println(fOb.getClass().getName());
 }
}

The output from this program is shown here:

 Gen
 Gen

As you can see, the types of both iOb and fOb are Gen, not the Gen<Integer> and

Gen<Float> that you might have expected. Remember, all type parameters are erased

during compilation. At run time, only raw types actually exist.

Bridge Methods

Occasionally, the compiler will need to add a bridge method to a class to handle situations in

which the type erasure of an overriding method in a subclass does not produce the same

erasure as the method in the superclass. In this case, a method is generated that uses the

type erasure of the superclass, and this method calls the method that has the type erasure

specified by the subclass. Of course, bridge methods only occur at the bytecode level, are

not seen by you, and are not available for your use.

Although bridge methods are not something that you will normally need to be

concerned with, it is still instructive to see a situation in which one is generated. Consider

the following program:

// A situation that creates a bridge method.
class Gen<T> {
 T ob; // declare an object of type T

 Chapter 14 Generics 363

P
a

rt
 I

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// A subclass of Gen.
class Gen2 extends Gen<String> {

 Gen2(String o) {
 super(o);
 }

 // A String-specific override of getob().
 String getob() {
 System.out.print("You called String getob(): ");
 return ob;
 }
}

// Demonstrate a situation that requires a bridge method.
class BridgeDemo {
 public static void main(String args[]) {

 // Create a Gen2 object for Strings.
 Gen2 strOb2 = new Gen2("Generics Test");

 System.out.println(strOb2.getob());
 }
}

In the program, the subclass Gen2 extends Gen, but does so using a String-specific

version of Gen, as its declaration shows:

class Gen2 extends Gen<String> {

Furthermore, inside Gen2, getob() is overridden with String specified as the return type:

// A String-specific override of getob().
String getob() {
 System.out.print("You called String getob(): ");
 return ob;
}

All of this is perfectly acceptable. The only trouble is that because of type erasure, the

expected form of getob() will be

Object getob() { // ...

364 PART I The Java Language

To handle this problem, the compiler generates a bridge method with the preceding

signature that calls the String version. Thus, if you examine the class file for Gen2 by

using javap, you will see the following methods:

class Gen2 extends Gen<java.lang.String> {
 Gen2(java.lang.String);
 java.lang.String getob();
 java.lang.Object getob(); // bridge method
}

As you can see, the bridge method has been included. (The comment was added by the

author and not by javap, and the precise output you see may vary based on the version of

Java that you are using.)

There is one last point to make about bridge methods. Notice that the only difference

between the two getob() methods is their return type. Normally, this would cause an error,

but because this does not occur in your source code, it does not cause a problem and is

handled correctly by the JVM.

Ambiguity Errors
The inclusion of generics gives rise to a new type of error that you must guard against:

ambiguity. Ambiguity errors occur when erasure causes two seemingly distinct generic

declarations to resolve to the same erased type, causing a conflict. Here is an example that

involves method overloading:

// Ambiguity caused by erasure on
// overloaded methods.
class MyGenClass<T, V> {
 T ob1;
 V ob2;

 // ...

 // These two overloaded methods are ambiguous
 // and will not compile.
 void set(T o) {
 ob1 = o;
 }

 void set(V o) {
 ob2 = o;
 }
}

Notice that MyGenClass declares two generic types: T and V. Inside MyGenClass,

an attempt is made to overload set() based on parameters of type T and V. This looks

reasonable because T and V appear to be different types. However, there are two ambiguity

problems here.

First, as MyGenClass is written, there is no requirement that T and V actually be

different types. For example, it is perfectly correct (in principle) to construct a MyGenClass

object as shown here:

 Chapter 14 Generics 365

P
a

rt
 I

MyGenClass<String, String> obj = new MyGenClass<String, String>()

In this case, both T and V will be replaced by String. This makes both versions of set()
identical, which is, of course, an error.

The second and more fundamental problem is that the type erasure of set() reduces

both versions to the following:

void set(Object o) { // ...

Thus, the overloading of set() as attempted in MyGenClass is inherently ambiguous.

Ambiguity errors can be tricky to fix. For example, if you know that V will always be

some type of String, you might try to fix MyGenClass by rewriting its declaration as shown

here:

class MyGenClass<T, V extends String> { // almost OK!

This change causes MyGenClass to compile, and you can even instantiate objects like the

one shown here:

MyGenClass<Integer, String> x = new MyGenClass<Integer, String>();

This works because Java can accurately determine which method to call. However,

ambiguity returns when you try this line:

MyGenClass<String, String> x = new MyGenClass<String, String>();

In this case, since both T and V are String, which version of set() is to be called? The call to

set() is now ambiguous.

Frankly, in the preceding example, it would be much better to use two separate method

names, rather than trying to overload set(). Often, the solution to ambiguity involves the

restructuring of the code, because ambiguity often means that you have a conceptual error

in your design.

Some Generic Restrictions
There are a few restrictions that you need to keep in mind when using generics. They

involve creating objects of a type parameter, static members, exceptions, and arrays. Each

is examined here.

Type Parameters Can’t Be Instantiated

It is not possible to create an instance of a type parameter. For example, consider this class:

// Can't create an instance of T.
class Gen<T> {
 T ob;

 Gen() {
 ob = new T(); // Illegal!!!
 }
}

366 PART I The Java Language

Here, it is illegal to attempt to create an instance of T. The reason should be easy to

understand: because T does not exist at run time, how would the compiler know what type

of object to create? Remember, erasure removes all type parameters during the compilation

process.

Restrictions on Static Members

No static member can use a type parameter declared by the enclosing class. For example,

both of the static members of this class are illegal:

class Wrong<T> {
 // Wrong, no static variables of type T.
 static T ob;

 // Wrong, no static method can use T.
 static T getob() {
 return ob;
 }
}

Although you can’t declare static members that use a type parameter declared by the

enclosing class, you can declare static generic methods, which define their own type

parameters, as was done earlier in this chapter.

Generic Array Restrictions

There are two important generics restrictions that apply to arrays. First, you cannot

instantiate an array whose element type is a type parameter. Second, you cannot create

an array of type-specific generic references. The following short program shows both

situations:

// Generics and arrays.
class Gen<T extends Number> {
 T ob;

 T vals[]; // OK

 Gen(T o, T[] nums) {
 ob = o;

 // This statement is illegal.
 // vals = new T[10]; // can't create an array of T

 // But, this statement is OK.
 vals = nums; // OK to assign reference to existent array
 }
}

 Chapter 14 Generics 367

P
a

rt
 I

class GenArrays {
 public static void main(String args[]) {
 Integer n[] = { 1, 2, 3, 4, 5 };

 Gen<Integer> iOb = new Gen<Integer>(50, n);

 // Can't create an array of type-specific generic references.
 // Gen<Integer> gens[] = new Gen<Integer>[10]; // Wrong!

 // This is OK.
 Gen<?> gens[] = new Gen<?>[10]; // OK
 }
}

As the program shows, it’s valid to declare a reference to an array of type T, as this line

does:

T vals[]; // OK

But, you cannot instantiate an array of T, as this commented-out line attempts:

// vals = new T[10]; // can't create an array of T

The reason you can’t create an array of T is that T does not exist at run time, so there is no

way for the compiler to know what type of array to actually create.

However, you can pass a reference to a type-compatible array to Gen() when an object

is created and assign that reference to vals, as the program does in this line:

vals = nums; // OK to assign reference to existent array

This works because the array passed to Gen has a known type, which will be the same type

as T at the time of object creation.

Inside main(), notice that you can’t declare an array of references to a specific generic

type. That is, this line

// Gen<Integer> gens[] = new Gen<Integer>[10]; // Wrong!

won’t compile. Arrays of specific generic types simply aren’t allowed, because they can lead

to a loss of type safety.

You can create an array of references to a generic type if you use a wildcard, however, as

shown here:

Gen<?> gens[] = new Gen<?>[10]; // OK

This approach is better than using an array of raw types, because at least some type

checking will still be enforced.

Generic Exception Restriction

A generic class cannot extend Throwable. This means that you cannot create generic

exception classes.

This page intentionally left blank

The Java Library

PART

II
CHAPTER 15
String Handling

CHAPTER 16
Exploring java.lang

CHAPTER 17
java.util Part 1: The

Collections Framework

CHAPTER 18
java.util Part 2: More Utility

Classes

CHAPTER 19
Input/Output: Exploring

java.io

CHAPTER 20
Exploring NIO

CHAPTER 21
Networking

CHAPTER 22
The Applet Class

CHAPTER 23
Event Handling

CHAPTER 24
Introducing the AWT:

Working with Windows,

Graphics, and Text

CHAPTER 25
Using AWT Controls, Layout

Managers, and Menus

CHAPTER 26
Images

CHAPTER 27
The Concurrency Utilities

CHAPTER 28
Regular Expressions and

Other Packages

15
CHAPTER

 371

String Handling

A brief overview of Java’s string handling was presented in Chapter 7. In this chapter, it is

described in detail. As is the case in most other programming languages, in Java a string is a

sequence of characters. But, unlike some other languages that implement strings as character

arrays, Java implements strings as objects of type String.

Implementing strings as built-in objects allows Java to provide a full complement of

features that make string handling convenient. For example, Java has methods to compare

two strings, search for a substring, concatenate two strings, and change the case of letters

within a string. Also, String objects can be constructed a number of ways, making it easy to

obtain a string when needed.

Somewhat unexpectedly, when you create a String object, you are creating a string that

cannot be changed. That is, once a String object has been created, you cannot change the

characters that comprise that string. At first, this may seem to be a serious restriction.

However, such is not the case. You can still perform all types of string operations. The

difference is that each time you need an altered version of an existing string, a new String

object is created that contains the modifications. The original string is left unchanged. This

approach is used because fixed, immutable strings can be implemented more efficiently

than changeable ones. For those cases in which a modifiable string is desired, Java provides

two options: StringBuffer and StringBuilder. Both hold strings that can be modified after

they are created.

The String, StringBuffer, and StringBuilder classes are defined in java.lang. Thus, they are

available to all programs automatically. All are declared final, which means that none of these

classes may be subclassed. This allows certain optimizations that increase performance to take

place on common string operations. All three implement the CharSequence interface.

One last point: To say that the strings within objects of type String are unchangeable

means that the contents of the String instance cannot be changed after it has been created.

However, a variable declared as a String reference can be changed to point at some other

String object at any time.

372 PART II The Java Library

The String Constructors
The String class supports several constructors. To create an empty String, call the default

constructor. For example,

String s = new String();

will create an instance of String with no characters in it.

Frequently, you will want to create strings that have initial values. The String class

provides a variety of constructors to handle this. To create a String initialized by an array

of characters, use the constructor shown here:

String(char chars[])

Here is an example:

char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);

This constructor initializes s with the string "abc".

You can specify a subrange of a character array as an initializer using the following

constructor:

String(char chars[], int startIndex, int numChars)

Here, startIndex specifies the index at which the subrange begins, and numChars specifies

the number of characters to use. Here is an example:

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
String s = new String(chars, 2, 3);

This initializes s with the characters cde.

You can construct a String object that contains the same character sequence as another

String object using this constructor:

String(String strObj)

Here, strObj is a String object. Consider this example:

// Construct one String from another.
class MakeString {
 public static void main(String args[]) {
 char c[] = {'J', 'a', 'v', 'a'};
 String s1 = new String(c);
 String s2 = new String(s1);

 System.out.println(s1);
 System.out.println(s2);
 }
}

The output from this program is as follows:

 Java
 Java

 Chapter 15 String Handling 373

P
a

rt
 I

I

As you can see, s1 and s2 contain the same string.

Even though Java’s char type uses 16 bits to represent the basic Unicode character set,

the typical format for strings on the Internet uses arrays of 8-bit bytes constructed from the

ASCII character set. Because 8-bit ASCII strings are common, the String class provides

constructors that initialize a string when given a byte array. Two forms are shown here:

String(byte asciiChars[])

String(byte asciiChars[], int startIndex, int numChars)

Here, asciiChars specifies the array of bytes. The second form allows you to specify a

subrange. In each of these constructors, the byte-to-character conversion is done by using

the default character encoding of the platform. The following program illustrates these

constructors:

// Construct string from subset of char array.
class SubStringCons {
 public static void main(String args[]) {
 byte ascii[] = {65, 66, 67, 68, 69, 70 };

 String s1 = new String(ascii);
 System.out.println(s1);

 String s2 = new String(ascii, 2, 3);
 System.out.println(s2);
 }
}

This program generates the following output:

 ABCDEF
 CDE

Extended versions of the byte-to-string constructors are also defined in which you can

specify the character encoding that determines how bytes are converted to characters.

However, you will often want to use the default encoding provided by the platform.

NOTE The contents of the array are copied whenever you create a String object from an array. If you
modify the contents of the array after you have created the string, the String will be unchanged.

You can construct a String from a StringBuffer by using the constructor shown here:

String(StringBuffer strBufObj)

You can construct a String from a StringBuilder by using this constructor:

String(StringBuilder strBuildObj)

The following constructor supports the extended Unicode character set:

String(int codePoints[], int startIndex, int numChars)

Here, codePoints is an array that contains Unicode code points. The resulting string is

constructed from the range that begins at startIndex and runs for numChars.

374 PART II The Java Library

There are also constructors that let you specify a Charset.

NOTE A discussion of Unicode code points and how they are handled by Java is found in Chapter 16.

String Length
The length of a string is the number of characters that it contains. To obtain this value, call

the length() method, shown here:

int length()

The following fragment prints "3", since there are three characters in the string s:

 char chars[] = { 'a', 'b', 'c' };
 String s = new String(chars);
 System.out.println(s.length());

Special String Operations
Because strings are a common and important part of programming, Java has added special

support for several string operations within the syntax of the language. These operations

include the automatic creation of new String instances from string literals, concatenation of

multiple String objects by use of the + operator, and the conversion of other data types to a

string representation. There are explicit methods available to perform all of these functions,

but Java does them automatically as a convenience for the programmer and to add clarity.

String Literals

The earlier examples showed how to explicitly create a String instance from an array of

characters by using the new operator. However, there is an easier way to do this using a

string literal. For each string literal in your program, Java automatically constructs a String

object. Thus, you can use a string literal to initialize a String object. For example, the

following code fragment creates two equivalent strings:

char chars[] = { 'a', 'b', 'c' };
String s1 = new String(chars);

String s2 = "abc"; // use string literal

Because a String object is created for every string literal, you can use a string literal any

place you can use a String object. For example, you can call methods directly on a quoted

string as if it were an object reference, as the following statement shows. It calls the length()
method on the string "abc". As expected, it prints "3".

System.out.println("abc".length());

String Concatenation

In general, Java does not allow operators to be applied to String objects. The one exception

to this rule is the + operator, which concatenates two strings, producing a String object as

 Chapter 15 String Handling 375

P
a

rt
 I

I

the result. This allows you to chain together a series of + operations. For example, the

following fragment concatenates three strings:

String age = "9";
String s = "He is " + age + " years old.";
System.out.println(s);

This displays the string "He is 9 years old."

One practical use of string concatenation is found when you are creating very long

strings. Instead of letting long strings wrap around within your source code, you can break

them into smaller pieces, using the + to concatenate them. Here is an example:

// Using concatenation to prevent long lines.
class ConCat {
 public static void main(String args[]) {
 String longStr = "This could have been " +
 "a very long line that would have " +
 "wrapped around. But string concatenation " +
 "prevents this.";

 System.out.println(longStr);
 }
}

String Concatenation with Other Data Types

You can concatenate strings with other types of data. For example, consider this slightly

different version of the earlier example:

int age = 9;
String s = "He is " + age + " years old.";
System.out.println(s);

In this case, age is an int rather than another String, but the output produced is the

same as before. This is because the int value in age is automatically converted into its string

representation within a String object. This string is then concatenated as before. The

compiler will convert an operand to its string equivalent whenever the other operand of

the + is an instance of String.

Be careful when you mix other types of operations with string concatenation

expressions, however. You might get surprising results. Consider the following:

String s = "four: " + 2 + 2;
System.out.println(s);

This fragment displays

four: 22

rather than the

four: 4

376 PART II The Java Library

that you probably expected. Here’s why. Operator precedence causes the concatenation of

"four" with the string equivalent of 2 to take place first. This result is then concatenated

with the string equivalent of 2 a second time. To complete the integer addition first, you

must use parentheses, like this:

String s = "four: " + (2 + 2);

Now s contains the string "four: 4".

String Conversion and toString()

When Java converts data into its string representation during concatenation, it does so by

calling one of the overloaded versions of the string conversion method valueOf() defined

by String. valueOf() is overloaded for all the primitive types and for type Object. For the

primitive types, valueOf() returns a string that contains the human-readable equivalent

of the value with which it is called. For objects, valueOf() calls the toString() method on the

object. We will look more closely at valueOf() later in this chapter. Here, let’s examine

the toString() method, because it is the means by which you can determine the string

representation for objects of classes that you create.

Every class implements toString() because it is defined by Object. However, the default

implementation of toString() is seldom sufficient. For most important classes that you

create, you will want to override toString() and provide your own string representations.

Fortunately, this is easy to do. The toString() method has this general form:

String toString()

To implement toString(), simply return a String object that contains the human-readable

string that appropriately describes an object of your class.

By overriding toString() for classes that you create, you allow them to be fully integrated

into Java’s programming environment. For example, they can be used in print() and

println() statements and in concatenation expressions. The following program

demonstrates this by overriding toString() for the Box class:

// Override toString() for Box class.
class Box {
 double width;
 double height;
 double depth;

 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 public String toString() {
 return "Dimensions are " + width + " by " +
 depth + " by " + height + ".";
 }
}

 Chapter 15 String Handling 377

P
a

rt
 I

I

class toStringDemo {
 public static void main(String args[]) {
 Box b = new Box(10, 12, 14);
 String s = "Box b: " + b; // concatenate Box object

 System.out.println(b); // convert Box to string
 System.out.println(s);
 }
}

The output of this program is shown here:

 Dimensions are 10.0 by 14.0 by 12.0
 Box b: Dimensions are 10.0 by 14.0 by 12.0

As you can see, Box’s toString() method is automatically invoked when a Box object is

used in a concatenation expression or in a call to println().

Character Extraction
The String class provides a number of ways in which characters can be extracted from a

String object. Several are examined here. Although the characters that comprise a string

within a String object cannot be indexed as if they were a character array, many of the

String methods employ an index (or offset) into the string for their operation. Like arrays,

the string indexes begin at zero.

charAt()

To extract a single character from a String, you can refer directly to an individual character

via the charAt() method. It has this general form:

char charAt(int where)

Here, where is the index of the character that you want to obtain. The value of where must be

nonnegative and specify a location within the string. charAt() returns the character at the

specified location. For example,

char ch;
ch = "abc".charAt(1);

assigns the value b to ch.

getChars()

If you need to extract more than one character at a time, you can use the getChars()
method. It has this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd

specifies an index that is one past the end of the desired substring. Thus, the substring

contains the characters from sourceStart through sourceEnd–1. The array that will receive the

characters is specified by target. The index within target at which the substring will be copied

378 PART II The Java Library

is passed in targetStart. Care must be taken to assure that the target array is large enough to

hold the number of characters in the specified substring.

The following program demonstrates getChars():

class getCharsDemo {
 public static void main(String args[]) {
 String s = "This is a demo of the getChars method.";
 int start = 10;
 int end = 14;
 char buf[] = new char[end - start];

 s.getChars(start, end, buf, 0);
 System.out.println(buf);
 }
}

Here is the output of this program:

 demo

getBytes()

There is an alternative to getChars() that stores the characters in an array of bytes. This

method is called getBytes(), and it uses the default character-to-byte conversions provided

by the platform. Here is its simplest form:

byte[] getBytes()

Other forms of getBytes() are also available. getBytes() is most useful when you are

exporting a String value into an environment that does not support 16-bit Unicode characters.

For example, most Internet protocols and text file formats use 8-bit ASCII for all text

interchange.

toCharArray()

If you want to convert all the characters in a String object into a character array, the easiest

way is to call toCharArray(). It returns an array of characters for the entire string. It has this

general form:

char[] toCharArray()

This function is provided as a convenience, since it is possible to use getChars() to

achieve the same result.

String Comparison
The String class includes a number of methods that compare strings or substrings within

strings. Several are examined here.

equals() and equalsIgnoreCase()

To compare two strings for equality, use equals(). It has this general form:

boolean equals(Object str)

 Chapter 15 String Handling 379

P
a

rt
 I

I

Here, str is the String object being compared with the invoking String object. It returns

true if the strings contain the same characters in the same order, and false otherwise. The

comparison is case-sensitive.

To perform a comparison that ignores case differences, call equalsIgnoreCase(). When

it compares two strings, it considers A-Z to be the same as a-z. It has this general form:

boolean equalsIgnoreCase(String str)

Here, str is the String object being compared with the invoking String object. It, too, returns

true if the strings contain the same characters in the same order, and false otherwise.

Here is an example that demonstrates equals() and equalsIgnoreCase():

// Demonstrate equals() and equalsIgnoreCase().
class equalsDemo {
 public static void main(String args[]) {
 String s1 = "Hello";
 String s2 = "Hello";
 String s3 = "Good-bye";
 String s4 = "HELLO";
 System.out.println(s1 + " equals " + s2 + " -> " +
 s1.equals(s2));
 System.out.println(s1 + " equals " + s3 + " -> " +
 s1.equals(s3));
 System.out.println(s1 + " equals " + s4 + " -> " +
 s1.equals(s4));
 System.out.println(s1 + " equalsIgnoreCase " + s4 + " -> " +
 s1.equalsIgnoreCase(s4));
 }
}

The output from the program is shown here:

 Hello equals Hello -> true
 Hello equals Good-bye -> false
 Hello equals HELLO -> false
 Hello equalsIgnoreCase HELLO -> true

regionMatches()

The regionMatches() method compares a specific region inside a string with another

specific region in another string. There is an overloaded form that allows you to ignore

case in such comparisons. Here are the general forms for these two methods:

boolean regionMatches(int startIndex, String str2,

 int str2StartIndex, int numChars)

boolean regionMatches(boolean ignoreCase,
 int startIndex, String str2,

 int str2StartIndex, int numChars)

For both versions, startIndex specifies the index at which the region begins within the

invoking String object. The String being compared is specified by str2. The index at which

the comparison will start within str2 is specified by str2StartIndex. The length of the substring

380 PART II The Java Library

being compared is passed in numChars. In the second version, if ignoreCase is true, the case

of the characters is ignored. Otherwise, case is significant.

startsWith() and endsWith()

String defines two methods that are, more or less, specialized forms of regionMatches().
The startsWith() method determines whether a given String begins with a specified string.

Conversely, endsWith() determines whether the String in question ends with a specified

string. They have the following general forms:

boolean startsWith(String str)
boolean endsWith(String str)

Here, str is the String being tested. If the string matches, true is returned. Otherwise, false

is returned. For example,

"Foobar".endsWith("bar")

and

"Foobar".startsWith("Foo")

are both true.

A second form of startsWith(), shown here, lets you specify a starting point:

boolean startsWith(String str, int startIndex)

Here, startIndex specifies the index into the invoking string at which point the search will

begin. For example,

"Foobar".startsWith("bar", 3)

returns true.

equals() Versus ==

It is important to understand that the equals() method and the == operator perform two

different operations. As just explained, the equals() method compares the characters

inside a String object. The == operator compares two object references to see whether they

refer to the same instance. The following program shows how two different String objects

can contain the same characters, but references to these objects will not compare as equal:

// equals() vs ==
class EqualsNotEqualTo {
 public static void main(String args[]) {
 String s1 = "Hello";
 String s2 = new String(s1);

 System.out.println(s1 + " equals " + s2 + " -> " +
 s1.equals(s2));
 System.out.println(s1 + " == " + s2 + " -> " + (s1 == s2));
 }
}

 Chapter 15 String Handling 381

P
a

rt
 I

I

The variable s1 refers to the String instance created by "Hello". The object referred

to by s2 is created with s1 as an initializer. Thus, the contents of the two String objects are

identical, but they are distinct objects. This means that s1 and s2 do not refer to the same

objects and are, therefore, not ==, as is shown here by the output of the preceding example:

 Hello equals Hello -> true
 Hello == Hello -> false

compareTo()

Often, it is not enough to simply know whether two strings are identical. For sorting

applications, you need to know which is less than, equal to, or greater than the next. A string

is less than another if it comes before the other in dictionary order. A string is greater than

another if it comes after the other in dictionary order. The method compareTo() serves

this purpose. It is specified by the Comparable<T> interface, which String implements. It

has this general form:

int compareTo(String str)

Here, str is the String being compared with the invoking String. The result of the

comparison is returned and is interpreted as shown here:

Value Meaning

Less than zero The invoking string is less than str.

Greater than zero The invoking string is greater than str.

Zero The two strings are equal.

Here is a sample program that sorts an array of strings. The program uses compareTo()
to determine sort ordering for a bubble sort:

// A bubble sort for Strings.
class SortString {
 static String arr[] = {
 "Now", "is", "the", "time", "for", "all", "good", "men",
 "to", "come", "to", "the", "aid", "of", "their", "country"
 };
 public static void main(String args[]) {
 for(int j = 0; j < arr.length; j++) {
 for(int i = j + 1; i < arr.length; i++) {
 if(arr[i].compareTo(arr[j]) < 0) {
 String t = arr[j];
 arr[j] = arr[i];
 arr[i] = t;
 }
 }
 System.out.println(arr[j]);
 }
 }
}

382 PART II The Java Library

The output of this program is the list of words:

 Now
 aid
 all
 come
 country
 for
 good
 is
 men
 of
 the
 the
 their
 time
 to
 to

As you can see from the output of this example, compareTo() takes into account

uppercase and lowercase letters. The word "Now" came out before all the others because it

begins with an uppercase letter, which means it has a lower value in the ASCII character set.

If you want to ignore case differences when comparing two strings, use

compareToIgnoreCase(), as shown here:

int compareToIgnoreCase(String str)

This method returns the same results as compareTo(), except that case differences are

ignored. You might want to try substituting it into the previous program. After doing so,

"Now" will no longer be first.

Searching Strings
The String class provides two methods that allow you to search a string for a specified

character or substring:

• indexOf() Searches for the first occurrence of a character or substring.

• lastIndexOf() Searches for the last occurrence of a character or substring.

These two methods are overloaded in several different ways. In all cases, the methods

return the index at which the character or substring was found, or –1 on failure.

To search for the first occurrence of a character, use

int indexOf(int ch)

To search for the last occurrence of a character, use

int lastIndexOf(int ch)

Here, ch is the character being sought.

To search for the first or last occurrence of a substring, use

int indexOf(String str)
int lastIndexOf(String str)

 Chapter 15 String Handling 383

P
a

rt
 I

I

Here, str specifies the substring.

You can specify a starting point for the search using these forms:

int indexOf(int ch, int startIndex)

int lastIndexOf(int ch, int startIndex)

int indexOf(String str, int startIndex)

int lastIndexOf(String str, int startIndex)

Here, startIndex specifies the index at which point the search begins. For indexOf(), the

search runs from startIndex to the end of the string. For lastIndexOf(), the search runs

from startIndex to zero.

The following example shows how to use the various index methods to search inside of

a String:

// Demonstrate indexOf() and lastIndexOf().
class indexOfDemo {
 public static void main(String args[]) {
 String s = "Now is the time for all good men " +
 "to come to the aid of their country.";

 System.out.println(s);
 System.out.println("indexOf(t) = " +
 s.indexOf('t'));
 System.out.println("lastIndexOf(t) = " +
 s.lastIndexOf('t'));
 System.out.println("indexOf(the) = " +
 s.indexOf("the"));
 System.out.println("lastIndexOf(the) = " +
 s.lastIndexOf("the"));
 System.out.println("indexOf(t, 10) = " +
 s.indexOf('t', 10));
 System.out.println("lastIndexOf(t, 60) = " +
 s.lastIndexOf('t', 60));
 System.out.println("indexOf(the, 10) = " +
 s.indexOf("the", 10));
 System.out.println("lastIndexOf(the, 60) = " +
 s.lastIndexOf("the", 60));
 }
}

Here is the output of this program:

 Now is the time for all good men to come to the aid of their country.
 indexOf(t) = 7
 lastIndexOf(t) = 65
 indexOf(the) = 7
 lastIndexOf(the) = 55
 indexOf(t, 10) = 11
 lastIndexOf(t, 60) = 55
 indexOf(the, 10) = 44
 lastIndexOf(the, 60) = 55

384 PART II The Java Library

Modifying a String
Because String objects are immutable, whenever you want to modify a String, you must

either copy it into a StringBuffer or StringBuilder, or use a String method that constructs a

new copy of the string with your modifications complete. A sampling of these methods are

described here.

substring()

You can extract a substring using substring(). It has two forms. The first is

String substring(int startIndex)

Here, startIndex specifies the index at which the substring will begin. This form returns a

copy of the substring that begins at startIndex and runs to the end of the invoking string.

The second form of substring() allows you to specify both the beginning and ending

index of the substring:

String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping point.

The string returned contains all the characters from the beginning index, up to, but not

including, the ending index.

The following program uses substring() to replace all instances of one substring with

another within a string:

// Substring replacement.
class StringReplace {
 public static void main(String args[]) {
 String org = "This is a test. This is, too.";
 String search = "is";
 String sub = "was";
 String result = "";
 int i;

 do { // replace all matching substrings
 System.out.println(org);
 i = org.indexOf(search);
 if(i != -1) {
 result = org.substring(0, i);
 result = result + sub;
 result = result + org.substring(i + search.length());
 org = result;
 }
 } while(i != -1);
 }
}

The output from this program is shown here:

 This is a test. This is, too.
 Thwas is a test. This is, too.
 Thwas was a test. This is, too.
 Thwas was a test. Thwas is, too.
 Thwas was a test. Thwas was, too.

 Chapter 15 String Handling 385

P
a

rt
 I

I

concat()

You can concatenate two strings using concat(), shown here:

String concat(String str)

This method creates a new object that contains the invoking string with the contents of

str appended to the end. concat() performs the same function as +. For example,

String s1 = "one";
String s2 = s1.concat("two");

puts the string "onetwo" into s2. It generates the same result as the following sequence:

String s1 = "one";
String s2 = s1 + "two";

replace()

The replace() method has two forms. The first replaces all occurrences of one character in

the invoking string with another character. It has the following general form:

String replace(char original, char replacement)

Here, original specifies the character to be replaced by the character specified by replacement.
The resulting string is returned. For example,

String s = "Hello".replace('l', 'w');

puts the string "Hewwo" into s.

The second form of replace() replaces one character sequence with another. It has this

general form:

String replace(CharSequence original, CharSequence replacement)

trim()

The trim() method returns a copy of the invoking string from which any leading and

trailing whitespace has been removed. It has this general form:

String trim()

Here is an example:

String s = " Hello World ".trim();

This puts the string "Hello World" into s.

The trim() method is quite useful when you process user commands. For example,

the following program prompts the user for the name of a state and then displays that

state’s capital. It uses trim() to remove any leading or trailing whitespace that may have

inadvertently been entered by the user.

// Using trim() to process commands.
import java.io.*;

386 PART II The Java Library

class UseTrim {
 public static void main(String args[])
 throws IOException
 {
 // create a BufferedReader using System.in
 BufferedReader br = new
 BufferedReader(new InputStreamReader(System.in));
 String str;

 System.out.println("Enter 'stop' to quit.");
 System.out.println("Enter State: ");
 do {
 str = br.readLine();
 str = str.trim(); // remove whitespace

 if(str.equals("Illinois"))
 System.out.println("Capital is Springfield.");
 else if(str.equals("Missouri"))
 System.out.println("Capital is Jefferson City.");
 else if(str.equals("California"))
 System.out.println("Capital is Sacramento.");
 else if(str.equals("Washington"))
 System.out.println("Capital is Olympia.");
 // ...
 } while(!str.equals("stop"));
 }
}

Data Conversion Using valueOf()
The valueOf() method converts data from its internal format into a human-readable form.

It is a static method that is overloaded within String for all of Java’s built-in types so that

each type can be converted properly into a string. valueOf() is also overloaded for type

Object, so an object of any class type you create can also be used as an argument. (Recall

that Object is a superclass for all classes.) Here are a few of its forms:

static String valueOf(double num)

static String valueOf(long num)

static String valueOf(Object ob)

static String valueOf(char chars[])

As discussed earlier, valueOf() is called when a string representation of some other

type of data is needed—for example, during concatenation operations. You can call this

method directly with any data type and get a reasonable String representation. All of the

simple types are converted to their common String representation. Any object that you pass

to valueOf() will return the result of a call to the object’s toString() method. In fact, you

could just call toString() directly and get the same result.

For most arrays, valueOf() returns a rather cryptic string, which indicates that it is an

array of some type. For arrays of char, however, a String object is created that contains the

characters in the char array. There is a special version of valueOf() that allows you to specify

a subset of a char array. It has this general form:

 Chapter 15 String Handling 387

P
a

rt
 I

I

static String valueOf(char chars[], int startIndex, int numChars)

Here, chars is the array that holds the characters, startIndex is the index into the array of

characters at which the desired substring begins, and numChars specifies the length of the

substring.

Changing the Case of Characters Within a String
The method toLowerCase() converts all the characters in a string from uppercase to

lowercase. The toUpperCase() method converts all the characters in a string from lowercase

to uppercase. Nonalphabetical characters, such as digits, are unaffected. Here are the

simplest forms of these methods:

String toLowerCase()

String toUpperCase()

Both methods return a String object that contains the uppercase or lowercase equivalent of

the invoking String. The default locale governs the conversion in both cases.

Here is an example that uses toLowerCase() and toUpperCase():

// Demonstrate toUpperCase() and toLowerCase().

class ChangeCase {
 public static void main(String args[])
 {
 String s = "This is a test.";

 System.out.println("Original: " + s);

 String upper = s.toUpperCase();
 String lower = s.toLowerCase();

 System.out.println("Uppercase: " + upper);
 System.out.println("Lowercase: " + lower);
 }
}

The output produced by the program is shown here:

 Original: This is a test.
 Uppercase: THIS IS A TEST.
 Lowercase: this is a test.

One other point: Overloaded versions of toLowerCase() and toUpperCase() that let

you specify a Locale object to govern the conversion are also supplied. Specifying the locale

can be quite important in some cases and can help internationalize your application.

Additional String Methods
In addition to those methods discussed earlier, String has many other methods, including

those summarized in the following table:

388 PART II The Java Library

Method Description

int codePointAt(int i) Returns the Unicode code point at the location

specified by i.

int codePointBefore(int i) Returns the Unicode code point at the location that

precedes that specified by i.

int codePointCount(int start, int end) Returns the number of code points in the portion of

the invoking String that are between start and end–1.

boolean contains(CharSequence str) Returns true if the invoking object contains the

string specified by str. Returns false, otherwise.

boolean contentEquals(CharSequence str) Returns true if the invoking string contains the same

string as str. Otherwise, returns false.

boolean contentEquals(StringBuffer str) Returns true if the invoking string contains the same

string as str. Otherwise, returns false.

static String format(String fmtstr,
 Object ... args)

Returns a string formatted as specified by fmtstr. (See

Chapter 18 for details on formatting.)

static String format(Locale loc,
 String fmtstr,
 Object ... args)

Returns a string formatted as specified by fmtstr.
Formatting is governed by the locale specified by loc.
(See Chapter 18 for details on formatting.)

boolean isEmpty() Returns true if the invoking string contains no

characters and has a length of zero.

boolean matches(string regExp) Returns true if the invoking string matches the regular

expression passed in regExp. Otherwise, returns false.

int offsetByCodePoints(int start, int num) Returns the index within the invoking string that is

num code points beyond the starting index specified

by start.

String

 replaceFirst(String regExp,

 String newStr)

Returns a string in which the first substring that

matches the regular expression specified by regExp is

replaced by newStr.

String

 replaceAll(String regExp,

 String newStr)

Returns a string in which all substrings that match

the regular expression specified by regExp are

replaced by newStr.

String[] split(String regExp) Decomposes the invoking string into parts and

returns an array that contains the result. Each part is

delimited by the regular expression passed in regExp.

String[] split(String regExp, int max) Decomposes the invoking string into parts and returns

an array that contains the result. Each part is delimited

by the regular expression passed in regExp. The number

of pieces is specified by max. If max is negative, then the

invoking string is fully decomposed. Otherwise, if max

contains a nonzero value, the last entry in the returned

array contains the remainder of the invoking string. If

max is zero, the invoking string is fully decomposed.

CharSequence

 subSequence(int startIndex,

 int stopIndex)

Returns a substring of the invoking string, beginning

at startIndex and stopping at stopIndex. This method

is required by the CharSequence interface, which is

implemented by String.

 Chapter 15 String Handling 389

P
a

rt
 I

I

Notice that several of these methods work with regular expressions. Regular expressions are

described in Chapter 28.

StringBuffer
StringBuffer is a peer class of String that provides much of the functionality of strings. As

you know, String represents fixed-length, immutable character sequences. In contrast,

StringBuffer represents growable and writable character sequences. StringBuffer may have

characters and substrings inserted in the middle or appended to the end. StringBuffer

will automatically grow to make room for such additions and often has more characters

preallocated than are actually needed, to allow room for growth.

StringBuffer Constructors

StringBuffer defines these four constructors:

StringBuffer()

StringBuffer(int size)
StringBuffer(String str)
StringBuffer(CharSequence chars)

The default constructor (the one with no parameters) reserves room for 16 characters

without reallocation. The second version accepts an integer argument that explicitly sets

the size of the buffer. The third version accepts a String argument that sets the initial

contents of the StringBuffer object and reserves room for 16 more characters without

reallocation. StringBuffer allocates room for 16 additional characters when no specific

buffer length is requested, because reallocation is a costly process in terms of time. Also,

frequent reallocations can fragment memory. By allocating room for a few extra characters,

StringBuffer reduces the number of reallocations that take place. The fourth constructor

creates an object that contains the character sequence contained in chars and reserves room

for 16 more characters.

length() and capacity()

The current length of a StringBuffer can be found via the length() method, while the total

allocated capacity can be found through the capacity() method. They have the following

general forms:

int length()

int capacity()

Here is an example:

// StringBuffer length vs. capacity.
class StringBufferDemo {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer("Hello");

 System.out.println("buffer = " + sb);
 System.out.println("length = " + sb.length());
 System.out.println("capacity = " + sb.capacity());
 }
}

390 PART II The Java Library

Here is the output of this program, which shows how StringBuffer reserves extra space

for additional manipulations:

 buffer = Hello
 length = 5
 capacity = 21

Since sb is initialized with the string "Hello" when it is created, its length is 5. Its capacity is

21 because room for 16 additional characters is automatically added.

ensureCapacity()

If you want to preallocate room for a certain number of characters after a StringBuffer has

been constructed, you can use ensureCapacity() to set the size of the buffer. This is useful

if you know in advance that you will be appending a large number of small strings to a

StringBuffer. ensureCapacity() has this general form:

void ensureCapacity(int minCapacity)

Here, minCapacity specifies the minimum size of the buffer. (A buffer larger than minCapacity
may be allocated for reasons of efficiency.)

setLength()

To set the length of the string within a StringBuffer object, use setLength(). Its general

form is shown here:

void setLength(int len)

Here, len specifies the length of the string. This value must be nonnegative.

When you increase the size of the string, null characters are added to the end. If you

call setLength() with a value less than the current value returned by length(), then the

characters stored beyond the new length will be lost. The setCharAtDemo sample program

in the following section uses setLength() to shorten a StringBuffer.

charAt() and setCharAt()

The value of a single character can be obtained from a StringBuffer via the charAt() method.

You can set the value of a character within a StringBuffer using setCharAt(). Their general

forms are shown here:

char charAt(int where)
void setCharAt(int where, char ch)

For charAt(), where specifies the index of the character being obtained. For setCharAt(),
where specifies the index of the character being set, and ch specifies the new value of that

character. For both methods, where must be nonnegative and must not specify a location

beyond the end of the string.

The following example demonstrates charAt() and setCharAt():

// Demonstrate charAt() and setCharAt().
class setCharAtDemo {
 public static void main(String args[]) {

 Chapter 15 String Handling 391

P
a

rt
 I

I

 StringBuffer sb = new StringBuffer("Hello");
 System.out.println("buffer before = " + sb);
 System.out.println("charAt(1) before = " + sb.charAt(1));

 sb.setCharAt(1, 'i');
 sb.setLength(2);
 System.out.println("buffer after = " + sb);
 System.out.println("charAt(1) after = " + sb.charAt(1));
 }
}

Here is the output generated by this program:

 buffer before = Hello
 charAt(1) before = e
 buffer after = Hi
 charAt(1) after = i

getChars()

To copy a substring of a StringBuffer into an array, use the getChars() method. It has this

general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd

specifies an index that is one past the end of the desired substring. This means that the

substring contains the characters from sourceStart through sourceEnd–1. The array that will

receive the characters is specified by target. The index within target at which the substring

will be copied is passed in targetStart. Care must be taken to assure that the target array is

large enough to hold the number of characters in the specified substring.

append()

The append() method concatenates the string representation of any other type of data to

the end of the invoking StringBuffer object. It has several overloaded versions. Here are a

few of its forms:

StringBuffer append(String str)
StringBuffer append(int num)

StringBuffer append(Object obj)

The string representation of each parameter is obtained, often by calling String.valueOf().
The result is appended to the current StringBuffer object. The buffer itself is returned by

each version of append(). This allows subsequent calls to be chained together, as shown in

the following example:

// Demonstrate append().
class appendDemo {
 public static void main(String args[]) {
 String s;
 int a = 42;
 StringBuffer sb = new StringBuffer(40);

392 PART II The Java Library

 s = sb.append("a = ").append(a).append("!").toString();
 System.out.println(s);
 }
}

The output of this example is shown here:

 a = 42!

insert()

The insert() method inserts one string into another. It is overloaded to accept values of all

the primitive types, plus Strings, Objects, and CharSequences. Like append(), it obtains the

string representation of the value it is called with. This string is then inserted into the

invoking StringBuffer object. These are a few of its forms:

StringBuffer insert(int index, String str)
StringBuffer insert(int index, char ch)

StringBuffer insert(int index, Object obj)

Here, index specifies the index at which point the string will be inserted into the invoking

StringBuffer object.

The following sample program inserts "like" between "I" and "Java":

// Demonstrate insert().
class insertDemo {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer("I Java!");

 sb.insert(2, "like ");
 System.out.println(sb);
 }
}

The output of this example is shown here:

 I like Java!

reverse()

You can reverse the characters within a StringBuffer object using reverse(), shown here:

StringBuffer reverse()

This method returns the reverse of the object on which it was called. The following

program demonstrates reverse():

// Using reverse() to reverse a StringBuffer.
class ReverseDemo {
 public static void main(String args[]) {
 StringBuffer s = new StringBuffer("abcdef");

 System.out.println(s);
 s.reverse();

 Chapter 15 String Handling 393

P
a

rt
 I

I

 System.out.println(s);
 }
}

Here is the output produced by the program:

 abcdef
 fedcba

delete() and deleteCharAt()

You can delete characters within a StringBuffer by using the methods delete() and

deleteCharAt(). These methods are shown here:

StringBuffer delete(int startIndex, int endIndex)

StringBuffer deleteCharAt(int loc)

The delete() method deletes a sequence of characters from the invoking object. Here,

startIndex specifies the index of the first character to remove, and endIndex specifies an

index one past the last character to remove. Thus, the substring deleted runs from

startIndex to endIndex–1. The resulting StringBuffer object is returned.

The deleteCharAt() method deletes the character at the index specified by loc. It
returns the resulting StringBuffer object.

Here is a program that demonstrates the delete() and deleteCharAt() methods:

// Demonstrate delete() and deleteCharAt()
class deleteDemo {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer("This is a test.");

 sb.delete(4, 7);
 System.out.println("After delete: " + sb);

 sb.deleteCharAt(0);
 System.out.println("After deleteCharAt: " + sb);
 }
}

The following output is produced:

 After delete: This a test.
 After deleteCharAt: his a test.

replace()

You can replace one set of characters with another set inside a StringBuffer object by

calling replace(). Its signature is shown here:

StringBuffer replace(int startIndex, int endIndex, String str)

The substring being replaced is specified by the indexes startIndex and endIndex. Thus, the

substring at startIndex through endIndex–1 is replaced. The replacement string is passed in

str. The resulting StringBuffer object is returned.

394 PART II The Java Library

The following program demonstrates replace():

// Demonstrate replace()
class replaceDemo {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer("This is a test.");

 sb.replace(5, 7, "was");
 System.out.println("After replace: " + sb);
 }
}

Here is the output:

 After replace: This was a test.

substring()

You can obtain a portion of a StringBuffer by calling substring(). It has the following two

forms:

String substring(int startIndex)

String substring(int startIndex, int endIndex)

The first form returns the substring that starts at startIndex and runs to the end of the

invoking StringBuffer object. The second form returns the substring that starts at startIndex

and runs through endIndex–1. These methods work just like those defined for String that

were described earlier.

Additional StringBuffer Methods

In addition to those methods just described, StringBuffer supplies several others, including

those summarized in the following table:

Method Description

StringBuffer appendCodePoint(int ch) Appends a Unicode code point to the end of the invoking

object. A reference to the object is returned.

int codePointAt(int i) Returns the Unicode code point at the location specified

by i.

int codePointBefore(int i) Returns the Unicode code point at the location that

precedes that specified by i.

int codePointCount(int start, int end) Returns the number of code points in the portion of the

invoking String that are between start and end–1.

int indexOf(String str) Searches the invoking StringBuffer for the first

occurrence of str. Returns the index of the match, or –1 if

no match is found.

int indexOf(String str, int startIndex) Searches the invoking StringBuffer for the first

occurrence of str, beginning at startIndex. Returns the

index of the match, or –1 if no match is found.

 Chapter 15 String Handling 395

P
a

rt
 I

I

Method Description

int lastIndexOf(String str) Searches the invoking StringBuffer for the last

occurrence of str. Returns the index of the match,

or –1 if no match is found.

int lastIndexOf(String str, int startIndex) Searches the invoking StringBuffer for the last

occurrence of str, beginning at startIndex. Returns the

index of the match, or –1 if no match is found.

int offsetByCodePoints(int start, int num) Returns the index within the invoking string that is num

code points beyond the starting index specified by start.

CharSequence

 subSequence(int startIndex,

 int stopIndex)

Returns a substring of the invoking string, beginning

at startIndex and stopping at stopIndex. This method

is required by the CharSequence interface, which is

implemented by StringBuffer.

void trimToSize() Requests that the size of the character buffer for the

invoking object be reduced to better fit the current

contents.

The following program demonstrates indexOf() and lastIndexOf():

class IndexOfDemo {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer("one two one");
 int i;

 i = sb.indexOf("one");
 System.out.println("First index: " + i);

 i = sb.lastIndexOf("one");
 System.out.println("Last index: " + i);
 }
}

The output is shown here:

 First index: 0
 Last index: 8

StringBuilder
Introduced by JDK 5, StringBuilder is a recent addition to Java’s string handling capabilities.

StringBuilder is identical to StringBuffer except for one important difference: it is not

synchronized, which means that it is not thread-safe. The advantage of StringBuilder is faster

performance. However, in cases in which a mutable string will be accessed by multiple

threads, and no external synchronization is employed, you must use StringBuffer rather

than StringBuilder.

This page intentionally left blank

16
CHAPTER

 397

Exploring java.lang

This chapter discusses those classes and interfaces defined by java.lang. As you know,

java.lang is automatically imported into all programs. It contains classes and interfaces that

are fundamental to virtually all of Java programming. It is Java’s most widely used package.

java.lang includes the following classes:

Boolean Enum Process String

Byte Float ProcessBuilder StringBuffer

Character InheritableThreadLocal ProcessBuilder.Redirect StringBuilder

Character.Subset Integer Runtime System

Character.UnicodeBlock Long RuntimePermission Thread

Class Math SecurityManager ThreadGroup

ClassLoader Number Short ThreadLocal

ClassValue Object StackTraceElement Throwable

Compiler Package StrictMath Void

Double

java.lang defines the following interfaces:

Appendable Cloneable Readable

AutoCloseable Comparable Runnable

CharSequence Iterable Thread.UncaughtExceptionHandler

Several of the classes contained in java.lang contain deprecated methods, most dating back

to Java 1.0. These deprecated methods are still provided by Java to support an ever-shrinking

pool of legacy code and are not recommended for new code. Most of the deprecations took

place prior to JDK 7, and these deprecated methods are not discussed here.

398 PART II The Java Library

Primitive Type Wrappers
As mentioned in Part I of this book, Java uses primitive types, such as int and char, for

performance reasons. These data types are not part of the object hierarchy. They are passed

by value to methods and cannot be directly passed by reference. Also, there is no way for two

methods to refer to the same instance of an int. At times, you will need to create an object

representation for one of these primitive types. For example, there are collection classes

discussed in Chapter 17 that deal only with objects; to store a primitive type in one of these

classes, you need to wrap the primitive type in a class. To address this need, Java provides

classes that correspond to each of the primitive types. In essence, these classes encapsulate, or

wrap, the primitive types within a class. Thus, they are commonly referred to as type wrappers.
The type wrappers were introduced in Chapter 12. They are examined in detail here.

Number

The abstract class Number defines a superclass that is implemented by the classes that wrap

the numeric types byte, short, int, long, float, and double. Number has abstract methods

that return the value of the object in each of the different number formats. For example,

doubleValue() returns the value as a double, floatValue() returns the value as a float, and

so on. These methods are shown here:

byte byteValue()

double doubleValue()

float floatValue()

int intValue()

long longValue()

short shortValue()

The values returned by these methods might be rounded. Truncation is also possible.

Number has concrete subclasses that hold explicit values of each numeric type: Double,

Float, Byte, Short, Integer, and Long.

Double and Float

Double and Float are wrappers for floating-point values of type double and float,
respectively. The constructors for Float are shown here:

Float(double num)

Float(float num)

Float(String str) throws NumberFormatException

As you can see, Float objects can be constructed with values of type float or double. They

can also be constructed from the string representation of a floating-point number.

The constructors for Double are shown here:

Double(double num)

Double(String str) throws NumberFormatException

Double objects can be constructed with a double value or a string containing a floating-

point value.

 Chapter 16 Exploring java.lang 399

P
a

rt
 I

I

The methods defined by Float are shown in Table 16-1. The methods defined by Double

are shown in Table 16-2. Both Float and Double define the following constants:

MAX_EXPONENT Maximum exponent

MAX_VALUE Maximum positive value

MIN_EXPONENT Minimum exponent

MIN_NORMAL Minimum positive normal value

MIN_VALUE Minimum positive value

NaN Not a number

POSITIVE_INFINITY Positive infinity

NEGATIVE_INFINITY Negative infinity

SIZE The bit width of the wrapped value

TYPE The Class object for float or double

Table 16-1 The Methods Defined by Float

Method Description

byte byteValue() Returns the value of the invoking object as a byte.

static int compare(float num1,

 float num2)

Compares the values of num1 and num2. Returns

0 if the values are equal. Returns a negative value

if num1 is less than num2. Returns a positive value

if num1 is greater than num2.

int compareTo(Float f) Compares the numerical value of the invoking

object with that of f. Returns 0 if the values are

equal. Returns a negative value if the invoking

object has a lower value. Returns a positive value

if the invoking object has a greater value.

double doubleValue() Returns the value of the invoking object as a

double.

boolean equals(Object FloatObj) Returns true if the invoking Float object is

equivalent to FloatObj. Otherwise, it returns false.

static int floatToIntBits(float num) Returns the IEEE-compatible, single-precision bit

pattern that corresponds to num.

static int floatToRawIntBits(float num) Returns the IEEE-compatible single-precision bit

pattern that corresponds to num. A NaN value is

preserved.

float floatValue() Returns the value of the invoking object as a

float.

int hashCode() Returns the hash code for the invoking object.

static float intBitsToFloat(int num) Returns float equivalent of the IEEE-compatible,

single-precision bit pattern specified by num.

400 PART II The Java Library

Method Description

int intValue() Returns the value of the invoking object as an int.

boolean isInfinite() Returns true if the invoking object contains an

infinite value. Otherwise, it returns false.

static boolean isInfinite(float num) Returns true if num specifies an infinite value.

Otherwise, it returns false.

boolean isNaN() Returns true if the invoking object contains a

value that is not a number. Otherwise, it returns

false.

static boolean isNaN(float num) Returns true if num specifies a value that is not a

number. Otherwise, it returns false.

long longValue() Returns the value of the invoking object as a long.

static float parseFloat(String str)
 throws NumberFormatException

Returns the float equivalent of the number

contained in the string specified by str using

radix 10.

short shortValue() Returns the value of the invoking object as a

short.

static String toHexString(float num) Returns a string containing the value of num in

hexadecimal format.

String toString() Returns the string equivalent of the invoking

object.

static String toString(float num) Returns the string equivalent of the value

specified by num.

static Float valueOf(float num) Returns a Float object containing the value

passed in num.

static Float valueOf(String str)
 throws NumberFormatException

Returns the Float object that contains the value

specified by the string in str.

Table 16-1 The Methods Defined by Float (continued)

Method Description

byte byteValue() Returns the value of the invoking object

as a byte.

static int compare(double num1,

 double num2)

Compares the values of num1 and num2.

Returns 0 if the values are equal. Returns

a negative value if num1 is less than num2.

Returns a positive value if num1 is greater

than num2.

Table 16-2 The Methods Defined by Double

 Chapter 16 Exploring java.lang 401

P
a

rt
 I

I

Method Description

int compareTo(Double d) Compares the numerical value of the

invoking object with that of d. Returns 0

if the values are equal. Returns a negative

value if the invoking object has a lower

value. Returns a positive value if the

invoking object has a greater value.

static long doubleToLongBits(double num) Returns the IEEE-compatible, double-

precision bit pattern that corresponds

to num.

static long doubleToRawLongBits(double num) Returns the IEEE-compatible double-

precision bit pattern that corresponds

to num. A NaN value is preserved.

double doubleValue() Returns the value of the invoking object

as a double.

boolean equals(Object DoubleObj) Returns true if the invoking Double object

is equivalent to DoubleObj. Otherwise, it

returns false.

float floatValue() Returns the value of the invoking object

as a float.

int hashcode() Returns the hash code for the invoking

object.

int intValue() Returns the value of the invoking object

as an int.

boolean isInfinite() Returns true if the invoking object contains

an infinite value. Otherwise, it returns false.

static boolean isInfinite(double num) Returns true if num specifies an infinite

value. Otherwise, it returns false.

boolean isNaN() Returns true if the invoking object

contains a value that is not a number.

Otherwise, it returns false.

static boolean isNaN(double num) Returns true if num specifies a value that is

not a number. Otherwise, it returns false.

static double longBitsToDouble(long num) Returns double equivalent of the IEEE-

compatible, double-precision bit pattern

specified by num.

long longValue() Returns the value of the invoking object

as a long.

static double parseDouble(String str)
 throws NumberFormatException

Returns the double equivalent of the

number contained in the string specified

by str using radix 10.

Table 16-2 The Methods Defined by Double (continued)

402 PART II The Java Library

The following example creates two Double objects—one by using a double value and

the other by passing a string that can be parsed as a double:

class DoubleDemo {
 public static void main(String args[]) {
 Double d1 = new Double(3.14159);
 Double d2 = new Double("314159E-5");

 System.out.println(d1 + " = " + d2 + " -> " + d1.equals(d2));
 }
}

As you can see from the following output, both constructors created identical Double

instances, as shown by the equals() method returning true:

 3.14159 = 3.14159 –> true

Understanding isInfinite() and isNaN()

Float and Double provide the methods isInfinite() and isNaN(), which help when

manipulating two special double and float values. These methods test for two unique

values defined by the IEEE floating-point specification: infinity and NaN (not a number).

isInfinite() returns true if the value being tested is infinitely large or small in magnitude.

isNaN() returns true if the value being tested is not a number.

The following example creates two Double objects; one is infinite, and the other is not a

number:

// Demonstrate isInfinite() and isNaN()
class InfNaN {

Method Description

short shortValue() Returns the value of the invoking object

as a short.

static String toHexString(double num) Returns a string containing the value of

num in hexadecimal format.

String toString() Returns the string equivalent of the

invoking object.

static String toString(double num) Returns the string equivalent of the value

specified by num.

static Double valueOf(double num) Returns a Double object containing the

value passed in num.

static Double valueOf(String str)
 throws NumberFormatException

Returns a Double object that contains the

value specified by the string in str.

Table 16-2 The Methods Defined by Double (continued)

 Chapter 16 Exploring java.lang 403

P
a

rt
 I

I

 public static void main(String args[]) {
 Double d1 = new Double(1/0.);
 Double d2 = new Double(0/0.);

 System.out.println(d1 + ": " + d1.isInfinite() + ", " + d1.isNaN());
 System.out.println(d2 + ": " + d2.isInfinite() + ", " + d2.isNaN());
 }
}

This program generates the following output:

 Infinity: true, false
 NaN: false, true

Byte, Short, Integer, and Long

The Byte, Short, Integer, and Long classes are wrappers for byte, short, int, and long integer

types, respectively. Their constructors are shown here:

Byte(byte num)

Byte(String str) throws NumberFormatException

Short(short num)

Short(String str) throws NumberFormatException

Integer(int num)

Integer(String str) throws NumberFormatException

Long(long num)

Long(String str) throws NumberFormatException

As you can see, these objects can be constructed from numeric values or from strings that

contain valid whole number values.

The methods defined by these classes are shown in Tables 16-3 through 16-6. As you can

see, they define methods for parsing integers from strings and converting strings back into

integers. Variants of these methods allow you to specify the radix, or numeric base, for

conversion. Common radixes are 2 for binary, 8 for octal, 10 for decimal, and 16 for

hexadecimal.

The following constants are defined:

MIN_VALUE Minimum value

MAX_VALUE Maximum value

SIZE The bit width of the wrapped value

TYPE The Class object for byte, short, int, or long

404 PART II The Java Library

Method Description

byte byteValue() Returns the value of the invoking object as a byte.

static int compare(byte num1, byte num2) Compares the values of num1 and num2. Returns 0 if

the values are equal. Returns a negative value if num1

is less than num2. Returns a positive value if num1 is

greater than num2. (Added by JDK 7.)

int compareTo(Byte b) Compares the numerical value of the invoking object

with that of b. Returns 0 if the values are equal. Returns

a negative value if the invoking object has a lower

value. Returns a positive value if the invoking object

has a greater value.

static Byte decode(String str)
 throws NumberFormatException

Returns a Byte object that contains the value specified

by the string in str.

double doubleValue() Returns the value of the invoking object as a double.

boolean equals(Object ByteObj) Returns true if the invoking Byte object is equivalent

to ByteObj. Otherwise, it returns false.

float floatValue() Returns the value of the invoking object as a float.

int hashCode() Returns the hash code for the invoking object.

int intValue() Returns the value of the invoking object as an int.

long longValue() Returns the value of the invoking object as a long.

static byte parseByte(String str)
 throws NumberFormatException

Returns the byte equivalent of the number contained

in the string specified by str using radix 10.

static byte parseByte(String str, int radix)

 throws NumberFormatException

Returns the byte equivalent of the number contained

in the string specified by str using the specified radix.

short shortValue() Returns the value of the invoking object as a short.

String toString() Returns a string that contains the decimal equivalent

of the invoking object.

static String toString(byte num) Returns a string that contains the decimal equivalent

of num.

static Byte valueOf(byte num) Returns a Byte object containing the value passed

in num.

static Byte valueOf(String str)
 throws NumberFormatException

Returns a Byte object that contains the value specified

by the string in str.

static Byte valueOf(String str, int radix)

 throws NumberFormatException

Returns a Byte object that contains the value specified

by the string in str using the specified radix.

Table 16-3 The Methods Defined by Byte

 Chapter 16 Exploring java.lang 405

P
a

rt
 I

I

Method Description

byte byteValue() Returns the value of the invoking object as a byte.

static int compare(short num1, short num2 Compares the values of num1 and num2. Returns 0 if

the values are equal. Returns a negative value if num1

is less than num2. Returns a positive value if num1 is

greater than num2. (Added by JDK 7.)

int compareTo(Short s) Compares the numerical value of the invoking object

with that of s. Returns 0 if the values are equal.

Returns a negative value if the invoking object has a

lower value. Returns a positive value if the invoking

object has a greater value.

static Short decode(String str)
 throws NumberFormatException

Returns a Short object that contains the value

specified by the string in str.

double doubleValue() Returns the value of the invoking object as a double.

boolean equals(Object ShortObj) Returns true if the invoking Short object is equivalent

to ShortObj. Otherwise, it returns false.

float floatValue() Returns the value of the invoking object as a float.

int hashCode() Returns the hash code for the invoking object.

int intValue() Returns the value of the invoking object as an int.

long longValue() Returns the value of the invoking object as a long.

static short parseShort(String str)
 throws NumberFormatException

Returns the short equivalent of the number

contained in the string specified by str using radix 10.

static short parseShort(String str, int radix)

 throws NumberFormatException

Returns the short equivalent of the number

contained in the string specified by str using the

specified radix.

static short reverseBytes(short num) Exchanges the high- and low-order bytes of num and

returns the result.

short shortValue() Returns the value of the invoking object as a short.

String toString() Returns a string that contains the decimal equivalent

of the invoking object.

static String toString(short num) Returns a string that contains the decimal equivalent

of num.

static Short valueOf(short num) Returns a Short object containing the value passed

in num.

static Short valueOf(String str)
 throws NumberFormatException

Returns a Short object that contains the value

specified by the string in str using radix 10.

static Short valueOf(String str, int radix)

 throws NumberFormatException

Returns a Short object that contains the value specified

by the string in str using the specified radix.

Table 16-4 The Methods Defined by Short

406 PART II The Java Library

Method Description

static int bitCount(int num) Returns the number of set bits in num.

byte byteValue() Returns the value of the invoking object as a byte.

static int compare(int num1, int num2) Compares the values of num1 and num2. Returns 0 if

the values are equal. Returns a negative value if num1

is less than num2. Returns a positive value if num1 is

greater than num2. (Added by JDK 7.)

int compareTo(Integer i) Compares the numerical value of the invoking object

with that of i. Returns 0 if the values are equal.

Returns a negative value if the invoking object has a

lower value. Returns a positive value if the invoking

object has a greater value.

static Integer decode(String str)
 throws NumberFormatException

Returns an Integer object that contains the value

specified by the string in str.

double doubleValue() Returns the value of the invoking object as a double.

boolean equals(Object IntegerObj) Returns true if the invoking Integer object is

equivalent to IntegerObj. Otherwise, it returns false.

float floatValue() Returns the value of the invoking object as a float.

static Integer

 getInteger(String propertyName)
Returns the value associated with the environmental

property specified by propertyName. A null is returned

on failure.

static Integer

 getInteger(String propertyName,
 int default)

Returns the value associated with the environmental

property specified by propertyName. The value of

default is returned on failure.

static Integer

 getInteger(String propertyName,
 Integer default)

Returns the value associated with the environmental

property specified by propertyName. The value of

default is returned on failure.

int hashCode() Returns the hash code for the invoking object.

static int highestOneBit(int num) Determines the position of the highest order set bit

in num. It returns a value in which only this bit is set.

If no bit is set to one, then zero is returned.

int intValue() Returns the value of the invoking object as an int.

long longValue() Returns the value of the invoking object as a long.

static int lowestOneBit(int num) Determines the position of the lowest order set bit in

num. It returns a value in which only this bit is set. If

no bit is set to one, then zero is returned.

static int numberOfLeadingZeros(int num) Returns the number of high-order zero bits that

precede the first high-order set bit in num. If num is

zero, 32 is returned.

Table 16-5 The Methods Defined by Integer

 Chapter 16 Exploring java.lang 407

P
a

rt
 I

I

Method Description

static int numberOfTrailingZeros(int num) Returns the number of low-order zero bits that

precede the first low-order set bit in num. If num is

zero, 32 is returned.

static int parseInt(String str)
 throws NumberFormatException

Returns the integer equivalent of the number

contained in the string specified by str using radix 10.

static int parseInt(String str, int radix)

 throws NumberFormatException

Returns the integer equivalent of the number

contained in the string specified by str using the

specified radix.

static int reverse(int num) Reverses the order of the bits in num and returns the

result.

static int reverseBytes(int num) Reverses the order of the bytes in num and returns

the result.

static int rotateLeft(int num, int n) Returns the result of rotating num left n positions.

static int rotateRight(int num, int n) Returns the result of rotating num right n positions.

static int signum(int num) Returns –1 if num is negative, 0 if it is zero, and 1 if it

is positive.

short shortValue() Returns the value of the invoking object as a short.

static String toBinaryString(int num) Returns a string that contains the binary equivalent

of num.

static String toHexString(int num) Returns a string that contains the hexadecimal

equivalent of num.

static String toOctalString(int num) Returns a string that contains the octal equivalent

of num.

String toString() Returns a string that contains the decimal equivalent

of the invoking object.

static String toString(int num) Returns a string that contains the decimal equivalent

of num.

static String toString(int num, int radix) Returns a string that contains the decimal equivalent

of num using the specified radix.

static Integer valueOf(int num) Returns an Integer object containing the value

passed in num.

static Integer valueOf(String str)
 throws NumberFormatException

Returns an Integer object that contains the value

specified by the string in str.

static Integer valueOf(String str, int radix)

 throws NumberFormatException

Returns an Integer object that contains the value

specified by the string in str using the specified radix.

Table 16-5 The Methods Defined by Integer (continued)

408 PART II The Java Library

Method Description

static int bitCount(long num) Returns the number of set bits in num.

byte byteValue() Returns the value of the invoking object as a byte.

static int compare(long num1, long num2) Compares the values of num1 and num2. Returns 0

if the values are equal. Returns a negative value if

num1 is less than num2. Returns a positive value if

num1 is greater than num2. (Added by JDK 7.)

int compareTo(Long l) Compares the numerical value of the invoking

object with that of l. Returns 0 if the values are

equal. Returns a negative value if the invoking

object has a lower value. Returns a positive value

if the invoking object has a greater value.

static Long decode(String str)
 throws NumberFormatException

Returns a Long object that contains the value

specified by the string in str.

double doubleValue() Returns the value of the invoking object as a double.

boolean equals(Object LongObj) Returns true if the invoking Long object is

equivalent to LongObj. Otherwise, it returns false.

float floatValue() Returns the value of the invoking object as a float.

static Long getLong(String propertyName) Returns the value associated with the

environmental property specified by propertyName.
A null is returned on failure.

static Long getLong(String propertyName,
 long default)

Returns the value associated with the

environmental property specified by propertyName.
The value of default is returned on failure.

static Long getLong(String propertyName,
 Long default)

Returns the value associated with the

environmental property specified by propertyName.
The value of default is returned on failure.

int hashCode() Returns the hash code for the invoking object.

static long highestOneBit(long num) Determines the position of the highest-order set bit

in num. It returns a value in which only this bit is

set. If no bit is set to one, then zero is returned.

int intValue() Returns the value of the invoking object as an int.

long longValue() Returns the value of the invoking object as a long.

static long lowestOneBit(long num) Determines the position of the lowest-order set bit

in num. It returns a value in which only this bit is

set. If no bit is set to one, then zero is returned.

static int numberOfLeadingZeros(long num) Returns the number of high-order zero bits that

precede the first high-order set bit in num. If num is

zero, 64 is returned.

Table 16-6 The Methods Defined by Long

 Chapter 16 Exploring java.lang 409

P
a

rt
 I

I

Method Description

static int numberOfTrailingZeros(long num) Returns the number of low-order zero bits that

precede the first low-order set bit in num. If num is

zero, 64 is returned.

static long parseLong(String str)
 throws NumberFormatException

Returns the long equivalent of the number

contained in the string specified by str using radix 10.

static long parseLong(String str, int radix)

 throws NumberFormatException

Returns the long equivalent of the number

contained in the string specified by str using the

specified radix.

static long reverse(long num) Reverses the order of the bits in num and returns

the result.

static long reverseBytes(long num) Reverses the order of the bytes in num and returns

the result.

static long rotateLeft(long num, int n) Returns the result of rotating num left n positions.

static long rotateRight(long num, int n) Returns the result of rotating num right n positions.

static int signum(long num) Returns –1 if num is negative, 0 if it is zero, and 1 if

it is positive.

short shortValue() Returns the value of the invoking object as a short.

static String toBinaryString(long num) Returns a string that contains the binary equivalent

of num.

static String toHexString(long num) Returns a string that contains the hexadecimal

equivalent of num.

static String toOctalString(long num) Returns a string that contains the octal equivalent

of num.

String toString() Returns a string that contains the decimal

equivalent of the invoking object.

static String toString(long num) Returns a string that contains the decimal

equivalent of num.

static String toString(long num, int radix) Returns a string that contains the decimal

equivalent of num using the specified radix.

static Long valueOf(long num) Returns a Long object containing the value passed

in num.

static Long valueOf(String str)
 throws NumberFormatException

Returns a Long object that contains the value

specified by the string in str.

static Long valueOf(String str, int radix)

 throws NumberFormatException

Returns a Long object that contains the value

specified by the string in str using the specified radix.

Table 16-6 The Methods Defined by Long (continued)

410 PART II The Java Library

Converting Numbers to and from Strings
One of the most common programming chores is converting the string representation of a

number into its internal, binary format. Fortunately, Java provides an easy way to accomplish

this. The Byte, Short, Integer, and Long classes provide the parseByte(), parseShort(),
parseInt(), and parseLong() methods, respectively. These methods return the byte, short,
int, or long equivalent of the numeric string with which they are called. (Similar methods

also exist for the Float and Double classes.)

The following program demonstrates parseInt(). It sums a list of integers entered by

the user. It reads the integers using readLine() and uses parseInt() to convert these strings

into their int equivalents.

/* This program sums a list of numbers entered
 by the user. It converts the string representation
 of each number into an int using parseInt().
*/

import java.io.*;

class ParseDemo {
 public static void main(String args[])
 throws IOException
 {
 // create a BufferedReader using System.in
 BufferedReader br = new
 BufferedReader(new InputStreamReader(System.in));
 String str;
 int i;
 int sum=0;

 System.out.println("Enter numbers, 0 to quit.");
 do {
 str = br.readLine();
 try {
 i = Integer.parseInt(str);
 } catch(NumberFormatException e) {
 System.out.println("Invalid format");
 i = 0;
 }
 sum += i;
 System.out.println("Current sum is: " + sum);
 } while(i != 0);
 }
}

To convert a whole number into a decimal string, use the versions of toString() defined

in the Byte, Short, Integer, or Long classes. The Integer and Long classes also provide the

 Chapter 16 Exploring java.lang 411

P
a

rt
 I

I

methods toBinaryString(), toHexString(), and toOctalString(), which convert a value into

a binary, hexadecimal, or octal string, respectively.

The following program demonstrates binary, hexadecimal, and octal conversion:

/* Convert an integer into binary, hexadecimal,
 and octal.
*/

class StringConversions {
 public static void main(String args[]) {
 int num = 19648;
 System.out.println(num + " in binary: " +
 Integer.toBinaryString(num));

 System.out.println(num + " in octal: " +
 Integer.toOctalString(num));

 System.out.println(num + " in hexadecimal: " +
 Integer.toHexString(num));
 }
}

The output of this program is shown here:

 19648 in binary: 100110011000000
 19648 in octal: 46300
 19648 in hexadecimal: 4cc0

Character

Character is a simple wrapper around a char. The constructor for Character is

Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being created.

To obtain the char value contained in a Character object, call charValue(), shown here:

char charValue()

It returns the character.

The Character class defines several constants, including the following:

MAX_RADIX The largest radix

MIN_RADIX The smallest radix

MAX_VALUE The largest character value

MIN_VALUE The smallest character value

TYPE The Class object for char

412 PART II The Java Library

Character includes several static methods that categorize characters and alter their case.

They are shown in Table 16-7. The following example demonstrates several of these

methods:

// Demonstrate several Is... methods.

class IsDemo {
 public static void main(String args[]) {
 char a[] = {'a', 'b', '5', '?', 'A', ' '};

 for(int i=0; i<a.length; i++) {
 if(Character.isDigit(a[i]))
 System.out.println(a[i] + " is a digit.");
 if(Character.isLetter(a[i]))
 System.out.println(a[i] + " is a letter.");
 if(Character.isWhitespace(a[i]))
 System.out.println(a[i] + " is whitespace.");
 if(Character.isUpperCase(a[i]))
 System.out.println(a[i] + " is uppercase.");
 if(Character.isLowerCase(a[i]))
 System.out.println(a[i] + " is lowercase.");
 }
 }
}

The output from this program is shown here:

 a is a letter.
 a is lowercase.
 b is a letter.
 b is lowercase.
 5 is a digit.
 A is a letter.
 A is uppercase.
 is whitespace.

Character defines two methods, forDigit() and digit(), that enable you to convert

between integer values and the digits they represent. They are shown here:

static char forDigit(int num, int radix)

static int digit(char digit, int radix)

forDigit() returns the digit character associated with the value of num. The radix of the

conversion is specified by radix. digit() returns the integer value associated with the

specified character (which is presumably a digit) according to the specified radix. (There is

a second form of digit() that takes a code point. See the following section for a discussion

of code points.)

Another method defined by Character is compareTo(), which has the following form:

int compareTo(Character c)

It returns zero if the invoking object and c have the same value. It returns a negative value if

the invoking object has a lower value. Otherwise, it returns a positive value.

 Chapter 16 Exploring java.lang 413

P
a

rt
 I

I

Method Description

static boolean isDefined(char ch) Returns true if ch is defined by Unicode. Otherwise,

it returns false.

static boolean isDigit(char ch) Returns true if ch is a digit. Otherwise, it returns false.

static boolean isldentifierlgnorable(char ch) Returns true if ch should be ignored in an identifier.

Otherwise, it returns false.

static boolean islSOControl(char ch) Returns true if ch is an ISO control character.

Otherwise, it returns false.

static boolean isJavaldentifierPart(char ch) Returns true if ch is allowed as part of a Java

identifier (other than the first character).

Otherwise, it returns false.

static boolean isJavaldentifierStart(char ch) Returns true if ch is allowed as the first character of

a Java identifier. Otherwise, it returns false.

static boolean isLetter(char ch) Returns true if ch is a letter. Otherwise, it returns false.

static boolean isLetterOrDigit(char ch) Returns true if ch is a letter or a digit. Otherwise, it

returns false.

static boolean isLowerCase(char ch) Returns true if ch is a lowercase letter. Otherwise, it

returns false.

static boolean isMirrored(char ch) Returns true if ch is a mirrored Unicode character.

A mirrored character is one that is reversed for text

that is displayed right-to-left.

static boolean isSpaceChar(char ch) Returns true if ch is a Unicode space character.

Otherwise, it returns false.

static boolean isTitleCase(char ch) Returns true if ch is a Unicode titlecase character.

Otherwise, it returns false.

static boolean

 isUnicodeIdentifierPart(char ch)

Returns true if ch is allowed as part of a Unicode

identifier (other than the first character).

Otherwise, it returns false.

static Boolean

 isUnicodeIdentifierStart(char ch)

Returns true if ch is allowed as the first character of

a Unicode identifier. Otherwise, it returns false.

static boolean isUpperCase(char ch) Returns true if ch is an uppercase letter. Otherwise,

it returns false.

static boolean isWhitespace(char ch) Returns true if ch is whitespace. Otherwise, it

returns false.

static char toLowerCase(char ch) Returns lowercase equivalent of ch.

static char toTitleCase(char ch) Returns titlecase equivalent of ch.

static char toUpperCase(char ch) Returns uppercase equivalent of ch.

Table 16-7 Various Character Methods

414 PART II The Java Library

Character includes a method called getDirectionality() which can be used to determine

the direction of a character. Several constants are defined that describe directionality. Most

programs will not need to use character directionality.

Character also overrides the equals() and hashCode() methods.

Two other character-related classes are Character.Subset, used to describe a subset of

Unicode, and Character.UnicodeBlock, which contains Unicode character blocks.

Additions to Character for Unicode Code Point Support

Relatively recently, major additions have been made to Character. Beginning with JDK 5, the

Character class has included support for 32-bit Unicode characters. In the past, all Unicode

characters could be held by 16 bits, which is the size of a char (and the size of the value

encapsulated within a Character), because those values ranged from 0 to FFFF. However, the

Unicode character set has been expanded, and more than 16 bits are required. Characters

can now range from 0 to 10FFFF.

Here are three important terms. A code point is a character in the range 0 to 10FFFF.

Characters that have values greater than FFFF are called supplemental characters. The basic
multilingual plane (BMP) are those characters between 0 and FFFF

The expansion of the Unicode character set caused a fundamental problem for Java.

Because a supplemental character has a value greater than a char can hold, some means of

handling the supplemental characters was needed. Java addressed this problem two ways.

First, Java uses two chars to represent a supplemental character. The first char is called the

high surrogate, and the second is called the low surrogate. New methods, such as codePointAt(),
were provided to translate between code points and supplemental characters.

Secondly, Java overloaded several preexisting methods in the Character class. The

overloaded forms use int rather than char data. Because an int is large enough to hold any

character as a single value, it can be used to store any character. For example, all of the

methods in Table 16-7 have overloaded forms that operate on int. Here is a sampling:

static boolean isDigit(int cp)

static boolean isLetter(int cp)

static int toLowerCase(int cp)

In addition to the methods overloaded to accept code points, Character adds methods

that provide additional support for code points. A sampling is shown in Table 16-8.

Boolean

Boolean is a very thin wrapper around boolean values, which is useful mostly when you want

to pass a boolean variable by reference. It contains the constants TRUE and FALSE, which

define true and false Boolean objects. Boolean also defines the TYPE field, which is the

Class object for boolean. Boolean defines these constructors:

Boolean(boolean boolValue)
Boolean(String boolString)

 Chapter 16 Exploring java.lang 415

P
a

rt
 I

I

In the first version, boolValue must be either true or false. In the second version, if boolString

contains the string "true" (in uppercase or lowercase), then the new Boolean object will be

true. Otherwise, it will be false.

Boolean defines the methods shown in Table 16-9.

Method Description

static int charCount(int cp) Returns 1 if cp can be represented by a single

char. It returns 2 if two chars are needed.

static int

 codePointAt(CharSequence chars, int loc)
Returns the code point at the location specified

by loc.

static int codePointAt(char chars[], int loc) Returns the code point at the location specified

by loc.

static int

 codePointBefore(CharSequence chars, int loc)
Returns the code point at the location that

precedes that specified by loc.

static int

 codePointBefore(char chars[], int loc)
Returns the code point at the location that

precedes that specified by loc.

static boolean isBmpCodePoint(int cp) Returns true if cp is part of the basic multilingual

plane and false otherwise. (Added by JDK 7.)

static boolean isHighSurrogate(char ch) Returns true if ch contains a valid high

surrogate character.

static boolean isLowSurrogate(char ch) Returns true if ch contains a valid low surrogate

character.

static boolean

 isSupplementaryCodePoint(int cp)

Returns true if cp contains a supplemental

character.

static boolean

 isSurrogatePair(char highCh, char lowCh)

Returns true if highCh and lowCh form a valid

surrogate pair.

static boolean isValidCodePoint(int cp) Returns true if cp contains a valid code point.

static char[] toChars(int cp) Converts the code point in cp into its char

equivalent, which might require two chars.

An array holding the result is returned.

static int

 toChars(int cp, char target[], int loc)
Converts the code point in cp into its char

equivalent, storing the result in target, beginning

at loc. Returns 1 if cp can be represented by a

single char. It returns 2 otherwise.

static int

 toCodePoint(char highCh, char lowCh)

Converts highCh and lowCh into their equivalent

code point.

Table 16-8 A Sampling of Methods That Provide Support for 32-Bit Unicode Code Points

416 PART II The Java Library

Void
The Void class has one field, TYPE, which holds a reference to the Class object for type

void. You do not create instances of this class.

Process
The abstract Process class encapsulates a process—that is, an executing program. It is used

primarily as a superclass for the type of objects created by exec() in the Runtime class, or

by start() in the ProcessBuilder class. Process contains the abstract methods shown in

Table 16-10.

Method Description

boolean booleanValue() Returns boolean equivalent.

static int compare(boolean b1, boolean b2) Returns zero if b1 and b2 contain the same value.

Returns a positive value if b1 is true and b2 is false.

Otherwise, returns a negative value. (Added by JDK 7.)

int compareTo(Boolean b) Returns zero if the invoking object and b contain the

same value. Returns a positive value if the invoking

object is true and b is false. Otherwise, returns a

negative value.

boolean equals(Object boolObj) Returns true if the invoking object is equivalent to

boolObj. Otherwise, it returns false.

static Boolean

 getBoolean(String propertyName)
Returns true if the system property specified by

propertyName is true. Otherwise, it returns false.

int hashCode() Returns the hash code for the invoking object.

static boolean parseBoolean(String str) Returns true if str contains the string "true". Case is

not significant. Otherwise, returns false.

String toString() Returns the string equivalent of the invoking object.

static String toString(boolean boolVal) Returns the string equivalent of boolVal.

static Boolean valueOf(boolean boolVal) Returns the Boolean equivalent of boolVal.

static Boolean valueOf(String boolString) Returns true if boolString contains the string "true" (in

uppercase or lowercase). Otherwise, it returns false.

Table 16-9 The Methods Defined by Boolean

 Chapter 16 Exploring java.lang 417

P
a

rt
 I

I

Runtime
The Runtime class encapsulates the run-time environment. You cannot instantiate a Runtime

object. However, you can get a reference to the current Runtime object by calling the static

method Runtime.getRuntime(). Once you obtain a reference to the current Runtime object,

you can call several methods that control the state and behavior of the Java Virtual Machine.

Applets and other untrusted code typically cannot call any of the Runtime methods without

raising a SecurityException. Commonly used methods defined by Runtime are shown in

Table 16-11.

Method Description

void destroy() Terminates the process.

int exitValue() Returns an exit code obtained from a subprocess.

InputStream getErrorStream() Returns an input stream that reads input from the

process’ err output stream.

InputStream getInputStream() Returns an input stream that reads input from the

process’ out output stream.

OutputStream getOutputStream() Returns an output stream that writes output to the

process’ in input stream.

int waitFor() throws InterruptedException Returns the exit code returned by the process. This

method does not return until the process on which it

is called terminates.

Table 16-10 The Methods Defined by Process (All are abstract.)

Method Description

void addShutdownHook(Thread thrd) Registers thrd as a thread to be run when the Java

Virtual Machine terminates.

Process exec(String progName)
 throws IOException

Executes the program specified by progName as

a separate process. An object of type Process is

returned that describes the new process.

Process exec(String progName,
 String environment[])

 throws IOException

Executes the program specified by progName as a

separate process with the environment specified by

environment. An object of type Process is returned

that describes the new process.

Process exec(String comLineArray[])

 throws IOException

Executes the command line specified by the strings

in comLineArray as a separate process. An object

of type Process is returned that describes the new

process.

Table 16-11 A Sampling of Methods Defined by Runtime

418 PART II The Java Library

Let’s look at two of the most common uses of the Runtime class: memory management

and executing additional processes.

Memory Management

Although Java provides automatic garbage collection, sometimes you will want to know how

large the object heap is and how much of it is left. You can use this information, for example,

to check your code for efficiency or to approximate how many more objects of a certain

type can be instantiated. To obtain these values, use the totalMemory() and freeMemory()
methods.

Method Description

Process exec(String comLineArray[],

 String environment[])

 throws IOException

Executes the command line specified by the strings

in comLineArray as a separate process with the

environment specified by environment. An object

of type Process is returned that describes the new

process.

void exit(int exitCode) Halts execution and returns the value of exitCode
to the parent process. By convention, 0 indicates

normal termination. All other values indicate some

form of error.

long freeMemory() Returns the approximate number of bytes of free

memory available to the Java run-time system.

void gc() Initiates garbage collection.

static Runtime getRuntime() Returns the current Runtime object.

void halt(int code) Immediately terminates the Java Virtual Machine. No

termination threads or finalizers are run. The value

of code is returned to the invoking process.

void load(String libraryFileName) Loads the dynamic library whose file is specified by

libraryFileName, which must specify its complete path.

void loadLibrary(String libraryName) Loads the dynamic library whose name is associated

with libraryName.

Boolean

 removeShutdownHook(Thread thrd)

Removes thrd from the list of threads to run when

the Java Virtual Machine terminates. It returns true

if successful—that is, if the thread was removed.

void runFinalization() Initiates calls to the finalize() methods of unused

but not yet recycled objects.

long totalMemory() Returns the total number of bytes of memory

available to the program.

void traceInstructions(boolean traceOn) Turns on or off instruction tracing, depending upon

the value of traceOn. If traceOn is true, the trace is

displayed. If it is false, tracing is turned off.

void traceMethodCalls(boolean traceOn) Turns on or off method call tracing, depending

upon the value of traceOn. If traceOn is true, the trace

is displayed. If it is false, tracing is turned off.

Table 16-11 A Sampling of Methods Defined by Runtime (continued)

 Chapter 16 Exploring java.lang 419

P
a

rt
 I

I

As mentioned in Part I, Java’s garbage collector runs periodically to recycle unused

objects. However, sometimes you will want to collect discarded objects prior to the

collector’s next appointed rounds. You can run the garbage collector on demand by calling

the gc() method. A good thing to try is to call gc() and then call freeMemory() to get a

baseline memory usage. Next, execute your code and call freeMemory() again to see how

much memory it is allocating. The following program illustrates this idea:

// Demonstrate totalMemory(), freeMemory() and gc().

class MemoryDemo {
 public static void main(String args[]) {
 Runtime r = Runtime.getRuntime();
 long mem1, mem2;
 Integer someints[] = new Integer[1000];

 System.out.println("Total memory is: " +
 r.totalMemory());
 mem1 = r.freeMemory();
 System.out.println("Initial free memory: " + mem1);
 r.gc();
 mem1 = r.freeMemory();
 System.out.println("Free memory after garbage collection: "
 + mem1);

 for(int i=0; i<1000; i++)
 someints[i] = new Integer(i); // allocate integers

 mem2 = r.freeMemory();
 System.out.println("Free memory after allocation: "
 + mem2);
 System.out.println("Memory used by allocation: "
 + (mem1-mem2));

 // discard Integers
 for(int i=0; i<1000; i++) someints[i] = null;

 r.gc(); // request garbage collection

 mem2 = r.freeMemory();
 System.out.println("Free memory after collecting" +
 " discarded Integers: " + mem2);

 }
}

Sample output from this program is shown here (of course, your actual results may vary):

 Total memory is: 1048568
 Initial free memory: 751392
 Free memory after garbage collection: 841424
 Free memory after allocation: 824000
 Memory used by allocation: 17424
 Free memory after collecting discarded Integers: 842640

420 PART II The Java Library

Executing Other Programs

In safe environments, you can use Java to execute other heavyweight processes (that is,

programs) on your multitasking operating system. Several forms of the exec() method

allow you to name the program you want to run as well as its input parameters. The exec()
method returns a Process object, which can then be used to control how your Java program

interacts with this new running process. Because Java can run on a variety of platforms and

under a variety of operating systems, exec() is inherently environment-dependent.

The following example uses exec() to launch notepad, Windows’ simple text editor.

Obviously, this example must be run under the Windows operating system.

// Demonstrate exec().
class ExecDemo {
 public static void main(String args[]) {
 Runtime r = Runtime.getRuntime();
 Process p = null;

 try {
 p = r.exec("notepad");
 } catch (Exception e) {
 System.out.println("Error executing notepad.");
 }
 }
}

There are several alternative forms of exec(), but the one shown in the example is the

most common. The Process object returned by exec() can be manipulated by Process’

methods after the new program starts running. You can kill the subprocess with the

destroy() method. The waitFor() method causes your program to wait until the subprocess

finishes. The exitValue() method returns the value returned by the subprocess when it is

finished. This is typically 0 if no problems occur. Here is the preceding exec() example

modified to wait for the running process to exit:

// Wait until notepad is terminated.
class ExecDemoFini {
 public static void main(String args[]) {
 Runtime r = Runtime.getRuntime();
 Process p = null;

 try {
 p = r.exec("notepad");
 p.waitFor();
 } catch (Exception e) {
 System.out.println("Error executing notepad.");
 }
 System.out.println("Notepad returned " + p.exitValue());
 }
}

While a subprocess is running, you can write to and read from its standard input and

output. The getOutputStream() and getInputStream() methods return the handles to

standard in and out of the subprocess. (I/O is examined in detail in Chapter 19.)

 Chapter 16 Exploring java.lang 421

P
a

rt
 I

I

ProcessBuilder
ProcessBuilder provides another way to start and manage processes (that is, programs). As

explained earlier, all processes are represented by the Process class, and a process can be

started by Runtime.exec(). ProcessBuilder offers more control over the processes. For

example, you can set the current working directory and change environmental parameters.

ProcessBuilder defines these constructors:

ProcessBuilder(List<String> args)
ProccessBuilder(String ... args)

Here, args is a list of arguments that specify the name of the program to be executed along

with any required command-line arguments. In the first constructor, the arguments are

passed in a List. In the second, they are specified through a varargs parameter. Table 16-12

describes the methods defined by ProcessBuilder.

In Table 16-12, notice that JDK 7 adds several new methods that use the new

ProcessBuilder.Redirect class. This abstract class encapsulates an I/O source or target

linked to a subprocess. Among other things, these methods enable you to redirect the

source or target of I/O operations. For example, you can redirect to a file by calling to(),
redirect from a file by calling from(), and append to a file by calling appendTo(). A File

object linked to the file can be obtained by calling file(). These methods are shown here:

static ProcessBuilder.Redirect to(File f)
static ProcessBuilder.Redirect from(File f)
static ProcessBuilder.Redirect appendTo(File f)
File file()

Another method supported by ProcessBuilder.Redirect is type(), which returns a value of

the enumeration type ProcessBuilder.Redirect.Type. This enumeration describes the type

of the redirection. It defines these values: APPEND, INHERIT, PIPE, READ, or WRITE.

ProcessBuilder.Redirect also defines the constants INHERIT and PIPE.

Method Description

List<String> command() Returns a reference to a List that contains the

name of the program and its arguments. Changes

to this list affect the invoking object.

ProcessBuilder command(List<String> args) Sets the name of the program and its arguments

to those specified by args. Changes to this list

affect the invoking object. Returns a reference to

the invoking object.

ProcessBuilder command(String ... args) Sets the name of the program and its arguments

to those specified by args. Returns a reference to

the invoking object.

File directory() Returns the current working directory of the

invoking object. This value will be null if the

directory is the same as that of the Java program

that started the process.

Table 16-12 The Methods Defined by ProcessBuilder

422 PART II The Java Library

Method Description

ProcessBuilder directory(File dir) Sets the current working directory of the invoking

object. Returns a reference to the invoking object.

Map<String, String> environment() Returns the environmental variables associated

with the invoking object as key/value pairs.

ProcessBuilder inheritIO() Causes the invoked process to use the same source

and target for the standard I/O streams as the

invoking process. (Added by JDK 7.)

ProcessBuilder.Redirect redirectError() Returns the target for standard error as a

ProcessBuilder.Redirect object. (Added by JDK 7.)

ProcessBuilder redirectError(File f) Sets the target for standard error to the specified

file. Returns a reference to the invoking object.

(Added by JDK 7.)

ProcessBuilder redirectError(

 ProcessBuilder.Redirect target)
Sets the target for standard error as specified by

target. Returns a reference to the invoking object.

(Added by JDK 7.)

boolean redirectErrorStream() Returns true if the standard error stream has been

redirected to the standard output stream. Returns

false if the streams are separate.

ProcessBuilder

 redirectErrorStream(boolean merge)
If merge is true, then the standard error stream is

redirected to standard output. If merge is false, the

streams are separated, which is the default state.

Returns a reference to the invoking object.

ProcessBuilder.Redirect redirectInput() Returns the source for standard input as a

ProcessBuilder.Redirect object. (Added by JDK 7.)

ProcessBuilder redirectInput(File f) Sets the source for standard input to the specified

file. Returns a reference to the invoking object.

(Added by JDK 7.)

ProcessBuilder redirectInput(

 ProcessBuilder.Redirect source)
Sets the source for standard input as specified by

source. Returns a reference to the invoking object.

(Added by JDK 7.)

ProcessBuilder.Redirect redirectOutput() Returns the target for standard output as a

ProcessBuilder.Redirect object. (Added by JDK 7.)

ProcessBuilder redirectOutput(File f) Sets the target for standard output to the specified

file. Returns a reference to the invoking object.

(Added by JDK 7.)

ProcessBuilder redirectOutput(

 ProcessBuilder.Redirect target)
Sets the target for standard output as specified by

target. Returns a reference to the invoking object.

(Added by JDK 7.)

Process start() throws IOException Begins the process specified by the invoking

object. In other words, it runs the specified

program.

Table 16-12 The Methods Defined by ProcessBuilder (continued)

 Chapter 16 Exploring java.lang 423

P
a

rt
 I

I

To create a process using ProcessBuilder, simply create an instance of ProcessBuilder,

specifying the name of the program and any needed arguments. To begin execution of the

program, call start() on that instance. Here is an example that executes the Windows text

editor notepad. Notice that it specifies the name of the file to edit as an argument.

class PBDemo {
 public static void main(String args[]) {

 try {
 ProcessBuilder proc =
 new ProcessBuilder("notepad.exe", "testfile");
 proc.start();
 } catch (Exception e) {
 System.out.println("Error executing notepad.");
 }
 }
}

System
The System class holds a collection of static methods and variables. The standard input,

output, and error output of the Java run time are stored in the in, out, and err variables.

The methods defined by System are shown in Table 16-13. Many of the methods throw a

SecurityException if the operation is not permitted by the security manager.

Let’s look at some common uses of System.

Method Description

static void arraycopy(Object source,
 int sourceStart,
 Object target,
 int targetStart,
 int size)

Copies an array. The array to be copied is passed in

source, and the index at which point the copy will

begin within source is passed in sourceStart. The array

that will receive the copy is passed in target, and the

index at which point the copy will begin within target
is passed in targetStart. size is the number of elements

that are copied.

static String clearProperty(String which) Deletes the environmental variable specified by

which. The previous value associated with which is

returned.

static Console console() Returns the console associated with the JVM. null is
returned if the JVM currently has no console.

static long currentTimeMillis() Returns the current time in terms of milliseconds

since midnight, January 1, 1970.

static void exit(int exitCode) Halts execution and returns the value of exitCode to

the parent process (usually the operating system).

By convention, 0 indicates normal termination. All

other values indicate some form of error.

static void gc() Initiates garbage collection.

Table 16-13 The Methods Defined by System

424 PART II The Java Library

Method Description

static Map<String, String> getenv() Returns a Map that contains the current

environmental variables and their values.

static String getenv(String which) Returns the value associated with the environmental

variable passed in which.

static Properties getProperties() Returns the properties associated with the Java run-

time system. (The Properties class is described in

Chapter 17.)

static String getProperty(String which) Returns the property associated with which. A null
object is returned if the desired property is not found.

static String getProperty(String which,

 String default)
Returns the property associated with which. If the

desired property is not found, default is returned.

static SecurityManager

 getSecurityManager()

Returns the current security manager or a null
object if no security manager is installed.

static int identityHashCode(Object obj) Returns the identity hash code for obj.

static Channel inheritedChannel()

 throws IOException

Returns the channel inherited by the Java Virtual

Machine. Returns null if no channel is inherited.

static String lineSeparator() Returns a string that contains the line-separator

characters.

static void load(String libraryFileName) Loads the dynamic library whose file is specified by

libraryFileName, which must specify its complete path.

static void loadLibrary(String libraryName) Loads the dynamic library whose name is associated

with libraryName.

static String mapLibraryName(String lib) Returns a platform-specific name for the library

named lib.

static long nanoTime() Obtains the most precise timer in the system and

returns its value in terms of nanoseconds since some

arbitrary starting point. The accuracy of the timer is

unknowable.

static void runFinalization() Initiates calls to the finalize() methods of unused

but not yet recycled objects.

static void setErr(PrintStream eStream) Sets the standard err stream to eStream.

static void setIn(InputStream iStream) Sets the standard in stream to iStream.

static void setOut(PrintStream oStream) Sets the standard out stream to oStream.

static void

 setProperties(Properties sysProperties)
Sets the current system properties as specified by

sysProperties.

static String setProperty(String which,

 String v)

Assigns the value v to the property named which.

static void setSecurityManager(

 SecurityManager secMan)

Sets the security manager to that specified by secMan.

Table 16-13 The Methods Defined by System (continued)

 Chapter 16 Exploring java.lang 425

P
a

rt
 I

I

Using currentTimeMillis() to Time Program Execution

One use of the System class that you might find particularly interesting is to use the

currentTimeMillis() method to time how long various parts of your program take to execute.

The currentTimeMillis() method returns the current time in terms of milliseconds since

midnight, January 1, 1970. To time a section of your program, store this value just before

beginning the section in question. Immediately upon completion, call currentTimeMillis()
again. The elapsed time will be the ending time minus the starting time. The following

program demonstrates this:

// Timing program execution.

class Elapsed {
 public static void main(String args[]) {
 long start, end;

 System.out.println("Timing a for loop from 0 to 100,000,000");

 // time a for loop from 0 to 100,000,000

 start = System.currentTimeMillis(); // get starting time
 for(long i=0; i < 100000000L; i++) ;
 end = System.currentTimeMillis(); // get ending time

 System.out.println("Elapsed time: " + (end-start));
 }
}

Here is a sample run (remember that your results probably will differ):

 Timing a for loop from 0 to 100,000,000
 Elapsed time: 10

If your system has a timer that offers nanosecond precision, then you could rewrite the

preceding program to use nanoTime() rather than currentTimeMillis(). For example,

here is the key portion of the program rewritten to use nanoTime():

start = System.nanoTime(); // get starting time
for(long i=0; i < 100000000L; i++) ;
end = System.nanoTime(); // get ending time

Using arraycopy()

The arraycopy() method can be used to copy quickly an array of any type from one place

to another. This is much faster than the equivalent loop written out longhand in Java. Here

is an example of two arrays being copied by the arraycopy() method. First, a is copied to b.

Next, all of a’s elements are shifted down by one. Then, b is shifted up by one.

// Using arraycopy().

class ACDemo {
 static byte a[] = { 65, 66, 67, 68, 69, 70, 71, 72, 73, 74 };
 static byte b[] = { 77, 77, 77, 77, 77, 77, 77, 77, 77, 77 };

426 PART II The Java Library

 public static void main(String args[]) {
 System.out.println("a = " + new String(a));
 System.out.println("b = " + new String(b));
 System.arraycopy(a, 0, b, 0, a.length);
 System.out.println("a = " + new String(a));
 System.out.println("b = " + new String(b));
 System.arraycopy(a, 0, a, 1, a.length - 1);
 System.arraycopy(b, 1, b, 0, b.length - 1);
 System.out.println("a = " + new String(a));
 System.out.println("b = " + new String(b));
 }
}

As you can see from the following output, you can copy using the same source and

destination in either direction:

 a = ABCDEFGHIJ
 b = MMMMMMMMMM
 a = ABCDEFGHIJ
 b = ABCDEFGHIJ
 a = AABCDEFGHI
 b = BCDEFGHIJJ

Environment Properties

The following properties are available in all cases:

file.separator java.specification.version java.vm.version

java.class.path java.vendor line.separator

java.class.version java.vendor.url os.arch

java.compiler java.version os.name

java.ext.dirs java.vm.name os.version

java.home java.vm.specification.name path.separator

java.io.tmpdir java.vm.specification.vendor user.dir

java.library.path java.vm.specification.version user.home

java.specification.name java.vm.vendor user.name

java.specification.vendor

You can obtain the values of various environment variables by calling the

System.getProperty() method. For example, the following program displays

the path to the current user directory:

class ShowUserDir {
 public static void main(String args[]) {
 System.out.println(System.getProperty("user.dir"));
 }
}

 Chapter 16 Exploring java.lang 427

P
a

rt
 I

I

Object
As mentioned in Part I, Object is a superclass of all other classes. Object defines the

methods shown in Table 16-14, which are available to every object.

Using clone() and the Cloneable Interface
Most of the methods defined by Object are discussed elsewhere in this book. However, one

deserves special attention: clone(). The clone() method generates a duplicate copy of the

object on which it is called. Only classes that implement the Cloneable interface can be

cloned.

The Cloneable interface defines no members. It is used to indicate that a class allows a

bitwise copy of an object (that is, a clone) to be made. If you try to call clone() on a class

that does not implement Cloneable, a CloneNotSupportedException is thrown. When a

clone is made, the constructor for the object being cloned is not called. A clone is simply

an exact copy of the original.

Cloning is a potentially dangerous action, because it can cause unintended side effects.

For example, if the object being cloned contains a reference variable called obRef, then

when the clone is made, obRef in the clone will refer to the same object as does obRef in the

Method Description

Object clone()

 throws

 CloneNotSupportedException

Creates a new object that is the same as the invoking object.

boolean equals(Object object) Returns true if the invoking object is equivalent to object.

void finalize() throws Throwable Default finalize() method. It is called before an unused

object is recycled.

final Class<?> getClass() Obtains a Class object that describes the invoking object.

int hashCode() Returns the hash code associated with the invoking object.

final void notify() Resumes execution of a thread waiting on the invoking

object.

final void notifyAll() Resumes execution of all threads waiting on the invoking

object.

String toString() Returns a string that describes the object.

final void wait()

 throws InterruptedException

Waits on another thread of execution.

final void wait(long milliseconds)
 throws InterruptedException

Waits up to the specified number of milliseconds on another

thread of execution.

final void wait(long milliseconds,
 int nanoseconds)
 throws InterruptedException

Waits up to the specified number of milliseconds plus

nanoseconds on another thread of execution.

Table 16-14 The Methods Defined by Object

428 PART II The Java Library

original. If the clone makes a change to the contents of the object referred to by obRef, then

it will be changed for the original object, too. Here is another example: If an object opens

an I/O stream and is then cloned, two objects will be capable of operating on the same

stream. Further, if one of these objects closes the stream, the other object might still

attempt to write to it, causing an error. In some cases, you will need to override the clone()
method defined by Object to handle these types of problems.

Because cloning can cause problems, clone() is declared as protected inside Object.
This means that it must either be called from within a method defined by the class that

implements Cloneable, or it must be explicitly overridden by that class so that it is public.

Let’s look at an example of each approach.

The following program implements Cloneable and defines the method cloneTest(),
which calls clone() in Object:

// Demonstrate the clone() method

class TestClone implements Cloneable {
 int a;
 double b;

 // This method calls Object's clone().
 TestClone cloneTest() {
 try {
 // call clone in Object.
 return (TestClone) super.clone();
 } catch(CloneNotSupportedException e) {
 System.out.println("Cloning not allowed.");
 return this;
 }
 }
}

class CloneDemo {
 public static void main(String args[]) {
 TestClone x1 = new TestClone();
 TestClone x2;

 x1.a = 10;
 x1.b = 20.98;

 x2 = x1.cloneTest(); // clone x1

 System.out.println("x1: " + x1.a + " " + x1.b);
 System.out.println("x2: " + x2.a + " " + x2.b);
 }
}

Here, the method cloneTest() calls clone() in Object and returns the result. Notice that

the object returned by clone() must be cast into its appropriate type (TestClone).

 Chapter 16 Exploring java.lang 429

P
a

rt
 I

I

The following example overrides clone() so that it can be called from code outside of

its class. To do this, its access specifier must be public, as shown here:

// Override the clone() method.

class TestClone implements Cloneable {
 int a;
 double b;

 // clone() is now overridden and is public.
 public Object clone() {
 try {
 // call clone in Object.
 return super.clone();
 } catch(CloneNotSupportedException e) {
 System.out.println("Cloning not allowed.");
 return this;
 }
 }
}

class CloneDemo2 {
 public static void main(String args[]) {
 TestClone x1 = new TestClone();
 TestClone x2;

 x1.a = 10;
 x1.b = 20.98;

 // here, clone() is called directly.
 x2 = (TestClone) x1.clone();

 System.out.println("x1: " + x1.a + " " + x1.b);
 System.out.println("x2: " + x2.a + " " + x2.b);
 }
}

The side effects caused by cloning are sometimes difficult to see at first. It is easy to

think that a class is safe for cloning when it actually is not. In general, you should not

implement Cloneable for any class without good reason.

Class
Class encapsulates the run-time state of a class or interface. Objects of type Class are

created automatically, when classes are loaded. You cannot explicitly declare a Class object.

Generally, you obtain a Class object by calling the getClass() method defined by Object.
Class is a generic type that is declared as shown here:

class Class<T>

Here, T is the type of the class or interface represented. A sampling of commonly used

methods defined by Class is shown in Table 16-15.

430 PART II The Java Library

Method Description

static Class<?> forName(String name)
 throws ClassNotFoundException

Returns a Class object given its complete name.

static Class<?> forName(String name,
 boolean how,

 ClassLoader ldr)
 throws ClassNotFoundException

Returns a Class object given its complete name.

The object is loaded using the loader specified

by ldr. If how is true, the object is initialized;

otherwise, it is not.

<A extends Annotation> A

 getAnnotation(Class<A> annoType)
Returns an Annotation object that contains the

annotation associated with annoType for the

invoking object.

Annotation[] getAnnotations() Obtains all annotations associated with the invoking

object and stores them in an array of Annotation

objects. Returns a reference to this array.

Class<?>[] getClasses() Returns a Class object for each public class

and interface that is a member of the class

represented by the invoking object.

ClassLoader getClassLoader() Returns the ClassLoader object that loaded the

class or interface.

Constructor<T>

 getConstructor(Class<?> ... paramTypes)
 throws NoSuchMethodException,

 SecurityException

Returns a Constructor object that represents

the constructor for the class represented by the

invoking object that has the parameter types

specified by paramTypes.

Constructor<?>[] getConstructors()

 throws SecurityException

Obtains a Constructor object for each public

constructor of the class represented by the

invoking object and stores them in an array.

Returns a reference to this array.

Annotation[] getDeclaredAnnotations() Obtains an Annotation object for all the annotations

that are declared by the invoking object and stores

them in an array. Returns a reference to this array.

(Inherited annotations are ignored.)

Constructor<?>[] getDeclaredConstructors()

 throws SecurityException

Obtains a Constructor object for each constructor

declared by the class represented by the invoking

object and stores them in an array. Returns a

reference to this array. (Superclass constructors

are ignored.)

Field[] getDeclaredFields()

 throws SecurityException

Obtains a Field object for each field declared by the

class or interface represented by the invoking object

and stores them in an array. Returns a reference to

this array. (Inherited fields are ignored.)

Method[] getDeclaredMethods()

 throws SecurityException

Obtains a Method object for each method

declared by the class or interface represented by

the invoking object and stores them in an array.

Returns a reference to this array. (Inherited

methods are ignored.)

Table 16-15 A Sampling of Methods Defined by Class

 Chapter 16 Exploring java.lang 431

P
a

rt
 I

I

Method Description

Field getField(String fieldName)
 throws NoSuchMethodException,

 SecurityException

Returns a Field object that represents the public

field specified by fieldName for the class or

interface represented by the invoking object.

Field[] getFields()

 throws SecurityException

Obtains a Field object for each public field of the

class or interface represented by the invoking

object and stores them in an array. Returns a

reference to this array.

Class<?>[] getInterfaces() When invoked on an object that represents

a class, this method returns an array of the

interfaces implemented by that class. When

invoked on an object that represents an interface,

this method returns an array of interfaces

extended by that interface.

Method getMethod(String methName,
 Class<?> ... paramTypes)
 throws NoSuchMethodException,

 SecurityException

Returns a Method object that represents the

public method specified by methName and having

the parameter types specified by paramTypes in

the class or interface represented by the invoking

object.

Method[] getMethods()

 throws SecurityException

Obtains a Method object for each public method

of the class or interface represented by the

invoking object and stores them in an array.

Returns a reference to this array.

String getName() Returns the complete name of the class or

interface of the type represented by the invoking

object.

ProtectionDomain getProtectionDomain() Returns the protection domain associated with

the invoking object.

Class<? super T> getSuperclass() Returns the superclass of the type represented by

the invoking object. The return value is null if the

represented type is Object or not a class.

boolean isInterface() Returns true if the type represented by the

invoking object is an interface. Otherwise, it

returns false.

T newInstance()

 throws IllegalAccessException,

 InstantiationException

Creates a new instance (i.e., a new object) that is

of the same type as that represented by invoking

object. This is equivalent to using new with the

class’ default constructor. The new object is

returned. This method will fail if the represented

type is abstract, not a class, or does not have a

default constructor.

String toString() Returns the string representation of the type

represented by the invoking object or interface.

Table 16-15 A Sampling of Methods Defined by Class (continued)

432 PART II The Java Library

The methods defined by Class are often useful in situations where run-time type

information about an object is required. As Table 16-15 shows, methods are provided that

allow you to determine additional information about a particular class, such as its public

constructors, fields, and methods. Among other things, this is important for the Java Beans

functionality, which is discussed later in this book.

The following program demonstrates getClass() (inherited from Object) and

getSuperclass() (from Class):

// Demonstrate Run-Time Type Information.

class X {
 int a;
 float b;
}

class Y extends X {
 double c;
}

class RTTI {
 public static void main(String args[]) {
 X x = new X();
 Y y = new Y();
 Class<?> clObj;

 clObj = x.getClass(); // get Class reference
 System.out.println("x is object of type: " +
 clObj.getName());

 clObj = y.getClass(); // get Class reference
 System.out.println("y is object of type: " +
 clObj.getName());
 clObj = clObj.getSuperclass();
 System.out.println("y's superclass is " +
 clObj.getName());
 }
}

The output from this program is shown here:

 x is object of type: X
 y is object of type: Y
 y’s superclass is X

 Chapter 16 Exploring java.lang 433

P
a

rt
 I

I

ClassLoader
The abstract class ClassLoader defines how classes are loaded. Your application can create

subclasses that extend ClassLoader, implementing its methods. Doing so allows you to load

classes in some way other than the way they are normally loaded by the Java run-time system.

However, this is not something that you will normally need to do.

Math
The Math class contains all the floating-point functions that are used for geometry and

trigonometry, as well as several general-purpose methods. Math defines two double

constants: E (approximately 2.72) and PI (approximately 3.14).

Trigonometric Functions

The following methods accept a double parameter for an angle in radians and return the

result of their respective trigonometric function:

Method Description

static double sin(double arg) Returns the sine of the angle specified by arg in radians.

static double cos(double arg) Returns the cosine of the angle specified by arg in radians.

static double tan(double arg) Returns the tangent of the angle specified by arg in radians.

The next methods take as a parameter the result of a trigonometric function and

return, in radians, the angle that would produce that result. They are the inverse of their

non-arc companions.

Method Description

static double asin(double arg) Returns the angle whose sine is specified by arg.

static double acos(double arg) Returns the angle whose cosine is specified by arg.

static double atan(double arg) Returns the angle whose tangent is specified by arg.

static double atan2(double x, double y) Returns the angle whose tangent is x/y.

The next methods compute the hyperbolic sine, cosine, and tangent of an angle:

Method Description

static double sinh(double arg) Returns the hyperbolic sine of the angle specified by arg.

static double cosh(double arg) Returns the hyperbolic cosine of the angle specified by arg.

static double tanh(double arg) Returns the hyperbolic tangent of the angle specified by arg.

434 PART II The Java Library

Exponential Functions

Math defines the following exponential methods:

Method Description

static double cbrt(double arg) Returns the cube root of arg.

static double exp(double arg) Returns e to the arg.

static double expm1(double arg) Returns e to the arg–1.

static double log(double arg) Returns the natural logarithm of arg.

static double log10(double arg) Returns the base 10 logarithm for arg.

static double log1p(double arg) Returns the natural logarithm for arg + 1.

static double pow(double y, double x) Returns y raised to the x; for example, pow(2.0,

3.0) returns 8.0.

static double scalb(double arg, int factor) Returns arg × 2factor.

static float scalb(float arg, int factor) Returns arg × 2factor.

static double sqrt(double arg) Returns the square root of arg.

Rounding Functions

The Math class defines several methods that provide various types of rounding operations.

They are shown in Table 16-16. Notice the two ulp() methods at the end of the table. In

this context, ulp stands for units in the last place. It indicates the distance between a value

and the next higher value. It can be used to help assess the accuracy of a result.

Method Description

static int abs(int arg) Returns the absolute value of arg.

static long abs(long arg) Returns the absolute value of arg.

static float abs(float arg) Returns the absolute value of arg.

static double abs(double arg) Returns the absolute value of arg.

static double ceil(double arg) Returns the smallest whole number greater than

or equal to arg.

static double floor(double arg) Returns the largest whole number less than or

equal to arg.

static int max(int x, int y) Returns the maximum of x and y.

static long max(long x, long y) Returns the maximum of x and y.

static float max(float x, float y) Returns the maximum of x and y.

static double max(double x, double y) Returns the maximum of x and y.

static int min(int x, int y) Returns the minimum of x and y.

static long min(long x, long y) Returns the minimum of x and y.

static float min(float x, float y) Returns the minimum of x and y.

Table 16-16 The Rounding Methods Defined by Math

 Chapter 16 Exploring java.lang 435

P
a

rt
 I

I

Miscellaneous Math Methods

In addition to the methods just shown, Math defines several other methods, which are

shown here:

Method Description

static double copySign(double arg,

 double signarg)

Returns arg with same sign as that of signarg.

static float copySign(float arg,

 float signarg)

Returns arg with same sign as that of signarg.

static int getExponent(double arg) Returns the base-2 exponent used by the binary

representation of arg.

static int getExponent(float arg) Returns the base-2 exponent used by the binary

representation of arg.

static double

 IEEEremainder(double dividend,

 double divisor)

Returns the remainder of dividend / divisor.

static hypot(double side1,

 double side2)

Returns the length of the hypotenuse of a right triangle

given the length of the two opposing sides.

static double random() Returns a pseudorandom number between 0 and 1.

static float signum(double arg) Determines the sign of a value. It returns 0 if arg is 0, 1 if arg

is greater than 0, and –1 if arg is less than 0.

static float signum(float arg) Determines the sign of a value. It returns 0 if arg is 0, 1 if arg

is greater than 0, and –1 if arg is less than 0.

Method Description

static double min(double x, double y) Returns the minimum of x and y.

static double nextAfter(double arg,

 double toward)

Beginning with the value of arg, returns

the next value in the direction of toward.

If arg == toward, then toward is returned.

static float nextAfter(float arg,

 double toward)

Beginning with the value of arg, returns

the next value in the direction of toward.

If arg == toward, then toward is returned.

static double nextUp(double arg) Returns the next value in the positive direction

from arg.

static float nextUp(float arg) Returns the next value in the positive direction

from arg.

static double rint(double arg) Returns the integer nearest in value to arg.

static int round(float arg) Returns arg rounded up to the nearest int.

static long round(double arg) Returns arg rounded up to the nearest long.

static float ulp(float arg) Returns the ulp for arg.

static double ulp(double arg) Returns the ulp for arg.

Table 16-16 The Rounding Methods Defined by Math (continued)

436 PART II The Java Library

Method Description

static double toDegrees(double angle) Converts radians to degrees. The angle passed to angle must

be specified in radians. The result in degrees is returned.

static double toRadians(double angle) Converts degrees to radians. The angle passed to angle must

be specified in degrees. The result in radians is returned.

The following program demonstrates toRadians() and toDegrees():

// Demonstrate toDegrees() and toRadians().
class Angles {
 public static void main(String args[]) {
 double theta = 120.0;

 System.out.println(theta + " degrees is " +
 Math.toRadians(theta) + " radians.");

 theta = 1.312;
 System.out.println(theta + " radians is " +
 Math.toDegrees(theta) + " degrees.");
 }
}

The output is shown here:

 120.0 degrees is 2.0943951023931953 radians.
 1.312 radians is 75.17206272116401 degrees.

StrictMath
The StrictMath class defines a complete set of mathematical methods that parallel those

in Math. The difference is that the StrictMath version is guaranteed to generate precisely

identical results across all Java implementations, whereas the methods in Math are given

more latitude in order to improve performance.

Compiler
The Compiler class supports the creation of Java environments in which Java bytecode is

compiled into executable code rather than interpreted. It is not for normal programming use.

Thread, ThreadGroup, and Runnable
The Runnable interface and the Thread and ThreadGroup classes support multithreaded

programming. Each is examined next.

 Chapter 16 Exploring java.lang 437

P
a

rt
 I

I

NOTE An overview of the techniques used to manage threads, implement the Runnable interface, and
create multithreaded programs is presented in Chapter 11.

The Runnable Interface

The Runnable interface must be implemented by any class that will initiate a separate

thread of execution. Runnable only defines one abstract method, called run(), which

is the entry point to the thread. It is defined like this:

void run()

Threads that you create must implement this method.

Thread

Thread creates a new thread of execution. It implements Runnable and defines the

following commonly used constructors:

Thread()

Thread(Runnable threadOb)

Thread(Runnable threadOb, String threadName)
Thread(String threadName)
Thread(ThreadGroup groupOb, Runnable threadOb)

Thread(ThreadGroup groupOb, Runnable threadOb, String threadName)
Thread(ThreadGroup groupOb, String threadName)

threadOb is an instance of a class that implements the Runnable interface and defines where

execution of the thread will begin. The name of the thread is specified by threadName.
When a name is not specified, one is created by the Java Virtual Machine. groupOb specifies

the thread group to which the new thread will belong. When no thread group is specified,

the new thread belongs to the same group as the parent thread.

The following constants are defined by Thread:

MAX_PRIORITY

MIN_PRIORITY

NORM_PRIORITY

As expected, these constants specify the maximum, minimum, and default thread priorities.

The methods defined by Thread are shown in Table 16-17. In early versions of Java,

Thread also included the methods stop(), suspend(), and resume(). However, as

explained in Chapter 11, these were deprecated because they were inherently unstable.

Also deprecated are countStackFrames(), because it calls suspend(), and destroy(),
because it can cause deadlock.

438 PART II The Java Library

Method Description

static int activeCount() Returns the approximate number of active threads

in the group to which the thread belongs.

final void checkAccess() Causes the security manager to verify that the

current thread can access and/or change the

thread on which checkAccess() is called.

static Thread currentThread() Returns a Thread object that encapsulates the

thread that calls this method.

static void dumpStack() Displays the call stack for the thread.

static int enumerate(Thread threads[]) Puts copies of all Thread objects in the current

thread’s group into threads. The number of threads

is returned.

static Map<Thread, StackTraceElement[]>

 getAllStackTraces()

Returns a Map that contains the stack traces for all

active threads. In the map, each entry consists of a

key, which is the Thread object, and its value, which

is an array of StackTraceElement.

ClassLoader getContextClassLoader() Returns the context class loader that is used to load

classes and resources for this thread.

static Thread.UncaughtExceptionHandler

 getDefaultUncaughtExceptionHandler()

Returns the default uncaught exception handler.

long getID() Returns the ID of the invoking thread.

final String getName() Returns the thread’s name.

final int getPriority() Returns the thread’s priority setting.

StackTraceElement[] getStackTrace() Returns an array containing the stack trace for the

invoking thread.

Thread.State getState() Returns the invoking thread’s state.

final ThreadGroup getThreadGroup() Returns the ThreadGroup object of which the

invoking thread is a member.

Thread.UncaughtExceptionHandler

 getUncaughtExceptionHandler()

Returns the invoking thread’s uncaught exception

handler.

static boolean holdsLock(Object ob) Returns true if the invoking thread owns the lock

on ob. Returns false otherwise.

void interrupt() Interrupts the thread.

static boolean interrupted() Returns true if the currently executing thread has

been scheduled for interruption. Otherwise, it

returns false.

final boolean isAlive() Returns true if the thread is still active. Otherwise,

it returns false.

final boolean isDaemon() Returns true if the thread is a daemon thread.

Otherwise, it returns false.

Table 16-17 The Methods Defined by Thread

 Chapter 16 Exploring java.lang 439

P
a

rt
 I

I

Method Description

boolean isInterrupted() Returns true if the thread is interrupted. Otherwise,

it returns false.

final void join()

 throws InterruptedException

Waits until the thread terminates.

final void join(long milliseconds)
 throws InterruptedException

Waits up to the specified number of milliseconds

for the thread on which it is called to terminate.

final void join(long milliseconds,
 int nanoseconds)
 throws InterruptedException

Waits up to the specified number of milliseconds

plus nanoseconds for the thread on which it is

called to terminate.

void run() Begins execution of a thread.

void setContextClassLoader(ClassLoader cl) Sets the context class loader that will be used by the

invoking thread to cl.

final void setDaemon(boolean state) Flags the thread as a daemon thread.

static void

 setDefaultUncaughtExceptionHandler(

 Thread.UncaughtExceptionHandler e)

Sets the default uncaught exception handler to e.

final void setName(String threadName) Sets the name of the thread to that specified by

threadName.

final void setPriority(int priority) Sets the priority of the thread to that specified by

priority.

void

 setUncaughtExceptionHandler(

 Thread.UncaughtExceptionHandler e)

Sets the invoking thread’s default uncaught

exception handler to e.

static void sleep(long milliseconds)
 throws InterruptedException

Suspends execution of the thread for the specified

number of milliseconds.

static void sleep(long milliseconds,
 int nanoseconds)
 throws InterruptedException

Suspends execution of the thread for the specified

number of milliseconds plus nanoseconds.

void start() Starts execution of the thread.

String toString() Returns the string equivalent of a thread.

static void yield() The calling thread offers to yield the CPU to

another thread.

Table 16-17 The Methods Defined by Thread (continued)

ThreadGroup

ThreadGroup creates a group of threads. It defines these two constructors:

ThreadGroup(String groupName)
ThreadGroup(ThreadGroup parentOb, String groupName)

440 PART II The Java Library

For both forms, groupName specifies the name of the thread group. The first version

creates a new group that has the current thread as its parent. In the second form, the

parent is specified by parentOb. The non-deprecated methods defined by ThreadGroup

are shown in Table 16-18.

Method Description

int activeCount() Returns the approximate number of active threads in

the invoking group (including those in subgroups).

int activeGroupCount() Returns the approximate number of active groups

(including subgroups) for which the invoking thread

is a parent.

final void checkAccess() Causes the security manager to verify that the invoking

thread may access and/or change the group on which

checkAccess() is called.

final void destroy() Destroys the thread group (and any child groups) on

which it is called.

int enumerate(Thread group[]) Puts the active threads that comprise the invoking

thread group (including those in subgroups) into the

group array.

int enumerate(Thread group[],

 boolean all)
Puts the active threads that comprise the invoking thread

group into the group array. If all is true, then threads in

all subgroups of the thread are also put into group.

int enumerate(ThreadGroup group[]) Puts the active subgroups (including subgroups of

subgroups and so on) of the invoking thread group

into the group array.

int enumerate(ThreadGroup group[],

 boolean all)
Puts the active subgroups of the invoking thread

group into the group array. If all is true, then all active

subgroups of the subgroups (and so on) are also put

into group.

final int getMaxPriority() Returns the maximum priority setting for the group.

final String getName() Returns the name of the group.

final ThreadGroup getParent() Returns null if the invoking ThreadGroup object has

no parent. Otherwise, it returns the parent of the

invoking object.

final void interrupt() Invokes the interrupt() method of all threads in the

group and any subgroups.

final boolean isDaemon() Returns true if the group is a daemon group.

Otherwise, it returns false.

boolean isDestroyed() Returns true if the group has been destroyed.

Otherwise, it returns false.

void list() Displays information about the group.

final boolean

 parentOf(ThreadGroup group)

Returns true if the invoking thread is the parent of

group (or group, itself). Otherwise, it returns false.

Table 16-18 The Methods Defined by ThreadGroup

 Chapter 16 Exploring java.lang 441

P
a

rt
 I

I

Thread groups offer a convenient way to manage groups of threads as a unit. This is

particularly valuable in situations in which you want to suspend and resume a number of

related threads. For example, imagine a program in which one set of threads is used for

printing a document, another set is used to display the document on the screen, and

another set saves the document to a disk file. If printing is aborted, you will want an easy way

to stop all threads related to printing. Thread groups offer this convenience. The following

program, which creates two thread groups of two threads each, illustrates this usage:

// Demonstrate thread groups.
class NewThread extends Thread {
 boolean suspendFlag;

 NewThread(String threadname, ThreadGroup tgOb) {
 super(tgOb, threadname);
 System.out.println("New thread: " + this);
 suspendFlag = false;
 start(); // Start the thread
 }

 // This is the entry point for thread.
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println(getName() + ": " + i);
 Thread.sleep(1000);
 synchronized(this) {
 while(suspendFlag) {
 wait();
 }
 }
 }
 } catch (Exception e) {
 System.out.println("Exception in " + getName());
 }
 System.out.println(getName() + " exiting.");
 }

 synchronized void mysuspend() {
 suspendFlag = true;
 }

Method Description

final void

 setDaemon(boolean isDaemon)

If isDaemon is true, then the invoking group is flagged

as a daemon group.

final void setMaxPriority(int priority) Sets the maximum priority of the invoking group to

priority.

String toString() Returns the string equivalent of the group.

void uncaughtException(Thread thread,

 Throwable e)
This method is called when an exception goes

uncaught.

Table 16-18 The Methods Defined by ThreadGroup (continued)

442 PART II The Java Library

 synchronized void myresume() {
 suspendFlag = false;
 notify();
 }
 }

class ThreadGroupDemo {
 public static void main(String args[]) {
 ThreadGroup groupA = new ThreadGroup("Group A");
 ThreadGroup groupB = new ThreadGroup("Group B");

 NewThread ob1 = new NewThread("One", groupA);
 NewThread ob2 = new NewThread("Two", groupA);
 NewThread ob3 = new NewThread("Three", groupB);
 NewThread ob4 = new NewThread("Four", groupB);

 System.out.println("\nHere is output from list():");
 groupA.list();
 groupB.list();
 System.out.println();

 System.out.println("Suspending Group A");
 Thread tga[] = new Thread[groupA.activeCount()];
 groupA.enumerate(tga); // get threads in group
 for(int i = 0; i < tga.length; i++) {
 ((NewThread)tga[i]).mysuspend(); // suspend each thread
 }

 try {
 Thread.sleep(4000);
 } catch (InterruptedException e) {
 System.out.println("Main thread interrupted.");
 }

 System.out.println("Resuming Group A");
 for(int i = 0; i < tga.length; i++) {
 ((NewThread)tga[i]).myresume(); // resume threads in group
 }

 // wait for threads to finish
 try {
 System.out.println("Waiting for threads to finish.");
 ob1.join();
 ob2.join();
 ob3.join();
 ob4.join();
 } catch (Exception e) {
 System.out.println("Exception in Main thread");
 }

 System.out.println("Main thread exiting.");
 }
}

 Chapter 16 Exploring java.lang 443

P
a

rt
 I

I

Sample output from this program is shown here (the precise output you see may

differ):

 New thread: Thread[One,5,Group A]
 New thread: Thread[Two,5,Group A]
 New thread: Thread[Three,5,Group B]
 New thread: Thread[Four,5,Group B]
 Here is output from list():
 java.lang.ThreadGroup[name=Group A,maxpri=10]
 Thread[One,5,Group A]
 Thread[Two,5,Group A]
 java.lang.ThreadGroup[name=Group B,maxpri=10]
 Thread[Three,5,Group B]
 Thread[Four,5,Group B]
 Suspending Group A
 Three: 5
 Four: 5
 Three: 4
 Four: 4
 Three: 3
 Four: 3
 Three: 2
 Four: 2
 Resuming Group A
 Waiting for threads to finish.
 One: 5
 Two: 5
 Three: 1
 Four: 1
 One: 4
 Two: 4
 Three exiting.
 Four exiting.
 One: 3
 Two: 3
 One: 2
 Two: 2
 One: 1
 Two: 1
 One exiting.
 Two exiting.
 Main thread exiting.

Inside the program, notice that thread group A is suspended for four seconds. As the

output confirms, this causes threads One and Two to pause, but threads Three and Four

continue running. After the four seconds, threads One and Two are resumed. Notice how

thread group A is suspended and resumed. First, the threads in group A are obtained by

calling enumerate() on group A. Then, each thread is suspended by iterating through the

resulting array. To resume the threads in A, the list is again traversed and each thread is

resumed. One last point: This example uses the recommended approach to suspending and

resuming threads. It does not rely upon the deprecated methods suspend() and resume().

444 PART II The Java Library

ThreadLocal and InheritableThreadLocal
Java defines two additional thread-related classes in java.lang:

• ThreadLocal Used to create thread local variables. Each thread will have its own

copy of a thread local variable.

• InheritableThreadLocal Creates thread local variables that may be inherited.

Package
Package encapsulates version data associated with a package. Package version information

is becoming more important because of the proliferation of packages and because a Java

program may need to know what version of a package is available. The methods defined by

Package are shown in Table 16-19. The following program demonstrates Package,

displaying the packages about which the program currently is aware:

// Demonstrate Package
class PkgTest {
 public static void main(String args[]) {
 Package pkgs[];

 pkgs = Package.getPackages();

 for(int i=0; i < pkgs.length; i++)
 System.out.println(
 pkgs[i].getName() + " " +
 pkgs[i].getImplementationTitle() + " " +
 pkgs[i].getImplementationVendor() + " " +
 pkgs[i].getImplementationVersion()
);
 }
}

Method Description

<A extends Annotation> A

 getAnnotation(Class<A> annoType)
Returns an Annotation object that contains the

annotation associated with annoType for the

invoking object.

Annotation[] getAnnotations() Returns all annotations associated with the invoking

object in an array of Annotation objects. Returns a

reference to this array.

Annotation[] getDeclaredAnnotations() Returns an Annotation object for all the

annotations that are declared by the invoking

object. (Inherited annotations are ignored.)

String getImplementationTitle() Returns the title of the invoking package.

String getImplementationVendor() Returns the name of the implementor of the

invoking package.

String getImplementationVersion() Returns the version number of the invoking package.

Table 16-19 The Methods Defined by Package

 Chapter 16 Exploring java.lang 445

P
a

rt
 I

I

RuntimePermission
RuntimePermission relates to Java’s security mechanism and is not examined further here.

Throwable
The Throwable class supports Java’s exception-handling system and is the class from which

all exception classes are derived. It is discussed in Chapter 10.

SecurityManager
SecurityManager is a class that your classes can subclass to create a security manager.

Generally, you don’t need to implement your own security manager. If you do, you need

to consult the documentation that comes with your Java development system.

Method Description

String getName() Returns the name of the invoking package.

static Package getPackage(String pkgName) Returns a Package object with the name specified

by pkgName.

static Package[] getPackages() Returns all packages about which the invoking

program is currently aware.

String getSpecificationTitle() Returns the title of the invoking package’s

specification.

String getSpecificationVendor() Returns the name of the owner of the specification

for the invoking package.

String getSpecificationVersion() Returns the invoking package’s specification

version number.

int hashCode() Returns the hash code for the invoking package.

boolean isAnnotationPresent(

 Class<? extends Annotation> anno)

Returns true if the annotation described by anno is

associated with the invoking object. Returns false,

otherwise.

boolean isCompatibleWith(String verNum)

 throws NumberFormatException

Returns true if verNum is less than or equal to the

invoking package’s version number.

boolean isSealed() Returns true if the invoking package is sealed.

Returns false otherwise.

boolean isSealed(URL url) Returns true if the invoking package is sealed

relative to url. Returns false otherwise.

String toString() Returns the string equivalent of the invoking

package.

Table 16-19 The Methods Defined by Package (continued)

446 PART II The Java Library

StackTraceElement
The StackTraceElement class describes a single stack frame, which is an individual element

of a stack trace when an exception occurs. Each stack frame represents an execution point,
which includes such things as the name of the class, the name of the method, the name of

the file, and the source-code line number. An array of StackTraceElements is returned by

the getStackTrace() method of the Throwable class.

StackTraceElement has one constructor:

StackTraceElement(String className, String methName, string fileName, int line)

Here, the name of the class is specified by className, the name of the method is specified in

methName, the name of the file is specified by fileName, and the line number is passed in line.
If there is no valid line number, use a negative value for line. Furthermore, a value of –2 for

line indicates that this frame refers to a native method.

The methods supported by StackTraceElement are shown in Table 16-20. These

methods give you programmatic access to a stack trace.

Method Description

boolean equals(Object ob) Returns true if the invoking StackTraceElement is the same as

the one passed in ob. Otherwise, it returns false.

String getClassName() Returns the name of the class in which the execution point

described by the invoking StackTraceElement occurred.

String getFileName() Returns the name of the file in which the source code of the

execution point described by the invoking StackTraceElement
is stored.

int getLineNumber() Returns the source-code line number at which the execution

point described by the invoking StackTraceElement occurred. In

some situations, the line number will not be available, in which

case a negative value is returned.

String getMethodName() Returns the name of the method in which the execution point

described by the invoking StackTraceElement occurred.

int hashCode() Returns the hash code for the invoking StackTraceElement.

boolean isNativeMethod() Returns true if the execution point described by the invoking

StackTraceElement occurred in a native method. Otherwise, it

returns false.

String toString() Returns the String equivalent of the invoking sequence.

Table 16-20 The Methods Defined by StackTraceElement

 Chapter 16 Exploring java.lang 447

P
a

rt
 I

I

Enum
As described in Chapter 12, an enumeration is a list of named constants. (Recall that an

enumeration is created by using the keyword enum.) All enumerations automatically

inherit Enum. Enum is a generic class that is declared as shown here:

class Enum<E extends Enum<E>>

Here, E stands for the enumeration type. Enum has no public constructors.

Enum defines several methods that are available for use by all enumerations, which are

shown in Table 16-21.

Method Description

protected final Object clone()

 throws CloneNotSupportedException

Invoking this method causes a

CloneNotSupportedException to be thrown.

This prevents enumerations from being cloned.

final int compareTo(E e) Compares the ordinal value of two constants of the

same enumeration. Returns a negative value if the

invoking constant has an ordinal value less than e’s,
zero if the two ordinal values are the same, and a

positive value if the invoking constant has an ordinal

value greater than e’s.

final boolean equals(Object obj) Returns true if obj and the invoking object refer to

the same constant.

final Class<E> getDeclaringClass() Returns the type of enumeration of which the

invoking constant is a member.

final int hashCode() Returns the hash code for the invoking object.

final String name() Returns the unaltered name of the invoking constant.

final int ordinal() Returns a value that indicates an enumeration

constant’s position in the list of constants.

String toString() Returns the name of the invoking constant.

This name may differ from the one used in the

enumeration’s declaration.

static <T extends Enum<T>> T

 valueOf(Class<T> e-type, String name)
Returns the constant associated with name in the

enumeration type specified by e-type.

Table 16-21 The Methods Defined by Enum

448 PART II The Java Library

ClassValue
Added by JDK 7, ClassValue can be used to associate a value with a type. It is a generic type

defined like this:

Class ClassValue<T>

It is designed for highly specialized uses, not for normal programming.

The CharSequence Interface
The CharSequence interface defines methods that grant read-only access to a sequence

of characters. These methods are shown in Table 16-22. This interface is implemented by

String, StringBuffer, and StringBuilder, among others.

The Comparable Interface
Objects of classes that implement Comparable can be ordered. In other words, classes that

implement Comparable contain objects that can be compared in some meaningful manner.

Comparable is generic and is declared like this:

interface Comparable<T>

Here, T represents the type of objects being compared.

The Comparable interface declares one method that is used to determine what Java

calls the natural ordering of instances of a class. The signature of the method is shown here:

int compareTo(T obj)

This method compares the invoking object with obj. It returns 0 if the values are equal. A

negative value is returned if the invoking object has a lower value. Otherwise, a positive

value is returned.

This interface is implemented by several of the classes already reviewed in this book.

Specifically, the Byte, Character, Double, Float, Long, Short, String, and Integer classes

define a compareTo() method. So does Enum.

Method Description

char charAt(int idx) Returns the character at the index specified by idx.

int length() Returns the number of characters in the invoking

sequence.

CharSequence

 subSequence(int startIdx, int stopIdx)

Returns a subset of the invoking sequence beginning

at startIdx and ending at stopIdx–1.

String toString() Returns the String equivalent of the invoking

sequence.

Table 16-22 The Methods Defined by CharSequence

 Chapter 16 Exploring java.lang 449

P
a

rt
 I

I

The Appendable Interface
Objects of a class that implements Appendable can have a character or character sequences

appended to it. Appendable defines these three methods:

Appendable append(char ch) throws IOException

Appendable append(CharSequence chars) throws IOException

Appendable append(CharSequence chars, int begin, int end) throws IOException

In the first form, the character ch is appended to the invoking object. In the second form,

the character sequence chars is appended to the invoking object. The third form allows you

to indicate a portion (the characters running from begin through end–1) of the sequence

specified by chars. In all cases, a reference to the invoking object is returned.

The Iterable Interface
Iterable must be implemented by any class whose objects will be used by the for-each

version of the for loop. In other words, in order for an object to be used within a for-each

style for loop, its class must implement Iterable. Iterable is a generic interface that has this

declaration:

interface Iterable<T>

Here, T is the type of the object being iterated. It defines one method, iterator(), which is

shown here:

Iterator<T> iterator()

It returns an iterator to the elements contained in the invoking object.

NOTE Iterators are described in detail in Chapter 17.

The Readable Interface
The Readable interface indicates that an object can be used as a source for characters. It

defines one method called read(), which is shown here:

int read(CharBuffer buf) throws IOException

This method reads characters into buf. It returns the number of characters read, or –1 if an

EOF is encountered.

The AutoCloseable Interface
AutoCloseable was added by JDK 7, and it provides support for the new try-with-resources

statement, which implements what is sometimes referred to as automatic resource management
(ARM). The try-with-resources statement automates the process of releasing a resource

(such as a stream) when it is no longer needed. (See Chapter 13 for details.) Only objects

450 PART II The Java Library

of classes that implement AutoCloseable can be used with try-with-resources. The

AutoCloseable interface defines only the close() method, which is shown here:

void close() throws Exception

This method closes the invoking object, releasing any resources that it may hold. It is

automatically called at the end of a try-with-resources statement, thus eliminating the need

to explicitly invoke close(). AutoCloseable is implemented by several classes, including all

of the I/O classes that open a stream that can be closed.

The Thread.UncaughtExceptionHandler Interface
The static Thread.UncaughtExceptionHandler interface is implemented by classes that

want to handle uncaught exceptions. It is implemented by ThreadGroup. It declares only

one method, which is shown here:

void uncaughtException(Thread thrd, Throwable exc)

Here, thrd is a reference to the thread that generated the exception and exc is a reference to

the exception.

The java.lang Subpackages
Java defines several subpackages of java.lang:

• java.lang.annotation

• java.lang.instrument

• java.lang.invoke

• java.lang.management

• java.lang.ref

• java.lang.reflect

Each is briefly described here.

java.lang.annotation

Java’s annotation facility is supported by java.lang.annotation. It defines the Annotation

interface, and the ElementType and RetentionPolicy enumerations. Annotations are

described in Chapter 12.

java.lang.instrument

java.lang.instrument defines features that can be used to add instrumentation to various

aspects of program execution. It defines the Instrumentation and ClassFileTransformer

interfaces, and the ClassDefinition class.

 Chapter 16 Exploring java.lang 451

P
a

rt
 I

I

java.lang.invoke

Added by JDK 7, java.lang.invoke supports dynamic languages. It includes classes such as

CallSite, MethodHandle, and MethodType.

java.lang.management

The java.lang.management package provides management support for the JVM and the

execution environment. Using the features in java.lang.management, you can observe and

manage various aspects of program execution.

java.lang.ref

You learned earlier that the garbage collection facilities in Java automatically determine

when no references exist to an object. The object is then assumed to be no longer needed

and its memory is reclaimed. The classes in the java.lang.ref package provide more flexible

control over the garbage collection process.

java.lang.reflect

Reflection is the ability of a program to analyze code at run time. The java.lang.reflect
package provides the ability to obtain information about the fields, constructors, methods,

and modifiers of a class. Among other reasons, you need this information to build software

tools that enable you to work with Java Beans components. The tools use reflection to

determine dynamically the characteristics of a component. Reflection was introduced in

Chapter 12 and is also examined in Chapter 28.

java.lang.reflect defines several classes, including Method, Field, and Constructor.

It also defines several interfaces, including AnnotatedElement, Member, and Type. In

addition, the java.lang.reflect package includes the Array class that enables you to create

and access arrays dynamically.

This page intentionally left blank

17
CHAPTER

 453

java.util Part 1: The
Collections Framework

This chapter begins our examination of java.util. This important package contains a large

assortment of classes and interfaces that support a broad range of functionality. For example,

java.util has classes that generate pseudorandom numbers, manage date and time, observe

events, manipulate sets of bits, tokenize strings, and handle formatted data. The java.util
package also contains one of Java’s most powerful subsystems: the Collections Framework. The

Collections Framework is a sophisticated hierarchy of interfaces and classes that provide

state-of-the-art technology for managing groups of objects. It merits close attention by all

programmers.

Because java.util contains a wide array of functionality, it is quite large. Here is a list of

its top-level classes:

AbstractCollection EventObject PropertyResourceBundle

AbstractList FormattableFlags Random

AbstractMap Formatter ResourceBundle

AbstractQueue GregorianCalendar Scanner

AbstractSequentialList HashMap ServiceLoader

AbstractSet HashSet SimpleTimeZone

ArrayDeque Hashtable Stack

ArrayList IdentityHashMap StringTokenizer

Arrays LinkedHashMap Timer

BitSet LinkedHashSet TimerTask

Calendar LinkedList TimeZone

Collections ListResourceBundle TreeMap

Currency Locale TreeSet

Date Objects (Added by JDK 7.) UUID

Dictionary Observable Vector

EnumMap PriorityQueue WeakHashMap

EnumSet Properties

EventListenerProxy PropertyPermission

The interfaces defined by java.util are shown next:

Collection List Queue

Comparator ListIterator RandomAccess

Deque Map Set

Enumeration Map.Entry SortedMap

EventListener NavigableMap SortedSet

Formattable NavigableSet

Iterator Observer

Because of its size, the description of java.util is broken into two chapters. This chapter

examines those members of java.util that are part of the Collections Framework. Chapter 18

discusses its other classes and interfaces.

Collections Overview
The Java Collections Framework standardizes the way in which groups of objects are handled

by your programs. Collections were not part of the original Java release, but were added by

J2SE 1.2. Prior to the Collections Framework, Java provided ad hoc classes such as Dictionary,

Vector, Stack, and Properties to store and manipulate groups of objects. Although these

classes were quite useful, they lacked a central, unifying theme. The way that you used Vector

was different from the way that you used Properties, for example. Also, this early, ad hoc

approach was not designed to be easily extended or adapted. Collections are an answer to

these (and other) problems.

The Collections Framework was designed to meet several goals. First, the framework

had to be high-performance. The implementations for the fundamental collections

(dynamic arrays, linked lists, trees, and hash tables) are highly efficient. You seldom, if

ever, need to code one of these “data engines” manually. Second, the framework had to

allow different types of collections to work in a similar manner and with a high degree of

interoperability. Third, extending and/or adapting a collection had to be easy. Toward this

end, the entire Collections Framework is built upon a set of standard interfaces. Several

standard implementations (such as LinkedList, HashSet, and TreeSet) of these interfaces

are provided that you may use as-is. You may also implement your own collection, if you

choose. Various special-purpose implementations are created for your convenience, and

some partial implementations are provided that make creating your own collection class

easier. Finally, mechanisms were added that allow the integration of standard arrays into

the Collections Framework.

Algorithms are another important part of the collection mechanism. Algorithms operate

on collections and are defined as static methods within the Collections class. Thus, they are

454 PART II The Java Library

P
a

rt
 I

I

available for all collections. Each collection class need not implement its own versions. The

algorithms provide a standard means of manipulating collections.

Another item closely associated with the Collections Framework is the Iterator interface.

An iterator offers a general-purpose, standardized way of accessing the elements within a

collection, one at a time. Thus, an iterator provides a means of enumerating the contents of a
collection. Because each collection provides an iterator, the elements of any collection class

can be accessed through the methods defined by Iterator. Thus, with only small changes,

the code that cycles through a set can also be used to cycle through a list, for example.

In addition to collections, the framework defines several map interfaces and classes.

Maps store key/value pairs. Although maps are part of the Collections Framework, they are

not “collections” in the strict use of the term. You can, however, obtain a collection-view of a

map. Such a view contains the elements from the map stored in a collection. Thus, you can

process the contents of a map as a collection, if you choose.

The collection mechanism was retrofitted to some of the original classes defined

by java.util so that they too could be integrated into the new system. It is important to

understand that although the addition of collections altered the architecture of many

of the original utility classes, it did not cause the deprecation of any. Collections simply

provide a better way of doing several things.

NOTE If you are familiar with C++, then you will find it helpful to know that the Java collections
technology is similar in spirit to the Standard Template Library (STL) defined by C++. What C++
calls a container, Java calls a collection. However, there are significant differences between the
Collections Framework and the STL. It is important to not jump to conclusions.

JDK 5 Changed the Collections Framework
When JDK 5 was released, some fundamental changes were made to the Collections

Framework that significantly increased its power and streamlined its use. These changes

include the addition of generics, autoboxing/unboxing, and the for-each style for loop.

Although JDK 7 is two major Java releases after JDK 5, the effects of the JDK 5 features

were so profound that they still warrant special attention. The main reason is that much

pre-JDK 5 code is still in use. Understanding the effects and reasons for the changes is

important if you will be maintaining or updating older code.

Generics Fundamentally Changed the Collections Framework

The addition of generics caused a significant change to the Collections Framework because

the entire Collections Framework was reengineered for it. All collections are now generic,

and many of the methods that operate on collections take generic type parameters. Simply

put, the addition of generics affected every part of the Collections Framework.

Generics added the one feature that collections had been missing: type safety. Prior to

generics, all collections stored Object references, which meant that any collection could

store any type of object. Thus, it was possible to accidentally store incompatible types in a

collection. Doing so could result in run-time type mismatch errors. With generics, it is

possible to explicitly state the type of data being stored, and run-time type mismatch

errors can be avoided.

 Chapter 17 java.util Part 1: The Collections Framework 455

456 PART II The Java Library

Although the addition of generics changed the declarations of most of its classes and

interfaces, and several of their methods, overall, the Collections Framework still works the

same as it did prior to generics. However, if you are familiar with the pre-generics version of

the Collections Framework, you might find the new syntax a bit intimidating. Don’t worry;

over time, the generic syntax will become second nature.

One other point: to gain the advantages that generics bring collections, older code will

need to be rewritten. This is also important because pre-generics code will generate warning

messages when compiled by a modern Java compiler. To eliminate these warnings, you will

need to add type information to all your collections code.

Autoboxing Facilitates the Use of Primitive Types

Autoboxing/unboxing facilitates the storing of primitive types in collections. As you will

see, a collection can store only references, not primitive values. In the past, if you wanted

to store a primitive value, such as an int, in a collection, you had to manually box it into its

type wrapper. When the value was retrieved, it needed to be manually unboxed (by using

an explicit cast) into its proper primitive type. Because of autoboxing/unboxing, Java can

automatically perform the proper boxing and unboxing needed when storing or retrieving

primitive types. There is no need to manually perform these operations.

The For-Each Style for Loop

All collection classes in the Collections Framework were retrofitted to implement the

Iterable interface, which means that a collection can be cycled through by use of the for-

each style for loop. In the past, cycling through a collection required the use of an iterator

(described later in this chapter), with the programmer manually constructing the loop.

Although iterators are still needed for some uses, in many cases, iterator-based loops can

be replaced by for loops.

The Collection Interfaces
The Collections Framework defines several interfaces. This section provides an overview of

each interface. Beginning with the collection interfaces is necessary because they determine

the fundamental nature of the collection classes. Put differently, the concrete classes simply

provide different implementations of the standard interfaces. The interfaces that underpin

collections are summarized in the following table:

Interface Description

Collection Enables you to work with groups of objects; it is at the top of the collections

hierarchy.

Deque Extends Queue to handle a double-ended queue.

List Extends Collection to handle sequences (lists of objects).

NavigableSet Extends SortedSet to handle retrieval of elements based on closest-match

searches.

Queue Extends Collection to handle special types of lists in which elements are

removed only from the head.

Set Extends Collection to handle sets, which must contain unique elements.

SortedSet Extends Set to handle sorted sets.

 Chapter 17 java.util Part 1: The Collections Framework 457

P
a

rt
 I

I

In addition to the collection interfaces, collections also use the Comparator,

RandomAccess, Iterator, and ListIterator interfaces, which are described in depth later

in this chapter. Briefly, Comparator defines how two objects are compared; Iterator and

ListIterator enumerate the objects within a collection. By implementing RandomAccess,

a list indicates that it supports efficient, random access to its elements.

To provide the greatest flexibility in their use, the collection interfaces allow some

methods to be optional. The optional methods enable you to modify the contents of a

collection. Collections that support these methods are called modifiable. Collections that do

not allow their contents to be changed are called unmodifiable. If an attempt is made to use

one of these methods on an unmodifiable collection, an UnsupportedOperationException

is thrown. All the built-in collections are modifiable.

The following sections examine the collection interfaces.

The Collection Interface

The Collection interface is the foundation upon which the Collections Framework is built

because it must be implemented by any class that defines a collection. Collection is a generic

interface that has this declaration:

interface Collection<E>

Here, E specifies the type of objects that the collection will hold. Collection extends the

Iterable interface. This means that all collections can be cycled through by use of the for-

each style for loop. (Recall that only classes that implement Iterable can be cycled through

by the for.)

Collection declares the core methods that all collections will have. These methods are

summarized in Table 17-1. Because all collections implement Collection, familiarity with its

methods is necessary for a clear understanding of the framework. Several of these methods

can throw an UnsupportedOperationException. As explained, this occurs if a collection

cannot be modified. A ClassCastException is generated when one object is incompatible

with another, such as when an attempt is made to add an incompatible object to a

collection. A NullPointerException is thrown if an attempt is made to store a null object

and null elements are not allowed in the collection. An IllegalArgumentException is thrown

if an invalid argument is used. An IllegalStateException is thrown if an attempt is made to

add an element to a fixed-length collection that is full.

Objects are added to a collection by calling add(). Notice that add() takes an argument

of type E, which means that objects added to a collection must be compatible with the type

of data expected by the collection. You can add the entire contents of one collection to

another by calling addAll().
You can remove an object by using remove(). To remove a group of objects, call

removeAll(). You can remove all elements except those of a specified group by calling

retainAll(). To empty a collection, call clear().
You can determine whether a collection contains a specific object by calling contains().

To determine whether one collection contains all the members of another, call containsAll().
You can determine when a collection is empty by calling isEmpty(). The number of

elements currently held in a collection can be determined by calling size().

458 PART II The Java Library

Table 17-1 The Methods Defined by Collection

Method Description

boolean add(E obj) Adds obj to the invoking collection. Returns true if

obj was added to the collection. Returns false if obj is
already a member of the collection and the collection

does not allow duplicates.

boolean addAll(Collection<? extends E> c) Adds all the elements of c to the invoking collection.

Returns true if the collection changed (i.e., the

elements were added). Otherwise, returns false.

void clear() Removes all elements from the invoking collection.

boolean contains(Object obj) Returns true if obj is an element of the invoking

collection. Otherwise, returns false.

boolean containsAll(Collection<?> c) Returns true if the invoking collection contains all

elements of c. Otherwise, returns false.

boolean equals(Object obj) Returns true if the invoking collection and obj are

equal. Otherwise, returns false.

int hashCode() Returns the hash code for the invoking collection.

boolean isEmpty() Returns true if the invoking collection is empty.

Otherwise, returns false.

Iterator<E> iterator() Returns an iterator for the invoking collection.

boolean remove(Object obj) Removes one instance of obj from the invoking

collection. Returns true if the element was removed.

Otherwise, returns false.

boolean removeAll(Collection<?> c) Removes all elements of c from the invoking collection.

Returns true if the collection changed (i.e., elements

were removed). Otherwise, returns false.

boolean retainAll(Collection<?> c) Removes all elements from the invoking collection

except those in c. Returns true if the collection changed

(i.e., elements were removed). Otherwise, returns false.

int size() Returns the number of elements held in the invoking

collection.

Object[] toArray() Returns an array that contains all the elements stored

in the invoking collection. The array elements are

copies of the collection elements.

<T> T[] toArray(T array[]) Returns an array that contains the elements of the

invoking collection. The array elements are copies

of the collection elements. If the size of array equals

the number of elements, these are returned in

array. If the size of array is less than the number

of elements, a new array of the necessary size is

allocated and returned. If the size of array is greater

than the number of elements, the array element

following the last collection element is set to null.
An ArrayStoreException is thrown if any collection

element has a type that is not a subtype of array.

 Chapter 17 java.util Part 1: The Collections Framework 459

P
a

rt
 I

I

The toArray() methods return an array that contains the elements stored in the

invoking collection. The first returns an array of Object. The second returns an array

of elements that have the same type as the array specified as a parameter. Normally, the

second form is more convenient because it returns the desired array type. These methods

are more important than it might at first seem. Often, processing the contents of a

collection by using array-like syntax is advantageous. By providing a pathway between

collections and arrays, you can have the best of both worlds.

Two collections can be compared for equality by calling equals(). The precise meaning

of “equality” may differ from collection to collection. For example, you can implement

equals() so that it compares the values of elements stored in the collection. Alternatively,

equals() can compare references to those elements.

One more very important method is iterator(), which returns an iterator to a

collection. Iterators are frequently used when working with collections.

The List Interface

The List interface extends Collection and declares the behavior of a collection that stores

a sequence of elements. Elements can be inserted or accessed by their position in the list,

using a zero-based index. A list may contain duplicate elements. List is a generic interface

that has this declaration:

interface List<E>

Here, E specifies the type of objects that the list will hold.

In addition to the methods defined by Collection, List defines some of its own, which

are summarized in Table 17-2. Note again that several of these methods will throw an

UnsupportedOperationException if the list cannot be modified, and a ClassCastException

is generated when one object is incompatible with another, such as when an attempt is

made to add an incompatible object to a list. Also, several methods will throw an

IndexOutOfBoundsException if an invalid index is used. A NullPointerException is

thrown if an attempt is made to store a null object and null elements are not allowed

in the list. An IllegalArgumentException is thrown if an invalid argument is used.

To the versions of add() and addAll() defined by Collection, List adds the methods

add(int, E) and addAll(int, Collection). These methods insert elements at the specified

index. Also, the semantics of add(E) and addAll(Collection) defined by Collection are

changed by List so that they add elements to the end of the list.

To obtain the object stored at a specific location, call get() with the index of the object.

To assign a value to an element in the list, call set(), specifying the index of the object to be

changed. To find the index of an object, use indexOf() or lastIndexOf().
You can obtain a sublist of a list by calling subList(), specifying the beginning and

ending indexes of the sublist. As you can imagine, subList() makes list processing quite

convenient.

The Set Interface

The Set interface defines a set. It extends Collection and declares the behavior of a

collection that does not allow duplicate elements. Therefore, the add() method returns

460 PART II The Java Library

false if an attempt is made to add duplicate elements to a set. It does not define any

additional methods of its own. Set is a generic interface that has this declaration:

interface Set<E>

Here, E specifies the type of objects that the set will hold.

The SortedSet Interface

The SortedSet interface extends Set and declares the behavior of a set sorted in ascending

order. SortedSet is a generic interface that has this declaration:

interface SortedSet<E>

Here, E specifies the type of objects that the set will hold.

Method Description

void add(int index, E obj) Inserts obj into the invoking list at the index passed

in index. Any preexisting elements at or beyond the

point of insertion are shifted up. Thus, no elements

are overwritten.

boolean addAll(int index,

 Collection<? extends E> c)
Inserts all elements of c into the invoking list at the

index passed in index. Any preexisting elements at or

beyond the point of insertion are shifted up. Thus,

no elements are overwritten. Returns true if the

invoking list changes and returns false otherwise.

E get(int index) Returns the object stored at the specified index

within the invoking collection.

int indexOf(Object obj) Returns the index of the first instance of obj in the

invoking list. If obj is not an element of the list, –1 is

returned.

int lastIndexOf(Object obj) Returns the index of the last instance of obj in the

invoking list. If obj is not an element of the list, –1 is

returned.

ListIterator<E> listIterator() Returns an iterator to the start of the invoking list.

ListIterator<E> listIterator(int index) Returns an iterator to the invoking list that begins at

the specified index.

E remove(int index) Removes the element at position index from the

invoking list and returns the deleted element. The

resulting list is compacted. That is, the indexes of

subsequent elements are decremented by one.

E set(int index, E obj) Assigns obj to the location specified by index within

the invoking list. Returns the old value.

List<E> subList(int start, int end) Returns a list that includes elements from start to

end–1 in the invoking list. Elements in the returned

list are also referenced by the invoking object.

Table 17-2 The Methods Defined by List

 Chapter 17 java.util Part 1: The Collections Framework 461

P
a

rt
 I

I

In addition to those methods provided by Set, the SortedSet interface declares the

methods summarized in Table 17-3. Several methods throw a NoSuchElementException

when no items are contained in the invoking set. A ClassCastException is thrown

when an object is incompatible with the elements in a set. A NullPointerException is

thrown if an attempt is made to use a null object and null is not allowed in the set. An

IllegalArgumentException is thrown if an invalid argument is used.

SortedSet defines several methods that make set processing more convenient. To obtain

the first object in the set, call first(). To get the last element, use last(). You can obtain a

subset of a sorted set by calling subSet(), specifying the first and last object in the set. If you

need the subset that starts with the first element in the set, use headSet(). If you want the

subset that ends the set, use tailSet().

The NavigableSet Interface

The NavigableSet interface extends SortedSet and declares the behavior of a collection

that supports the retrieval of elements based on the closest match to a given value or values.

NavigableSet is a generic interface that has this declaration:

interface NavigableSet<E>

Here, E specifies the type of objects that the set will hold. In addition to the methods

that it inherits from SortedSet, NavigableSet adds those summarized in Table 17-4. A

ClassCastException is thrown when an object is incompatible with the elements in

the set. A NullPointerException is thrown if an attempt is made to use a null object

and null is not allowed in the set. An IllegalArgumentException is thrown if an invalid

argument is used.

Table 17-3 The Methods Defined by SortedSet

Method Description

Comparator<? super E> comparator() Returns the invoking sorted set’s comparator. If the

natural ordering is used for this set, null is returned.

E first() Returns the first element in the invoking sorted set.

SortedSet<E> headSet(E end) Returns a SortedSet containing those elements less

than end that are contained in the invoking sorted

set. Elements in the returned sorted set are also

referenced by the invoking sorted set.

E last() Returns the last element in the invoking sorted set.

SortedSet<E> subSet(E start, E end) Returns a SortedSet that includes those elements

between start and end–1. Elements in the returned

collection are also referenced by the invoking object.

SortedSet<E> tailSet(E start) Returns a SortedSet that contains those elements

greater than or equal to start that are contained in

the sorted set. Elements in the returned set are also

referenced by the invoking object.

462 PART II The Java Library

Table 17-4 The Methods Defined by NavigableSet

Method Description

E ceiling(E obj) Searches the set for the smallest element e such that

e >= obj. If such an element is found, it is returned.

Otherwise, null is returned.

Iterator<E> descendingIterator() Returns an iterator that moves from the greatest to least.

In other words, it returns a reverse iterator.

NavigableSet<E> descendingSet() Returns a NavigableSet that is the reverse of the invoking

set. The resulting set is backed by the invoking set.

E floor(E obj) Searches the set for the largest element e such that

e <= obj. If such an element is found, it is returned.

Otherwise, null is returned.

NavigableSet<E>

 headSet(E upperBound, boolean incl)
Returns a NavigableSet that includes all elements from

the invoking set that are less than upperBound. If incl is
true, then an element equal to upperBound is included.

The resulting set is backed by the invoking set.

E higher(E obj) Searches the set for the largest element e such that

e > obj. If such an element is found, it is returned.

Otherwise, null is returned.

E lower(E obj) Searches the set for the largest element e such that

e < obj. If such an element is found, it is returned.

Otherwise, null is returned.

E pollFirst() Returns the first element, removing the element in the

process. Because the set is sorted, this is the element with

the least value. null is returned if the set is empty.

E pollLast() Returns the last element, removing the element in the

process. Because the set is sorted, this is the element with

the greatest value. null is returned if the set is empty.

NavigableSet<E>

 subSet(E lowerBound,

 boolean lowIncl,
 E upperBound,

 boolean highIncl)

Returns a NavigableSet that includes all elements from

the invoking set that are greater than lowerBound and less

than upperBound. If lowIncl is true, then an element equal

to lowerBound is included. If highIncl is true, then an

element equal to upperBound is included. The resulting

set is backed by the invoking set.

NavigableSet<E>

 tailSet(E lowerBound, boolean incl)
Returns a NavigableSet that includes all elements from

the invoking set that are greater than lowerBound. If incl
is true, then an element equal to lowerBound is included.

The resulting set is backed by the invoking set.

The Queue Interface

The Queue interface extends Collection and declares the behavior of a queue, which is

often a first-in, first-out list. However, there are types of queues in which the ordering is

based upon other criteria. Queue is a generic interface that has this declaration:

interface Queue<E>

 Chapter 17 java.util Part 1: The Collections Framework 463

P
a

rt
 I

I

Here, E specifies the type of objects that the queue will hold. The methods defined by

Queue are shown in Table 17-5.

Several methods throw a ClassCastException when an object is incompatible with the

elements in the queue. A NullPointerException is thrown if an attempt is made to store a

null object and null elements are not allowed in the queue. An IllegalArgumentException is

thrown if an invalid argument is used. An IllegalStateException is thrown if an attempt is

made to add an element to a fixed-length queue that is full. A NoSuchElementException is

thrown if an attempt is made to remove an element from an empty queue.

Despite its simplicity, Queue offers several points of interest. First, elements can only

be removed from the head of the queue. Second, there are two methods that obtain and

remove elements: poll() and remove(). The difference between them is that poll() returns

null if the queue is empty, but remove() throws an exception. Third, there are two methods,

element() and peek(), that obtain but don’t remove the element at the head of the queue.

They differ only in that element() throws an exception if the queue is empty, but peek()
returns null. Finally, notice that offer() only attempts to add an element to a queue.

Because some queues have a fixed length and might be full, offer() can fail.

The Deque Interface

The Deque interface extends Queue and declares the behavior of a double-ended queue.

Double-ended queues can function as standard, first-in, first-out queues or as last-in, first-

out stacks. Deque is a generic interface that has this declaration:

interface Deque<E>

Here, E specifies the type of objects that the deque will hold. In addition to the methods

that it inherits from Queue, Deque adds those methods summarized in Table 17-6. Several

methods throw a ClassCastException when an object is incompatible with the elements in

the deque. A NullPointerException is thrown if an attempt is made to store a null object

and null elements are not allowed in the deque. An IllegalArgumentException is thrown if

an invalid argument is used. An IllegalStateException is thrown if an attempt is made to

add an element to a fixed-length deque that is full. A NoSuchElementException is thrown

if an attempt is made to remove an element from an empty deque.

Table 17-5 The Methods Defined by Queue

Method Description

E element() Returns the element at the head of the queue. The element is not

removed. It throws NoSuchElementException if the queue is empty.

boolean offer(E obj) Attempts to add obj to the queue. Returns true if obj was added and false

otherwise.

E peek() Returns the element at the head of the queue. It returns null if the

queue is empty. The element is not removed.

E poll() Returns the element at the head of the queue, removing the element in

the process. It returns null if the queue is empty.

E remove() Removes the element at the head of the queue, returning the element in

the process. It throws NoSuchElementException if the queue is empty.

464 PART II The Java Library

Method Description

void addFirst(E obj) Adds obj to the head of the deque. Throws an

IllegalStateException if a capacity-restricted deque

is out of space.

void addLast(E obj) Adds obj to the tail of the deque. Throws an

IllegalStateException if a capacity-restricted deque

is out of space.

Iterator<E> descendingIterator() Returns an iterator that moves from the tail to the head

of the deque. In other words, it returns a reverse iterator.

E getFirst() Returns the first element in the deque. The

object is not removed from the deque. It throws

NoSuchElementException if the deque is empty.

E getLast() Returns the last element in the deque. The

object is not removed from the deque. It throws

NoSuchElementException if the deque is empty.

boolean offerFirst(E obj) Attempts to add obj to the head of the deque. Returns

true if obj was added and false otherwise. Therefore, this

method returns false when an attempt is made to add obj
to a full, capacity-restricted deque.

boolean offerLast(E obj) Attempts to add obj to the tail of the deque. Returns true

if obj was added and false otherwise.

E peekFirst() Returns the element at the head of the deque. It returns

null if the deque is empty. The object is not removed.

E peekLast() Returns the element at the tail of the deque. It returns

null if the deque is empty. The object is not removed.

E pollFirst() Returns the element at the head of the deque, removing the

element in the process. It returns null if the deque is empty.

E pollLast() Returns the element at the tail of the deque, removing the

element in the process. It returns null if the deque is empty.

E pop() Returns the element at the head of the deque, removing

it in the process. It throws NoSuchElementException if

the deque is empty.

void push(E obj) Adds obj to the head of the deque. Throws an

IllegalStateException if a capacity-restricted deque

is out of space.

E removeFirst() Returns the element at the head of the deque, removing the

element in the process. It throws NoSuchElementException

if the deque is empty.

boolean

 removeFirstOccurrence(Object obj)
Removes the first occurrence of obj from the deque.

Returns true if successful and false if the deque did not

contain obj.

Table 17-6 The Methods Defined by Deque

 Chapter 17 java.util Part 1: The Collections Framework 465

P
a

rt
 I

INotice that Deque includes the methods push() and pop(). These methods enable a

Deque to function as a stack. Also, notice the descendingIterator() method. It returns an

iterator that returns elements in reverse order. In other words, it returns an iterator that

moves from the end of the collection to the start. A Deque implementation can be capacity-
restricted, which means that only a limited number of elements can be added to the deque.

When this is the case, an attempt to add an element to the deque can fail. Deque allows you

to handle such a failure in two ways. First, methods such as addFirst() and addLast() throw

an IllegalStateException if a capacity-restricted deque is full. Second, methods such as

offerFirst() and offerLast() return false if the element cannot be added.

The Collection Classes
Now that you are familiar with the collection interfaces, you are ready to examine the

standard classes that implement them. Some of the classes provide full implementations

that can be used as-is. Others are abstract, providing skeletal implementations that are used

as starting points for creating concrete collections. As a general rule, the collection classes

are not synchronized, but as you will see later in this chapter, it is possible to obtain

synchronized versions.

The standard collection classes are summarized in the following table:

Class Description

AbstractCollection Implements most of the Collection interface.

AbstractList Extends AbstractCollection and implements most of the List interface.

AbstractQueue Extends AbstractCollection and implements parts of the Queue interface.

AbstractSequentialList Extends AbstractList for use by a collection that uses sequential rather than

random access of its elements.

LinkedList Implements a linked list by extending AbstractSequentialList.

ArrayList Implements a dynamic array by extending AbstractList.

ArrayDeque Implements a dynamic double-ended queue by extending AbstractCollection

and implementing the Deque interface.

AbstractSet Extends AbstractCollection and implements most of the Set interface.

EnumSet Extends AbstractSet for use with enum elements.

HashSet Extends AbstractSet for use with a hash table.

LinkedHashSet Extends HashSet to allow insertion-order iterations.

PriorityQueue Extends AbstractQueue to support a priority-based queue.

TreeSet Implements a set stored in a tree. Extends AbstractSet.

Method Description

E removeLast() Returns the element at the tail of the deque, removing the

element in the process. It throws NoSuchElementException

if the deque is empty.

boolean

 removeLastOccurrence(Object obj)
Removes the last occurrence of obj from the deque.

Returns true if successful and false if the deque did not

contain obj.

Table 17-6 The Methods Defined by Deque (continued)

466 PART II The Java Library

The following sections examine the concrete collection classes and illustrate their use.

NOTE In addition to the collection classes, several legacy classes, such as Vector, Stack, and
Hashtable, have been reengineered to support collections. These are examined later in this chapter.

The ArrayList Class

The ArrayList class extends AbstractList and implements the List interface. ArrayList is a

generic class that has this declaration:

class ArrayList<E>

Here, E specifies the type of objects that the list will hold.

ArrayList supports dynamic arrays that can grow as needed. In Java, standard arrays are

of a fixed length. After arrays are created, they cannot grow or shrink, which means that

you must know in advance how many elements an array will hold. But, sometimes, you may

not know until run time precisely how large an array you need. To handle this situation, the

Collections Framework defines ArrayList. In essence, an ArrayList is a variable-length array

of object references. That is, an ArrayList can dynamically increase or decrease in size.

Array lists are created with an initial size. When this size is exceeded, the collection is

automatically enlarged. When objects are removed, the array can be shrunk.

NOTE Dynamic arrays are also supported by the legacy class Vector, which is described later in this
chapter.

ArrayList has the constructors shown here:

ArrayList()

ArrayList(Collection<? extends E> c)
ArrayList(int capacity)

The first constructor builds an empty array list. The second constructor builds an array list

that is initialized with the elements of the collection c. The third constructor builds an array

list that has the specified initial capacity. The capacity is the size of the underlying array that

is used to store the elements. The capacity grows automatically as elements are added to an

array list.

The following program shows a simple use of ArrayList. An array list is created for

objects of type String, and then several strings are added to it. (Recall that a quoted string

is translated into a String object.) The list is then displayed. Some of the elements are

removed and the list is displayed again.

// Demonstrate ArrayList.
import java.util.*;

class ArrayListDemo {
 public static void main(String args[]) {
 // Create an array list.
 ArrayList<String> al = new ArrayList<String>();

 System.out.println("Initial size of al: " +
 al.size());

 Chapter 17 java.util Part 1: The Collections Framework 467

P
a

rt
 I

I

 // Add elements to the array list.
 al.add("C");
 al.add("A");
 al.add("E");
 al.add("B");
 al.add("D");
 al.add("F");
 al.add(1, "A2");

 System.out.println("Size of al after additions: " +
 al.size());

 // Display the array list.
 System.out.println("Contents of al: " + al);

 // Remove elements from the array list.
 al.remove("F");
 al.remove(2);

 System.out.println("Size of al after deletions: " +
 al.size());

 System.out.println("Contents of al: " + al);
 }
}

The output from this program is shown here:

 Initial size of al: 0
 Size of al after additions: 7
 Contents of al: [C, A2, A, E, B, D, F]
 Size of al after deletions: 5
 Contents of al: [C, A2, E, B, D]

Notice that a1 starts out empty and grows as elements are added to it. When elements are

removed, its size is reduced.

In the preceding example, the contents of a collection are displayed using the default

conversion provided by toString(), which was inherited from AbstractCollection. Although

it is sufficient for short, sample programs, you seldom use this method to display the

contents of a real-world collection. Usually, you provide your own output routines. But,

for the next few examples, the default output created by toString() is sufficient.

Although the capacity of an ArrayList object increases automatically as objects are

stored in it, you can increase the capacity of an ArrayList object manually by calling

ensureCapacity(). You might want to do this if you know in advance that you will be storing

many more items in the collection than it can currently hold. By increasing its capacity

once, at the start, you can prevent several reallocations later. Because reallocations are

costly in terms of time, preventing unnecessary ones improves performance. The signature

for ensureCapacity() is shown here:

void ensureCapacity(int cap)

Here, cap specifies the new minimum capacity of the collection.

468 PART II The Java Library

Conversely, if you want to reduce the size of the array that underlies an ArrayList object

so that it is precisely as large as the number of items that it is currently holding, call

trimToSize(), shown here:

void trimToSize()

Obtaining an Array from an ArrayList
When working with ArrayList, you will sometimes want to obtain an actual array that

contains the contents of the list. You can do this by calling toArray(), which is defined by

Collection. Several reasons exist why you might want to convert a collection into an array,

such as:

• To obtain faster processing times for certain operations

• To pass an array to a method that is not overloaded to accept a collection

• To integrate collection-based code with legacy code that does not understand

collections

Whatever the reason, converting an ArrayList to an array is a trivial matter.

As explained earlier, there are two versions of toArray(), which are shown again here

for your convenience:

object[] toArray()

<T> T[] toArray(T array[])

The first returns an array of Object. The second returns an array of elements that have

the same type as T. Normally, the second form is more convenient because it returns the

proper type of array. The following program demonstrates its use:

// Convert an ArrayList into an array.
import java.util.*;

class ArrayListToArray {
 public static void main(String args[]) {
 // Create an array list.
 ArrayList<Integer> al = new ArrayList<Integer>();

 // Add elements to the array list.
 al.add(1);
 al.add(2);
 al.add(3);
 al.add(4);

 System.out.println("Contents of al: " + al);

 // Get the array.
 Integer ia[] = new Integer[al.size()];
 ia = al.toArray(ia);

 int sum = 0;

 // Sum the array.
 for(int i : ia) sum += i;

 Chapter 17 java.util Part 1: The Collections Framework 469

P
a

rt
 I

I

 System.out.println("Sum is: " + sum);
 }
}

The output from the program is shown here:

 Contents of al: [1, 2, 3, 4]
 Sum is: 10

The program begins by creating a collection of integers. Next, toArray() is called and it

obtains an array of Integers. Then, the contents of that array are summed by use of a for-each

style for loop.

There is something else of interest in this program. As you know, collections can store

only references, not values of primitive types. However, autoboxing makes it possible

to pass values of type int to add() without having to manually wrap them within an Integer,

as the program shows. Autoboxing causes them to be automatically wrapped. In this way,

autoboxing significantly improves the ease with which collections can be used to store

primitive values.

The LinkedList Class

The LinkedList class extends AbstractSequentialList and implements the List, Deque, and

Queue interfaces. It provides a linked-list data structure. LinkedList is a generic class that

has this declaration:

class LinkedList<E>

Here, E specifies the type of objects that the list will hold. LinkedList has the two

constructors shown here:

LinkedList()

LinkedList(Collection<? extends E> c)

The first constructor builds an empty linked list. The second constructor builds a linked list

that is initialized with the elements of the collection c.
Because LinkedList implements the Deque interface, you have access to the methods

defined by Deque. For example, to add elements to the start of a list, you can use addFirst()
or offerFirst(). To add elements to the end of the list, use addLast() or offerLast(). To

obtain the first element, you can use getFirst() or peekFirst(). To obtain the last element,

use getLast() or peekLast(). To remove the first element, use removeFirst() or pollFirst().
To remove the last element, use removeLast() or pollLast().

The following program illustrates LinkedList:

// Demonstrate LinkedList.
import java.util.*;

class LinkedListDemo {
 public static void main(String args[]) {
 // Create a linked list.
 LinkedList<String> ll = new LinkedList<String>();

 // Add elements to the linked list.
 ll.add("F");

470 PART II The Java Library

 ll.add("B");
 ll.add("D");
 ll.add("E");
 ll.add("C");
 ll.addLast("Z");
 ll.addFirst("A");

 ll.add(1, "A2");

 System.out.println("Original contents of ll: " + ll);

 // Remove elements from the linked list.
 ll.remove("F");
 ll.remove(2);

 System.out.println("Contents of ll after deletion: "
 + ll);

 // Remove first and last elements.
 ll.removeFirst();
 ll.removeLast();

 System.out.println("ll after deleting first and last: "
 + ll);

 // Get and set a value.

 String val = 11.get(2);
 ll.set(2, val + " Changed");

 System.out.println("ll after change: " + ll);
 }
}

The output from this program is shown here:

 Original contents of ll: [A, A2, F, B, D, E, C, Z]
 Contents of ll after deletion: [A, A2, D, E, C, Z]
 ll after deleting first and last: [A2, D, E, C]
 ll after change: [A2, D, E Changed, C]

Because LinkedList implements the List interface, calls to add(E) append items to the

end of the list, as do calls to addLast(). To insert items at a specific location, use the

add(int, E) form of add(), as illustrated by the call to add(1, "A2") in the example.

Notice how the third element in ll is changed by employing calls to get() and set(). To

obtain the current value of an element, pass get() the index at which the element is stored.

To assign a new value to that index, pass set() the index and its new value.

The HashSet Class

HashSet extends AbstractSet and implements the Set interface. It creates a collection that

uses a hash table for storage. HashSet is a generic class that has this declaration:

class HashSet<E>

 Chapter 17 java.util Part 1: The Collections Framework 471

P
a

rt
 I

I

Here, E specifies the type of objects that the set will hold.

As most readers likely know, a hash table stores information by using a mechanism

called hashing. In hashing, the informational content of a key is used to determine a unique

value, called its hash code. The hash code is then used as the index at which the data

associated with the key is stored. The transformation of the key into its hash code is

performed automatically—you never see the hash code itself. Also, your code can’t directly

index the hash table. The advantage of hashing is that it allows the execution time of add(),
contains(), remove(), and size() to remain constant even for large sets.

The following constructors are defined:

HashSet()

HashSet(Collection<? extends E> c)

HashSet(int capacity)
HashSet(int capacity, float fillRatio)

The first form constructs a default hash set. The second form initializes the hash set by

using the elements of c. The third form initializes the capacity of the hash set to capacity.
(The default capacity is 16.) The fourth form initializes both the capacity and the fill ratio

(also called load capacity) of the hash set from its arguments. The fill ratio must be between

0.0 and 1.0, and it determines how full the hash set can be before it is resized upward.

Specifically, when the number of elements is greater than the capacity of the hash set

multiplied by its fill ratio, the hash set is expanded. For constructors that do not take a

fill ratio, 0.75 is used.

HashSet does not define any additional methods beyond those provided by its

superclasses and interfaces.

It is important to note that HashSet does not guarantee the order of its elements,

because the process of hashing doesn’t usually lend itself to the creation of sorted sets.

If you need sorted storage, then another collection, such as TreeSet, is a better choice.

Here is an example that demonstrates HashSet:

// Demonstrate HashSet.
import java.util.*;

class HashSetDemo {
 public static void main(String args[]) {
 // Create a hash set.
 HashSet<String> hs = new HashSet<String>();

 // Add elements to the hash set.
 hs.add("B");
 hs.add("A");
 hs.add("D");
 hs.add("E");
 hs.add("C");
 hs.add("F");

 System.out.println(hs);
 }
}

472 PART II The Java Library

The following is the output from this program:

 [D, E, F, A, B, C]

As explained, the elements are not stored in sorted order, and the precise output may vary.

The LinkedHashSet Class

The LinkedHashSet class extends HashSet and adds no members of its own. It is a generic

class that has this declaration:

class LinkedHashSet<E>

Here, E specifies the type of objects that the set will hold. Its constructors parallel those in

HashSet.
LinkedHashSet maintains a linked list of the entries in the set, in the order in which

they were inserted. This allows insertion-order iteration over the set. That is, when cycling

through a LinkedHashSet using an iterator, the elements will be returned in the order in

which they were inserted. This is also the order in which they are contained in the string

returned by toString() when called on a LinkedHashSet object. To see the effect of

LinkedHashSet, try substituting LinkedHashSet for HashSet in the preceding program.

The output will be

 [B, A, D, E, C, F]

which is the order in which the elements were inserted.

The TreeSet Class

TreeSet extends AbstractSet and implements the NavigableSet interface. It creates a

collection that uses a tree for storage. Objects are stored in sorted, ascending order. Access

and retrieval times are quite fast, which makes TreeSet an excellent choice when storing

large amounts of sorted information that must be found quickly.

TreeSet is a generic class that has this declaration:

class TreeSet<E>

Here, E specifies the type of objects that the set will hold.

TreeSet has the following constructors:

TreeSet()

TreeSet(Collection<? extends E> c)
TreeSet(Comparator<? super E> comp)

TreeSet(SortedSet<E> ss)

The first form constructs an empty tree set that will be sorted in ascending order

according to the natural order of its elements. The second form builds a tree set that

contains the elements of c. The third form constructs an empty tree set that will be sorted

according to the comparator specified by comp. (Comparators are described later in this

chapter.) The fourth form builds a tree set that contains the elements of ss.

 Chapter 17 java.util Part 1: The Collections Framework 473

P
a

rt
 I

I

Here is an example that demonstrates a TreeSet:

// Demonstrate TreeSet.
import java.util.*;

class TreeSetDemo {
 public static void main(String args[]) {
 // Create a tree set.
 TreeSet<String> ts = new TreeSet<String>();

 // Add elements to the tree set.
 ts.add("C");
 ts.add("A");
 ts.add("B");
 ts.add("E");
 ts.add("F");
 ts.add("D");

 System.out.println(ts);
 }
}

The output from this program is shown here:

 [A, B, C, D, E, F]

As explained, because TreeSet stores its elements in a tree, they are automatically arranged

in sorted order, as the output confirms.

Because TreeSet implements the NavigableSet interface, you can use the methods defined

by NavigableSet to retrieve elements of a TreeSet. For example, assuming the preceding

program, the following statement uses subSet() to obtain a subset of ts that contains the

elements between C (inclusive) and F (exclusive). It then displays the resulting set.

System.out.println(ts.subSet("C", "F"));

The output from this statement is shown here:

[C, D, E]

You might want to experiment with the other methods defined by NavigableSet.

The PriorityQueue Class

PriorityQueue extends AbstractQueue and implements the Queue interface. It creates a

queue that is prioritized based on the queue’s comparator. PriorityQueue is a generic class

that has this declaration:

class PriorityQueue<E>

Here, E specifies the type of objects stored in the queue. PriorityQueues are dynamic,

growing as necessary.

474 PART II The Java Library

PriorityQueue defines the six constructors shown here:

PriorityQueue()

PriorityQueue(int capacity)
PriorityQueue(int capacity, Comparator<? super E> comp)

PriorityQueue(Collection<? extends E> c)
PriorityQueue(PriorityQueue<? extends E> c)
PriorityQueue(SortedSet<? extends E> c)

The first constructor builds an empty queue. Its starting capacity is 11. The second

constructor builds a queue that has the specified initial capacity. The third constructor

builds a queue with the specified capacity and comparator. The last three constructors

create queues that are initialized with the elements of the collection passed in c. In all

cases, the capacity grows automatically as elements are added.

If no comparator is specified when a PriorityQueue is constructed, then the default

comparator for the type of data stored in the queue is used. The default comparator will

order the queue in ascending order. Thus, the head of the queue will be the smallest value.

However, by providing a custom comparator, you can specify a different ordering scheme.

For example, when storing items that include a time stamp, you could prioritize the queue

such that the oldest items are first in the queue.

You can obtain a reference to the comparator used by a PriorityQueue by calling its

comparator() method, shown here:

Comparator<? super E> comparator()

It returns the comparator. If natural ordering is used for the invoking queue, null is
returned.

One word of caution: Although you can iterate through a PriorityQueue using an

iterator, the order of that iteration is undefined. To properly use a PriorityQueue, you

must call methods such as offer() and poll(), which are defined by the Queue interface.

The ArrayDeque Class

The ArrayDeque class extends AbstractCollection and implements the Deque interface.

It adds no methods of its own. ArrayDeque creates a dynamic array and has no capacity

restrictions. (The Deque interface supports implementations that restrict capacity, but

does not require such restrictions.) ArrayDeque is a generic class that has this declaration:

class ArrayDeque<E>

Here, E specifies the type of objects stored in the collection.

ArrayDeque defines the following constructors:

ArrayDeque()

ArrayDeque(int size)
ArrayDeque(Collection<? extends E> c)

The first constructor builds an empty deque. Its starting capacity is 16. The second

constructor builds a deque that has the specified initial capacity. The third constructor

 Chapter 17 java.util Part 1: The Collections Framework 475

P
a

rt
 I

I

creates a deque that is initialized with the elements of the collection passed in c. In all cases,

the capacity grows as needed to handle the elements added to the deque.

The following program demonstrates ArrayDeque by using it to create a stack:

// Demonstrate ArrayDeque.
import java.util.*;

class ArrayDequeDemo {
 public static void main(String args[]) {
 // Create an array deque.
 ArrayDeque<String> adq = new ArrayDeque<String>();

 // Use an ArrayDeque like a stack.
 adq.push("A");
 adq.push("B");
 adq.push("D");
 adq.push("E");
 adq.push("F");

 System.out.print("Popping the stack: ");

 while(adq.peek() != null)
 System.out.print(adq.pop() + " ");

 System.out.println();
 }
}

The output is shown here:

 Popping the stack: F E D B A

The EnumSet Class

EnumSet extends AbstractSet and implements Set. It is specifically for use with keys of an

enum type. It is a generic class that has this declaration:

class EnumSet<E extends Enum<E>>

Here, E specifies the elements. Notice that E must extend Enum<E>, which enforces the

requirement that the elements must be of the specified enum type.

EnumSet defines no constructors. Instead, it uses the factory methods shown in Table

17-7 to create objects. All methods can throw NullPointerException. The copyOf() and

range() methods can also throw IllegalArgumentException. Notice that the of() method is

overloaded a number of times. This is in the interest of efficiency. Passing a known number

of arguments can be faster than using a vararg parameter when the number of arguments

is small.

476 PART II The Java Library

Method Description

static <E extends Enum<E>>

 EnumSet<E> allOf(Class<E> t)
Creates an EnumSet that contains the elements in

the enumeration specified by t.

static <E extends Enum<E>> EnumSet<E>

 complementOf(EnumSet<E> e)
Creates an EnumSet that is comprised of those

elements not stored in e.

static <E extends Enum<E>>

 EnumSet<E> copyOf(EnumSet<E> c)
Creates an EnumSet from the elements stored in c.

static <E extends Enum<E>>

 EnumSet<E> copyOf(Collection<E> c)
Creates an EnumSet from the elements stored in c.

static <E extends Enum<E>>

 EnumSet<E> noneOf(Class<E> t)
Creates an EnumSet that contains the elements

that are not in the enumeration specified by t,
which is an empty set by definition.

static <E extends Enum<E>>

 EnumSet<E> of(E v, E … varargs)
Creates an EnumSet that contains v and zero or

more additional enumeration values.

static <E extends Enum<E>>

 EnumSet<E> of(E v)

Creates an EnumSet that contains v.

static <E extends Enum<E>>

 EnumSet<E> of(E v1, E v2)

Creates an EnumSet that contains v1 and v2.

static <E extends Enum<E>>

 EnumSet<E> of(E v1, E v2, E v3)

Creates an EnumSet that contains v1 through v3.

static <E extends Enum<E>>

 EnumSet<E> of(E v1, E v2, E v3, E v4)

Creates an EnumSet that contains v1 through v4.

static <E extends Enum<E>>

 EnumSet<E> of(E v1, E v2, E v3, E v4,

 E v5)

Creates an EnumSet that contains v1 through v5.

static <E extends Enum<E>>

 EnumSet<E> range(E start, E end)

Creates an EnumSet that contains the elements in

the range specified by start and end.

Table 17-7 The Methods Defined by EnumSet

Accessing a Collection via an Iterator
Often, you will want to cycle through the elements in a collection. For example, you might

want to display each element. One way to do this is to employ an iterator, which is an object

that implements either the Iterator or the ListIterator interface. Iterator enables you to

cycle through a collection, obtaining or removing elements. ListIterator extends Iterator

to allow bidirectional traversal of a list, and the modification of elements. Iterator and

ListIterator are generic interfaces which are declared as shown here:

interface Iterator<E>

interface ListIterator<E>

Here, E specifies the type of objects being iterated. The Iterator interface declares the

methods shown in Table 17-8. The methods declared by ListIterator are shown in Table 17-9.

 Chapter 17 java.util Part 1: The Collections Framework 477

P
a

rt
 I

I

In both cases, operations that modify the underlying collection are optional. For example,

remove() will throw UnsupportedOperationException when used with a read-only

collection. Various other exceptions are possible.

Using an Iterator

Before you can access a collection through an iterator, you must obtain one. Each of the

collection classes provides an iterator() method that returns an iterator to the start of the

collection. By using this iterator object, you can access each element in the collection, one

Method Description

boolean hasNext() Returns true if there are more elements. Otherwise, returns false.

E next() Returns the next element. Throws NoSuchElementException if

there is not a next element.

void remove() Removes the current element. Throws IllegalStateException if an

attempt is made to call remove() that is not preceded by a call to

next().

Table 17-8 The Methods Defined by Iterator

Method Description

void add(E obj) Inserts obj into the list in front of the element that will be

returned by the next call to next().

boolean hasNext() Returns true if there is a next element. Otherwise, returns false.

boolean hasPrevious() Returns true if there is a previous element. Otherwise, returns false.

E next() Returns the next element. A NoSuchElementException is thrown

if there is not a next element.

int nextIndex() Returns the index of the next element. If there is not a next

element, returns the size of the list.

E previous() Returns the previous element. A NoSuchElementException is

thrown if there is not a previous element.

int previousIndex() Returns the index of the previous element. If there is not a

previous element, returns –1.

void remove() Removes the current element from the list. An

IllegalStateException is thrown if remove() is called before

next() or previous() is invoked.

void set(E obj) Assigns obj to the current element. This is the element last

returned by a call to either next() or previous().

Table 17-9 The Methods Defined by ListIterator

478 PART II The Java Library

element at a time. In general, to use an iterator to cycle through the contents of a

collection, follow these steps:

 1. Obtain an iterator to the start of the collection by calling the collection’s iterator()
method.

 2. Set up a loop that makes a call to hasNext(). Have the loop iterate as long as

hasNext() returns true.

 3. Within the loop, obtain each element by calling next().

For collections that implement List, you can also obtain an iterator by calling

listIterator(). As explained, a list iterator gives you the ability to access the collection in

either the forward or backward direction and lets you modify an element. Otherwise,

ListIterator is used just like Iterator.

The following example implements these steps, demonstrating both the Iterator and

ListIterator interfaces. It uses an ArrayList object, but the general principles apply to any

type of collection. Of course, ListIterator is available only to those collections that

implement the List interface.

// Demonstrate iterators.
import java.util.*;

class IteratorDemo {
 public static void main(String args[]) {
 // Create an array list.
 ArrayList<String> al = new ArrayList<String>();

 // Add elements to the array list.
 al.add("C");
 al.add("A");
 al.add("E");
 al.add("B");
 al.add("D");
 al.add("F");

 // Use iterator to display contents of al.
 System.out.print("Original contents of al: ");
 Iterator<String> itr = al.iterator();
 while(itr.hasNext()) {
 String element = itr.next();
 System.out.print(element + " ");
 }
 System.out.println();

 // Modify objects being iterated.
 ListIterator<String> litr = al.listIterator();
 while(litr.hasNext()) {
 String element = litr.next();
 litr.set(element + "+");
 }

 Chapter 17 java.util Part 1: The Collections Framework 479

P
a

rt
 I

I

 System.out.print("Modified contents of al: ");
 itr = al.iterator();
 while(itr.hasNext()) {
 String element = itr.next();
 System.out.print(element + " ");
 }
 System.out.println();

 // Now, display the list backwards.
 System.out.print("Modified list backwards: ");
 while(litr.hasPrevious()) {
 String element = litr.previous();
 System.out.print(element + " ");
 }
 System.out.println();
 }
}

The output is shown here:

 Original contents of al: C A E B D F
 Modified contents of al: C+ A+ E+ B+ D+ F+
 Modified list backwards: F+ D+ B+ E+ A+ C+

Pay special attention to how the list is displayed in reverse. After the list is modified, litr

points to the end of the list. (Remember, litr.hasNext() returns false when the end of the

list has been reached.) To traverse the list in reverse, the program continues to use litr, but

this time it checks to see whether it has a previous element. As long as it does, that element

is obtained and displayed.

The For-Each Alternative to Iterators

If you won’t be modifying the contents of a collection or obtaining elements in reverse

order, then the for-each version of the for loop is often a more convenient alternative to

cycling through a collection than is using an iterator. Recall that the for can cycle through

any collection of objects that implement the Iterable interface. Because all of the collection

classes implement this interface, they can all be operated upon by the for.

The following example uses a for loop to sum the contents of a collection:

// Use the for-each for loop to cycle through a collection.
import java.util.*;

class ForEachDemo {
 public static void main(String args[]) {
 // Create an array list for integers.
 ArrayList<Integer> vals = new ArrayList<Integer>();

 // Add values to the array list.
 vals.add(1);
 vals.add(2);
 vals.add(3);

480 PART II The Java Library

 vals.add(4);
 vals.add(5);

 // Use for loop to display the values.
 System.out.print("Original contents of vals: ");
 for(int v : vals)
 System.out.print(v + " ");

 System.out.println();

 // Now, sum the values by using a for loop.
 int sum = 0;
 for(int v : vals)
 sum += v;

 System.out.println("Sum of values: " + sum);
 }
}

The output from the program is shown here:

 Original contents of vals: 1 2 3 4 5
 Sum of values: 15

As you can see, the for loop is substantially shorter and simpler to use than the iterator-

based approach. However, it can only be used to cycle through a collection in the forward

direction, and you can’t modify the contents of the collection.

Storing User-Defined Classes in Collections
For the sake of simplicity, the foregoing examples have stored built-in objects, such as

String or Integer, in a collection. Of course, collections are not limited to the storage of

built-in objects. Quite the contrary. The power of collections is that they can store any type

of object, including objects of classes that you create. For example, consider the following

example that uses a LinkedList to store mailing addresses:

// A simple mailing list example.
import java.util.*;

class Address {
 private String name;
 private String street;
 private String city;
 private String state;
 private String code;

 Address(String n, String s, String c,
 String st, String cd) {

 name = n;
 street = s;

 Chapter 17 java.util Part 1: The Collections Framework 481

P
a

rt
 I

I

 city = c;
 state = st;
 code = cd;
 }

 public String toString() {
 return name + "\n" + street + "\n" +
 city + " " + state + " " + code;
 }
}

class MailList {
 public static void main(String args[]) {
 LinkedList<Address> ml = new LinkedList<Address>();

 // Add elements to the linked list.
 ml.add(new Address("J.W. West", "11 Oak Ave",
 "Urbana", "IL", "61801"));
 ml.add(new Address("Ralph Baker", "1142 Maple Lane",
 "Mahomet", "IL", "61853"));
 ml.add(new Address("Tom Carlton", "867 Elm St",
 "Champaign", "IL", "61820"));

 // Display the mailing list.
 for(Address element : ml)
 System.out.println(element + "\n");

 System.out.println();
 }
}

The output from the program is shown here:

 J.W. West
 11 Oak Ave
 Urbana IL 61801

 Ralph Baker
 1142 Maple Lane
 Mahomet IL 61853

 Tom Carlton
 867 Elm St
 Champaign IL 61820

Aside from storing a user-defined class in a collection, another important thing to

notice about the preceding program is that it is quite short. When you consider that it sets

up a linked list that can store, retrieve, and process mailing addresses in about 50 lines of

code, the power of the Collections Framework begins to become apparent. As most readers

know, if all of this functionality had to be coded manually, the program would be several

times longer. Collections offer off-the-shelf solutions to a wide variety of programming

problems. You should use them whenever the situation presents itself.

482 PART II The Java Library

The RandomAccess Interface
The RandomAccess interface contains no members. However, by implementing this

interface, a collection signals that it supports efficient random access to its elements.

Although a collection might support random access, it might not do so efficiently. By

checking for the RandomAccess interface, client code can determine at run time whether

a collection is suitable for certain types of random access operations—especially as they

apply to large collections. (You can use instanceof to determine if a class implements an

interface.) RandomAccess is implemented by ArrayList and by the legacy Vector class,

among others.

Working with Maps
A map is an object that stores associations between keys and values, or key/value pairs. Given

a key, you can find its value. Both keys and values are objects. The keys must be unique,

but the values may be duplicated. Some maps can accept a null key and null values, others

cannot.

There is one key point about maps that is important to mention at the outset: they

don’t implement the Iterable interface. This means that you cannot cycle through a map

using a for-each style for loop. Furthermore, you can’t obtain an iterator to a map.

However, as you will soon see, you can obtain a collection-view of a map, which does

allow the use of either the for loop or an iterator.

The Map Interfaces

Because the map interfaces define the character and nature of maps, this discussion of

maps begins with them. The following interfaces support maps:

Interface Description

Map Maps unique keys to values.

Map.Entry Describes an element (a key/value pair) in a map. This is an

inner class of Map.

NavigableMap Extends SortedMap to handle the retrieval of entries based on

closest-match searches.

SortedMap Extends Map so that the keys are maintained in ascending order.

Each interface is examined next, in turn.

The Map Interface
The Map interface maps unique keys to values. A key is an object that you use to retrieve a

value at a later date. Given a key and a value, you can store the value in a Map object. After

the value is stored, you can retrieve it by using its key. Map is generic and is declared as

shown here:

interface Map<K, V>

Here, K specifies the type of keys, and V specifies the type of values.

 Chapter 17 java.util Part 1: The Collections Framework 483

P
a

rt
 I

I

The methods declared by Map are summarized in Table 17-10. Several methods

throw a ClassCastException when an object is incompatible with the elements in a map.

A NullPointerException is thrown if an attempt is made to use a null object and null is not

allowed in the map. An UnsupportedOperationException is thrown when an attempt is

made to change an unmodifiable map. An IllegalArgumentException is thrown if an invalid

argument is used.

Maps revolve around two basic operations: get() and put(). To put a value into a map,

use put(), specifying the key and the value. To obtain a value, call get(), passing the key as

an argument. The value is returned.

As mentioned earlier, although part of the Collections Framework, maps are not,

themselves, collections because they do not implement the Collection interface. However,

you can obtain a collection-view of a map. To do this, you can use the entrySet() method. It

Method Description

void clear() Removes all key/value pairs from the invoking map.

boolean containsKey(Object k) Returns true if the invoking map contains k as a key.

Otherwise, returns false.

boolean containsValue(Object v) Returns true if the map contains v as a value. Otherwise,

returns false.

Set<Map.Entry<K, V>> entrySet() Returns a Set that contains the entries in the map. The

set contains objects of type Map.Entry. Thus, this method

provides a set-view of the invoking map.

boolean equals(Object obj) Returns true if obj is a Map and contains the same entries.

Otherwise, returns false.

V get(Object k) Returns the value associated with the key k. Returns null if the

key is not found.

int hashCode() Returns the hash code for the invoking map.

boolean isEmpty() Returns true if the invoking map is empty. Otherwise,

returns false.

Set<K> keySet() Returns a Set that contains the keys in the invoking map. This

method provides a set-view of the keys in the invoking map.

V put(K k, V v) Puts an entry in the invoking map, overwriting any previous

value associated with the key. The key and value are k and

v, respectively. Returns null if the key did not already exist.

Otherwise, the previous value linked to the key is returned.

void putAll(Map<? extends K,

 ? extends V> m)

Puts all the entries from m into this map.

V remove(Object k) Removes the entry whose key equals k.

int size() Returns the number of key/value pairs in the map.

Collection<V> values() Returns a collection containing the values in the map. This

method provides a collection-view of the values in the map.

Table 17-10 The Methods Defined by Map

484 PART II The Java Library

returns a Set that contains the elements in the map. To obtain a collection-view of the keys,

use keySet(). To get a collection-view of the values, use values(). For all three collection-

views, the collection is backed by the map. Changing one affects the other. Collection-views

are the means by which maps are integrated into the larger Collections Framework.

The SortedMap Interface
The SortedMap interface extends Map. It ensures that the entries are maintained in

ascending order based on the keys. SortedMap is generic and is declared as shown here:

interface SortedMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.

The methods declared by SortedMap are summarized in Table 17-11. Several

methods throw a NoSuchElementException when no items are in the invoking map. A

ClassCastException is thrown when an object is incompatible with the elements in a map. A

NullPointerException is thrown if an attempt is made to use a null object when null is not

allowed in the map. An IllegalArgumentException is thrown if an invalid argument is used.

Sorted maps allow very efficient manipulations of submaps (in other words, subsets of a

map). To obtain a submap, use headMap(), tailMap(), or subMap(). The submap

returned by these methods is backed by the invoking map. Changing one changes the

other. To get the first key in the set, call firstKey(). To get the last key, use lastKey().

The NavigableMap Interface
The NavigableMap interface extends SortedMap and declares the behavior of a map

that supports the retrieval of entries based on the closest match to a given key or keys.

NavigableMap is a generic interface that has this declaration:

interface NavigableMap<K,V>

Here, K specifies the type of the keys, and V specifies the type of the values associated with

the keys. In addition to the methods that it inherits from SortedMap, NavigableMap adds

Method Description

Comparator<? super K> comparator() Returns the invoking sorted map’s comparator. If

natural ordering is used for the invoking map, null is
returned.

K firstKey() Returns the first key in the invoking map.

SortedMap<K, V> headMap(K end) Returns a sorted map for those map entries with keys

that are less than end.

K lastKey() Returns the last key in the invoking map.

SortedMap<K, V> subMap(K start, K end) Returns a map containing those entries with keys that

are greater than or equal to start and less than end.

SortedMap<K, V> tailMap(K start) Returns a map containing those entries with keys that

are greater than or equal to start.

Table 17-11 The Methods Defined by SortedMap

 Chapter 17 java.util Part 1: The Collections Framework 485

P
a

rt
 I

I

those summarized in Table 17-12. Several methods throw a ClassCastException when an

object is incompatible with the keys in the map. A NullPointerException is thrown if an

attempt is made to use a null object and null keys are not allowed in the set. An

IllegalArgumentException is thrown if an invalid argument is used.

Method Description

Map.Entry<K,V> ceilingEntry(K obj) Searches the map for the smallest key k such that

k >= obj. If such a key is found, its entry is returned.

Otherwise, null is returned.

K ceilingKey(K obj) Searches the map for the smallest key k such

that k >= obj. If such a key is found, it is returned.

Otherwise, null is returned.

NavigableSet<K> descendingKeySet() Returns a NavigableSet that contains the keys in

the invoking map in reverse order. Thus, it returns

a reverse set-view of the keys. The resulting set is

backed by the map.

NavigableMap<K,V> descendingMap() Returns a NavigableMap that is the reverse of the

invoking map. The resulting map is backed by the

invoking map.

Map.Entry<K,V> firstEntry() Returns the first entry in the map. This is the entry

with the least key.

Map.Entry<K,V> floorEntry(K obj) Searches the map for the largest key k such that
k <= obj. If such a key is found, its entry is returned.

Otherwise, null is returned.

K floorKey(K obj) Searches the map for the largest key k such that

k <= obj. If such a key is found, it is returned.

Otherwise, null is returned.

NavigableMap<K,V>

 headMap(K upperBound, boolean incl)
Returns a NavigableMap that includes all entries

from the invoking map that have keys that are less

than upperBound. If incl is true, then an element

equal to upperBound is included. The resulting map

is backed by the invoking map.

Map.Entry<K,V> higherEntry(K obj) Searches the set for the largest key k such that

k > obj. If such a key is found, its entry is returned.

Otherwise, null is returned.

K higherKey(K obj) Searches the set for the largest key k such that

k > obj. If such a key is found, it is returned.

Otherwise, null is returned.

Map.Entry<K,V> lastEntry() Returns the last entry in the map. This is the entry

with the largest key.

Map.Entry<K,V> lowerEntry(K obj) Searches the set for the largest key k such that

k < obj. If such a key is found, its entry is returned.

Otherwise, null is returned.

Table 17-12 The Methods defined by NavigableMap

486 PART II The Java Library

The Map.Entry Interface
The Map.Entry interface enables you to work with a map entry. Recall that the entrySet()
method declared by the Map interface returns a Set containing the map entries. Each of

these set elements is a Map.Entry object. Map.Entry is generic and is declared like this:

interface Map.Entry<K, V>

Here, K specifies the type of keys, and V specifies the type of values. Table 17-13 summarizes

the methods declared by Map.Entry. Various exceptions are possible.

Method Description

K lowerKey(K obj) Searches the set for the largest key k such that

k < obj. If such a key is found, it is returned.

Otherwise, null is returned.

NavigableSet<K> navigableKeySet() Returns a NavigableSet that contains the keys in the

invoking map. The resulting set is backed by the

invoking map.

Map.Entry<K,V> pollFirstEntry() Returns the first entry, removing the entry in the

process. Because the map is sorted, this is the entry

with the least key value. null is returned if the map

is empty.

Map.Entry<K,V> pollLastEntry() Returns the last entry, removing the entry in the

process. Because the map is sorted, this is the entry

with the greatest key value. null is returned if the

map is empty.

NavigableMap<K,V>

 subMap(K lowerBound,

 boolean lowIncl,
 K upperBound
 boolean highIncl)

Returns a NavigableMap that includes all entries

from the invoking map that have keys that are

greater than lowerBound and less than upperBound. If

lowIncl is true, then an element equal to lowerBound

is included. If highIncl is true, then an element equal

to highIncl is included. The resulting map is backed

by the invoking map.

NavigableMap<K,V>

 tailMap(K lowerBound, boolean incl)
Returns a NavigableMap that includes all entries

from the invoking map that have keys that are

greater than lowerBound. If incl is true, then an

element equal to lowerBound is included. The

resulting map is backed by the invoking map.

Table 17-12 The Methods defined by NavigableMap (continued)

 Chapter 17 java.util Part 1: The Collections Framework 487

P
a

rt
 I

I

The Map Classes

Several classes provide implementations of the map interfaces. The classes that can be used

for maps are summarized here:

Class Description

AbstractMap Implements most of the Map interface.

EnumMap Extends AbstractMap for use with enum keys.

HashMap Extends AbstractMap to use a hash table.

TreeMap Extends AbstractMap to use a tree.

WeakHashMap Extends AbstractMap to use a hash table with weak keys.

LinkedHashMap Extends HashMap to allow insertion-order iterations.

IdentityHashMap Extends AbstractMap and uses reference equality when

comparing documents.

Notice that AbstractMap is a superclass for all concrete map implementations.

WeakHashMap implements a map that uses “weak keys,” which allows an element in a

map to be garbage-collected when its key is otherwise unused. This class is not discussed

further here. The other map classes are described next.

Method Description

boolean equals(Object obj) Returns true if obj is a Map.Entry whose key and value are equal

to that of the invoking object.

K getKey() Returns the key for this map entry.

V getValue() Returns the value for this map entry.

int hashCode() Returns the hash code for this map entry.

V setValue(V v) Sets the value for this map entry to v. A ClassCastException

is thrown if v is not the correct type for the map. An

IllegalArgumentException is thrown if there is a problem with v.

A NullPointerException is thrown if v is null and the map does

not permit null keys. An UnsupportedOperationException is

thrown if the map cannot be changed.

Table 17-13 The Methods Defined by Map.Entry

488 PART II The Java Library

The HashMap Class
The HashMap class extends AbstractMap and implements the Map interface. It uses a

hash table to store the map. This allows the execution time of get() and put() to remain

constant even for large sets. HashMap is a generic class that has this declaration:

class HashMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.

The following constructors are defined:

HashMap()

HashMap(Map<? extends K, ? extends V> m)

HashMap(int capacity)
HashMap(int capacity, float fillRatio)

The first form constructs a default hash map. The second form initializes the hash map by

using the elements of m. The third form initializes the capacity of the hash map to capacity.
The fourth form initializes both the capacity and fill ratio of the hash map by using its

arguments. The meaning of capacity and fill ratio is the same as for HashSet, described

earlier. The default capacity is 16. The default fill ratio is 0.75.

HashMap implements Map and extends AbstractMap. It does not add any methods of

its own.

You should note that a hash map does not guarantee the order of its elements.

Therefore, the order in which elements are added to a hash map is not necessarily the

order in which they are read by an iterator.

The following program illustrates HashMap. It maps names to account balances. Notice

how a set-view is obtained and used.

import java.util.*;

class HashMapDemo {
 public static void main(String args[]) {

 // Create a hash map.
 HashMap<String, Double> hm = new HashMap<String, Double>();

 // Put elements to the map
 hm.put("John Doe", new Double(3434.34));
 hm.put("Tom Smith", new Double(123.22));
 hm.put("Jane Baker", new Double(1378.00));
 hm.put("Tod Hall", new Double(99.22));
 hm.put("Ralph Smith", new Double(-19.08));

 // Get a set of the entries.
 Set<Map.Entry<String, Double>> set = hm.entrySet();

 // Display the set.
 for(Map.Entry<String, Double> me : set) {
 System.out.print(me.getKey() + ": ");
 System.out.println(me.getValue());
 }

 System.out.println();

 Chapter 17 java.util Part 1: The Collections Framework 489

P
a

rt
 I

I

 // Deposit 1000 into John Doe's account.
 double balance = hm.get("John Doe");
 hm.put("John Doe", balance + 1000);

 System.out.println("John Doe's new balance: " +
 hm.get("John Doe"));
 }
}

Output from this program is shown here (the precise order may vary):

 Ralph Smith: -19.08
 Tom Smith: 123.22
 John Doe: 3434.34
 Tod Hall: 99.22
 Jane Baker: 1378.0

 John Doe's new balance: 4434.34

The program begins by creating a hash map and then adds the mapping of names

to balances. Next, the contents of the map are displayed by using a set-view, obtained by

calling entrySet(). The keys and values are displayed by calling the getKey() and getValue()
methods that are defined by Map.Entry. Pay close attention to how the deposit is made into

John Doe’s account. The put() method automatically replaces any preexisting value that is

associated with the specified key with the new value. Thus, after John Doe’s account is

updated, the hash map will still contain just one "John Doe" account.

The TreeMap Class
The TreeMap class extends AbstractMap and implements the NavigableMap interface. It

creates maps stored in a tree structure. A TreeMap provides an efficient means of storing

key/value pairs in sorted order and allows rapid retrieval. You should note that, unlike a

hash map, a tree map guarantees that its elements will be sorted in ascending key order.

TreeMap is a generic class that has this declaration:

class TreeMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.

The following TreeMap constructors are defined:

TreeMap()

TreeMap(Comparator<? super K> comp)

TreeMap(Map<? extends K, ? extends V> m)

TreeMap(SortedMap<K, ? extends V> sm)

The first form constructs an empty tree map that will be sorted by using the natural order

of its keys. The second form constructs an empty tree-based map that will be sorted by using

the Comparator comp. (Comparators are discussed later in this chapter.) The third form

initializes a tree map with the entries from m, which will be sorted by using the natural

order of the keys. The fourth form initializes a tree map with the entries from sm, which will

be sorted in the same order as sm.

TreeMap has no map methods beyond those specified by the NavigableMap interface

and the AbstractMap class.

490 PART II The Java Library

The following program reworks the preceding example so that it uses TreeMap:

import java.util.*;

class TreeMapDemo {
 public static void main(String args[]) {

 // Create a tree map.
 TreeMap<String, Double> tm = new TreeMap<String, Double>();

 // Put elements to the map.
 tm.put("John Doe", new Double(3434.34));
 tm.put("Tom Smith", new Double(123.22));
 tm.put("Jane Baker", new Double(1378.00));
 tm.put("Tod Hall", new Double(99.22));
 tm.put("Ralph Smith", new Double(-19.08));

 // Get a set of the entries.
 Set<Map.Entry<String, Double>> set = tm.entrySet();

 // Display the elements.
 for(Map.Entry<String, Double> me : set) {
 System.out.print(me.getKey() + ": ");
 System.out.println(me.getValue());
 }
 System.out.println();

 // Deposit 1000 into John Doe's account.
 double balance = tm.get("John Doe");
 tm.put("John Doe", balance + 1000);

 System.out.println("John Doe's new balance: " +
 tm.get("John Doe"));
 }
}

The following is the output from this program:

 Jane Baker: 1378.0
 John Doe: 3434.34
 Ralph Smith: -19.08
 Todd Hall: 99.22
 Tom Smith: 123.22

 John Doe's current balance: 4434.34

Notice that TreeMap sorts the keys. However, in this case, they are sorted by first name

instead of last name. You can alter this behavior by specifying a comparator when the map

is created, as described shortly.

The LinkedHashMap Class
LinkedHashMap extends HashMap. It maintains a linked list of the entries in the map, in

the order in which they were inserted. This allows insertion-order iteration over the map.

 Chapter 17 java.util Part 1: The Collections Framework 491

P
a

rt
 I

I

That is, when iterating through a collection-view of a LinkedHashMap, the elements will be

returned in the order in which they were inserted. You can also create a LinkedHashMap

that returns its elements in the order in which they were last accessed. LinkedHashMap is a

generic class that has this declaration:

class LinkedHashMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.

LinkedHashMap defines the following constructors:

LinkedHashMap()

LinkedHashMap(Map<? extends K, ? extends V> m)

LinkedHashMap(int capacity)
LinkedHashMap(int capacity, float fillRatio)

LinkedHashMap(int capacity, float fillRatio, boolean Order)

The first form constructs a default LinkedHashMap. The second form initializes the

LinkedHashMap with the elements from m. The third form initializes the capacity. The

fourth form initializes both capacity and fill ratio. The meaning of capacity and fill ratio are

the same as for HashMap. The default capacity is 16. The default ratio is 0.75. The last form

allows you to specify whether the elements will be stored in the linked list by insertion

order, or by order of last access. If Order is true, then access order is used. If Order is false,

then insertion order is used.

LinkedHashMap adds only one method to those defined by HashMap. This method is

removeEldestEntry(), and it is shown here:

protected boolean removeEldestEntry(Map.Entry<K, V> e)

This method is called by put() and putAll(). The oldest entry is passed in e. By default, this

method returns false and does nothing. However, if you override this method, then you can

have the LinkedHashMap remove the oldest entry in the map. To do this, have your

override return true. To keep the oldest entry, return false.

The IdentityHashMap Class
IdentityHashMap extends AbstractMap and implements the Map interface. It is similar to

HashMap except that it uses reference equality when comparing elements. IdentityHashMap

is a generic class that has this declaration:

class IdentityHashMap<K, V>

Here, K specifies the type of key, and V specifies the type of value. The API documentation

explicitly states that IdentityHashMap is not for general use.

The EnumMap Class
EnumMap extends AbstractMap and implements Map. It is specifically for use with keys of

an enum type. It is a generic class that has this declaration:

class EnumMap<K extends Enum<K>, V>

Here, K specifies the type of key, and V specifies the type of value. Notice that K must

extend Enum<K>, which enforces the requirement that the keys must be of an enum type.

492 PART II The Java Library

EnumMap defines the following constructors:

EnumMap(Class<K> kType)
EnumMap(Map<K, ? extends V> m)

EnumMap(EnumMap<K, ? extends V> em)

The first constructor creates an empty EnumMap of type kType. The second creates an

EnumMap map that contains the same entries as m. The third creates an EnumMap

initialized with the values in em.

EnumMap defines no methods of its own.

Comparators
Both TreeSet and TreeMap store elements in sorted order. However, it is the comparator

that defines precisely what “sorted order” means. By default, these classes store their

elements by using what Java refers to as “natural ordering,” which is usually the ordering

that you would expect (A before B, 1 before 2, and so forth). If you want to order elements

a different way, then specify a Comparator when you construct the set or map. Doing so

gives you the ability to govern precisely how elements are stored within sorted collections

and maps.

Comparator is a generic interface that has this declaration:

interface Comparator<T>

Here, T specifies the type of objects being compared.

The Comparator interface defines two methods: compare() and equals(). The

compare() method, shown here, compares two elements for order:

int compare(T obj1, T obj2)

obj1 and obj2 are the objects to be compared. Normally, this method returns zero if the

objects are equal. It returns a positive value if obj1 is greater than obj2. Otherwise, a negative

value is returned. The method can throw a ClassCastException if the types of the objects

are not compatible for comparison. By implementing compare(), you can alter the way that

objects are ordered. For example, to sort in reverse order, you can create a comparator that

reverses the outcome of a comparison.

The equals() method, shown here, tests whether an object equals the invoking

comparator:

boolean equals(object obj)

Here, obj is the object to be tested for equality. The method returns true if obj and the

invoking object are both Comparator objects and use the same ordering. Otherwise, it

returns false. Overriding equals() is not necessary, and most simple comparators will not

do so.

Using a Comparator

The following is an example that demonstrates the power of a custom comparator. It

implements the compare() method for strings that operates in reverse of normal. Thus,

it causes a tree set to be sorted in reverse order.

 Chapter 17 java.util Part 1: The Collections Framework 493

P
a

rt
 I

I

// Use a custom comparator.
import java.util.*;

// A reverse comparator for strings.
class MyComp implements Comparator<String> {
 public int compare(String a, String b) {
 String aStr, bStr;

 aStr = a;
 bStr = b;

 // Reverse the comparison.
 return bStr.compareTo(aStr);
 }

 // No need to override equals.
}

class CompDemo {
 public static void main(String args[]) {
 // Create a tree set.
 TreeSet<String> ts = new TreeSet<String>(new MyComp());

 // Add elements to the tree set.
 ts.add("C");
 ts.add("A");
 ts.add("B");
 ts.add("E");
 ts.add("F");
 ts.add("D");

 // Display the elements.
 for(String element : ts)
 System.out.print(element + " ");

 System.out.println();
 }
}

As the following output shows, the tree is now sorted in reverse order:

 F E D C B A

Look closely at the MyComp class, which implements Comparator by implementing

compare(). (As explained earlier, overriding equals() is neither necessary nor common.)

Inside compare(), the String method compareTo() compares the two strings. However,

bStr—not aStr—invokes compareTo(). This causes the outcome of the comparison to be

reversed.

For a more practical example, the following program is an updated version of the

TreeMap program shown earlier that stores account balances. In the previous version, the

accounts were sorted by name, but the sorting began with the first name. The following

494 PART II The Java Library

program sorts the accounts by last name. To do so, it uses a comparator that compares the

last name of each account. This results in the map being sorted by last name.

// Use a comparator to sort accounts by last name.
import java.util.*;

// Compare last whole words in two strings.
class TComp implements Comparator<String> {
 public int compare(String a, String b) {
 int i, j, k;
 String aStr, bStr;

 aStr = a;
 bStr = b;

 // Find index of beginning of last name.
 i = aStr.lastIndexOf(' ');
 j = bStr.lastIndexOf(' ');

 k = aStr.substring(i).compareTo(bStr.substring(j));
 if(k==0) // last names match, check entire name
 return aStr.compareTo(bStr);
 else
 return k;
 }

 // No need to override equals.
}

class TreeMapDemo2 {
 public static void main(String args[]) {
 // Create a tree map.
 TreeMap<String, Double> tm = new TreeMap<String, Double>(new TComp());

 // Put elements to the map.
 tm.put("John Doe", new Double(3434.34));
 tm.put("Tom Smith", new Double(123.22));
 tm.put("Jane Baker", new Double(1378.00));
 tm.put("Tod Hall", new Double(99.22));
 tm.put("Ralph Smith", new Double(-19.08));

 // Get a set of the entries.
 Set<Map.Entry<String, Double>> set = tm.entrySet();

 // Display the elements.
 for(Map.Entry<String, Double> me : set) {
 System.out.print(me.getKey() + ": ");
 System.out.println(me.getValue());
 }
 System.out.println();

 Chapter 17 java.util Part 1: The Collections Framework 495

P
a

rt
 I

I

 // Deposit 1000 into John Doe's account.
 double balance = tm.get("John Doe");
 tm.put("John Doe", balance + 1000);

 System.out.println("John Doe's new balance: " +
 tm.get("John Doe"));
 }
}

Here is the output; notice that the accounts are now sorted by last name:

 Jane Baker: 1378.0
 John Doe: 3434.34
 Todd Hall: 99.22
 Ralph Smith: -19.08
 Tom Smith: 123.22

 John Doe's new balance: 4434.34

The comparator class TComp compares two strings that hold first and last names. It

does so by first comparing last names. To do this, it finds the index of the last space in each

string and then compares the substrings of each element that begin at that point. In cases

where last names are equivalent, the first names are then compared. This yields a tree map

that is sorted by last name, and within last name by first name. You can see this because

Ralph Smith comes before Tom Smith in the output.

The Collection Algorithms
The Collections Framework defines several algorithms that can be applied to collections

and maps. These algorithms are defined as static methods within the Collections class.

They are summarized in Table 17-14. As explained earlier, beginning with JDK 5 all of the

algorithms were retrofitted for generics.

Method Description

static <T> boolean

 addAll(Collection <? super T> c,
 T... elements)

Inserts the elements specified by

elements into the collection specified

by c. Returns true if the elements were

added and false otherwise.

static <T> Queue<T> asLifoQueue(Deque<T> c) Returns a last-in, first-out view of c.

static <T>

 int binarySearch(List<? extends T> list,
 T value,
 Comparator<? super T> c)

Searches for value in list ordered

according to c. Returns the position of

value in list, or a negative value if value
is not found.

Table 17-14 The Algorithms Defined by Collections

496 PART II The Java Library

Method Description

static <T>

 int binarySearch(List<? extends

 Comparable<? super T>> list,
 T value)

Searches for value in list. The list must

be sorted. Returns the position of value
in list, or a negative value if value is not

found.

static <E> Collection<E>

 checkedCollection(Collection<E> c,
 Class<E> t)

Returns a run-time type-safe view of

a collection. An attempt to insert an

incompatible element will cause a

ClassCastException.

static <E> List<E>

 checkedList(List<E> c, Class<E> t)
Returns a run-time type-safe view

of a List. An attempt to insert an

incompatible element will cause a

ClassCastException.

static <K, V> Map<K, V>

 checkedMap(Map<K, V> c,
 Class<K> keyT,

 Class<V> valueT)

Returns a run-time type-safe view

of a Map. An attempt to insert an

incompatible element will cause a

ClassCastException.

static <E> List<E>

 checkedSet(Set<E> c, Class<E> t)
Returns a run-time type-safe view

of a Set. An attempt to insert an

incompatible element will cause a

ClassCastException.

static <K, V> SortedMap<K, V>

 checkedSortedMap(SortedMap<K, V> c,
 Class<K> keyT,

 Class<V> valueT)

Returns a run-time type-safe view of

a SortedMap. An attempt to insert

an incompatible element will cause a

ClassCastException.

static <E> SortedSet<E>

 checkedSortedSet(SortedSet<E> c, Class<E> t)
Returns a run-time type-safe view of

a SortedSet. An attempt to insert an

incompatible element will cause a

ClassCastException.

static <T> void copy(List<? super T> list1,

 List<? extends T> list2)

Copies the elements of list2 to list1.

static boolean disjoint(Collection<?> a,

 Collection<?> b)

Compares the elements in a to

elements in b. Returns true if the

two collections contain no common

elements (i.e., the collections contain

disjoint sets of elements). Otherwise,

returns false.

static <T>

 Enumeration<T> emptyEnumeration()

Returns an empty enumeration, which

is an enumeration with no elements.

(Added by JDK 7.)

static <T>

 Iterator<T> emptyIterator()

Returns an empty iterator, which is an

iterator with no elements. (Added by

JDK 7.)

Table 17-14 The Algorithms Defined by Collections (continued)

 Chapter 17 java.util Part 1: The Collections Framework 497

P
a

rt
 I

I

Method Description

static <T> List<T> emptyList() Returns an immutable, empty List
object of the inferred type.

static <T>

 ListIterator<T> emptyListIterator()

Returns an empty list iterator, which

is a list iterator that has no elements.

(Added by JDK 7.)

static <K, V> Map<K, V> emptyMap() Returns an immutable, empty Map

object of the inferred type.

static <T> Set<T> emptySet() Returns an immutable, empty Set
object of the inferred type.

static <T> Enumeration<T>

 enumeration(Collection<T> c)
Returns an enumeration over c. (See

“The Enumeration Interface,” later in

this chapter.)

static <T> void fill(List<? super T> list, T obj) Assigns obj to each element of list.

static int frequency(Collection<?> c, object obj) Counts the number of occurrences of

obj in c and returns the result.

static int indexOfSubList(List<?> list,
 List<?> subList)

Searches list for the first occurrence of

subList. Returns the index of the first

match, or –1 if no match is found.

static int lastIndexOfSubList(List<?> list,
 List<?> subList)

Searches list for the last occurrence of

subList. Returns the index of the last

match, or –1 if no match is found.

static <T>

 ArrayList<T> list(Enumeration<T> enum)

Returns an ArrayList that contains the

elements of enum.

static <T> T max(Collection<? extends T> c,
 Comparator<? super T> comp)

Returns the maximum element in c as

determined by comp.

static <T extends Object &

 Comparable<? super T>>

 T max(Collection<? extends T> c)

Returns the maximum element in c as

determined by natural ordering. The

collection need not be sorted.

static <T> T min(Collection<? extends T> c,
 Comparator<? super T> comp)

Returns the minimum element in c as

determined by comp. The collection

need not be sorted.

static <T extends Object &

 Comparable<? super T>>

 T min(Collection<? extends T> c)

Returns the minimum element in c as

determined by natural ordering.

static <T> List<T> nCopies(int num, T obj) Returns num copies of obj contained in

an immutable list. num must be greater

than or equal to zero.

static <E> Set<E> newSetFromMap(Map<E, Boolean> m) Creates and returns a set backed by

the map specified by m, which must be

empty at the time this method is called.

Table 17-14 The Algorithms Defined by Collections (continued)

498 PART II The Java Library

Method Description

static <T> boolean replaceAll(List<T> list,
 T old, T new)

Replaces all occurrences of old with

new in list. Returns true if at least one

replacement occurred. Returns false,

otherwise.

static void reverse(List<T> list) Reverses the sequence in list.

static <T> Comparator<T>

 reverseOrder(Comparator<T> comp)

Returns a reverse comparator based

on the one passed in comp. That is,

the returned comparator reverses the

outcome of a comparison that uses comp.

static <T> Comparator<T> reverseOrder() Returns a reverse comparator, which is

a comparator that reverses the outcome

of a comparison between two elements.

static void rotate(List<T> list, int n) Rotates list by n places to the right. To

rotate left, use a negative value for n.

static void shuffle(List<T> list, Random r) Shuffles (i.e., randomizes) the

elements in list by using r as a source of

random numbers.

static void shuffle(List<T> list) Shuffles (i.e., randomizes) the

elements in list.

static <T> Set<T> singleton(T obj) Returns obj as an immutable set. This

is an easy way to convert a single object

into a set.

static <T> List<T> singletonList(T obj) Returns obj as an immutable list. This

is an easy way to convert a single object

into a list.

static <K, V> Map<K, V>

 singletonMap(K k, V v)

Returns the key/value pair k/v as an

immutable map. This is an easy way

to convert a single key/value pair into

a map.

static <T>

 void sort(List<T> list,
 Comparator<? super T> comp)

Sorts the elements of list as determined

by comp.

static <T extends Comparable<? super T>>

 void sort(List<T> list)
Sorts the elements of list as determined

by their natural ordering.

static void swap(List<?> list,
 int idx1, int idx2)

Exchanges the elements in list at the

indices specified by idx1 and idx2.

static <T> Collection<T>

 synchronizedCollection(Collection<T> c)
Returns a thread-safe collection backed

by c.

static <T> List<T> synchronizedList(List<T> list) Returns a thread-safe list backed by list.

static <K, V> Map<K, V>

 synchronizedMap(Map<K, V> m)

Returns a thread-safe map backed by m.

static <T> Set<T> synchronizedSet(Set<T> s) Returns a thread-safe set backed by s.

Table 17-14 The Algorithms Defined by Collections (continued)

 Chapter 17 java.util Part 1: The Collections Framework 499

P
a

rt
 I

I

Method Description

static <K, V> SortedMap<K, V>

 synchronizedSortedMap(SortedMap<K, V> sm)

Returns a thread-safe sorted map

backed by sm.

static <T> SortedSet<T>

 synchronizedSortedSet(SortedSet<T> ss)
Returns a thread-safe sorted set backed

by ss.

static <T> Collection<T>

 unmodifiableCollection(

 Collection<? extends T> c)

Returns an unmodifiable collection

backed by c.

static <T> List<T>

 unmodifiableList(List<? extends T> list)
Returns an unmodifiable list backed

by list.

static <K, V> Map<K, V>

 unmodifiableMap(Map<? extends K,

 ? extends V> m)

Returns an unmodifiable map backed

by m.

static <T> Set<T>

 unmodifiableSet(Set<? extends T> s)
Returns an unmodifiable set backed

by s.

static <K, V> SortedMap<K, V>

 unmodifiableSortedMap(SortedMap<K,

 ? extends V> sm)

Returns an unmodifiable sorted map

backed by sm.

static <T> SortedSet<T>

 unmodifiableSortedSet(SortedSet<T> ss)
Returns an unmodifiable sorted set

backed by ss.

Table 17-14 The Algorithms Defined by Collections (continued)

Several of the methods can throw a ClassCastException, which occurs when an attempt

is made to compare incompatible types, or an UnsupportedOperationException, which

occurs when an attempt is made to modify an unmodifiable collection. Other exceptions

are possible, depending on the method.

One thing to pay special attention to is the set of checked methods, such as

checkedCollection(), which returns what the API documentation refers to as a

“dynamically typesafe view” of a collection. This view is a reference to the collection that

monitors insertions into the collection for type compatibility at run time. An attempt to

insert an incompatible element will cause a ClassCastException. Using such a view is

especially helpful during debugging because it ensures that the collection always contains

valid elements. Related methods include checkedSet(), checkedList(), checkedMap(),
and so on. They obtain a type-safe view for the indicated collection.

Notice that several methods, such as synchronizedList() and synchronizedSet(), are used

to obtain synchronized (thread-safe) copies of the various collections. As a general rule, the

standard collections implementations are not synchronized. You must use the synchronization

algorithms to provide synchronization. One other point: iterators to synchronized collections

must be used within synchronized blocks.

The set of methods that begins with unmodifiable returns views of the various

collections that cannot be modified. These will be useful when you want to grant some

process read—but not write—capabilities on a collection.

Collections defines three static variables: EMPTY_SET, EMPTY_LIST, and EMPTY_MAP.

All are immutable.

500 PART II The Java Library

The following program demonstrates some of the algorithms. It creates and initializes a

linked list. The reverseOrder() method returns a Comparator that reverses the comparison

of Integer objects. The list elements are sorted according to this comparator and then are

displayed. Next, the list is randomized by calling shuffle(), and then its minimum and

maximum values are displayed.

// Demonstrate various algorithms.
import java.util.*;

class AlgorithmsDemo {
 public static void main(String args[]) {

 // Create and initialize linked list.
 LinkedList<Integer> ll = new LinkedList<Integer>();
 ll.add(-8);
 ll.add(20);
 ll.add(-20);
 ll.add(8);

 // Create a reverse order comparator.
 Comparator<Integer> r = Collections.reverseOrder();

 // Sort list by using the comparator.
 Collections.sort(ll, r);

 System.out.print("List sorted in reverse: ");
 for(int i : ll)
 System.out.print(i+ " ");

 System.out.println();

 // Shuffle list.
 Collections.shuffle(ll);

 // Display randomized list.
 System.out.print("List shuffled: ");
 for(int i : ll)
 System.out.print(i + " ");

 System.out.println();
 System.out.println("Minimum: " + Collections.min(ll));
 System.out.println("Maximum: " + Collections.max(ll));
 }
}

Output from this program is shown here:

 List sorted in reverse: 20 8 -8 -20
 List shuffled: 20 -20 8 -8
 Minimum: -20
 Maximum: 20

Notice that min() and max() operate on the list after it has been shuffled. Neither requires

a sorted list for its operation.

 Chapter 17 java.util Part 1: The Collections Framework 501

P
a

rt
 I

I

Arrays
The Arrays class provides various methods that are useful when working with arrays. These

methods help bridge the gap between collections and arrays. Each method defined by

Arrays is examined in this section.

The asList() method returns a List that is backed by a specified array. In other words,

both the list and the array refer to the same location. It has the following signature:

static <T> List asList(T... array)

Here, array is the array that contains the data.

The binarySearch() method uses a binary search to find a specified value. This method

must be applied to sorted arrays. Here are some of its forms. (Additional forms let you

search a subrange):

static int binarySearch(byte array[], byte value)
static int binarySearch(char array[], char value)
static int binarySearch(double array[], double value)
static int binarySearch(float array[], float value)
static int binarySearch(int array[], int value)
static int binarySearch(long array[], long value)
static int binarySearch(short array[], short value)
static int binarySearch(Object array[], Object value)
static <T> int binarySearch(T[] array, T value, Comparator<? super T> c)

Here, array is the array to be searched, and value is the value to be located. The last two

forms throw a ClassCastException if array contains elements that cannot be compared (for

example, Double and StringBuffer) or if value is not compatible with the types in array. In

the last form, the Comparator c is used to determine the order of the elements in array. In

all cases, if value exists in array, the index of the element is returned. Otherwise, a negative

value is returned.

The copyOf() method returns a copy of an array and has the following forms:

static boolean[] copyOf(boolean[] source, int len)

static byte[] copyOf(byte[] source, int len)

static char[] copyOf(char[] source, int len)

static double[] copyOf(double[] source, int len)

static float[] copyOf(float[] source, int len)

static int[] copyOf(int[] source, int len)

static long[] copyOf(long[] source, int len)

static short[] copyOf(short[] source, int len)

static <T> T[] copyOf(T[] source, int len)

static <T,U> T[] copyOf(U[] source, int len, Class<? extends T[]> resultT)

The original array is specified by source, and the length of the copy is specified by len. If the

copy is longer than source, then the copy is padded with zeros (for numeric arrays), nulls
(for object arrays), or false (for boolean arrays). If the copy is shorter than source, then

the copy is truncated. In the last form, the type of resultT becomes the type of the array

returned. If len is negative, a NegativeArraySizeException is thrown. If source is null, a

NullPointerException is thrown. If resultT is incompatible with the type of source, an

ArrayStoreException is thrown.

502 PART II The Java Library

The copyOfRange() method returns a copy of a range within an array and has the

following forms:

static boolean[] copyOfRange(boolean[] source, int start, int end)

static byte[] copyOfRange(byte[] source, int start, int end)

static char[] copyOfRange(char[] source, int start, int end)

static double[] copyOfRange(double[] source, int start, int end)

static float[] copyOfRange(float[] source, int start, int end)

static int[] copyOfRange(int[] source, int start, int end)

static long[] copyOfRange(long[] source, int start, int end)

static short[] copyOfRange(short[] source, int start, int end)

static <T> T[] copyOfRange(T[] source, int start, int end)

static <T,U> T[] copyOfRange(U[] source, int start, int end,

 Class<? extends T[]> resultT)

The original array is specified by source. The range to copy is specified by the indices

passed via start and end. The range runs from start to end – 1. If the range is longer than

source, then the copy is padded with zeros (for numeric arrays), nulls (for object arrays), or

false (for boolean arrays). In the last form, the type of resultT becomes the type of the array

returned. If start is negative or greater than the length of source, an

ArrayIndexOutOfBoundsException is thrown. If start is greater than end, an

IllegalArgumentException is thrown. If source is null, a NullPointerException is thrown. If

resultT is incompatible with the type of source, an ArrayStoreException is thrown.

The equals() method returns true if two arrays are equivalent. Otherwise, it returns

false. The equals() method has the following forms:

static boolean equals(boolean array1[], boolean array2 [])

static boolean equals(byte array1[], byte array2 [])

static boolean equals(char array1[], char array2 [])

static boolean equals(double array1[], double array2 [])

static boolean equals(float array1[], float array2 [])

static boolean equals(int array1[], int array2 [])

static boolean equals(long array1[], long array2 [])

static boolean equals(short array1[], short array2 [])

static boolean equals(Object array1[], Object array2 [])

Here, array1 and array2 are the two arrays that are compared for equality.

The deepEquals() method can be used to determine if two arrays, which might contain

nested arrays, are equal. It has this declaration:

static boolean deepEquals(Object[] a, Object[] b)

It returns true if the arrays passed in a and b contain the same elements. If a and b contain

nested arrays, then the contents of those nested arrays are also checked. It returns false if

the arrays, or any nested arrays, differ.

 Chapter 17 java.util Part 1: The Collections Framework 503

P
a

rt
 I

I

The fill() method assigns a value to all elements in an array. In other words, it fills an

array with a specified value. The fill() method has two versions. The first version, which has

the following forms, fills an entire array:

static void fill(boolean array[], boolean value)
static void fill(byte array[], byte value)
static void fill(char array[], char value)
static void fill(double array[], double value)
static void fill(float array[], float value)
static void fill(int array[], int value)
static void fill(long array[], long value)
static void fill(short array[], short value)
static void fill(Object array[], Object value)

Here, value is assigned to all elements in array.
The second version of the fill() method assigns a value to a subset of an array. Its forms

are shown here:

static void fill(boolean array[], int start, int end, boolean value)
static void fill(byte array[], int start, int end, byte value)
static void fill(char array[], int start, int end, char value)
static void fill(double array[], int start, int end, double value)
static void fill(float array[], int start, int end, float value)
static void fill(int array[], int start, int end, int value)
static void fill(long array[], int start, int end, long value)
static void fill(short array[], int start, int end, short value)
static void fill(Object array[], int start, int end, Object value)

Here, value is assigned to the elements in array from position start to position end–1. These

methods may all throw an IllegalArgumentException if start is greater than end, or an

ArrayIndexOutOfBoundsException if start or end is out of bounds. An ArrayStoreException

is possible with the Object versions.

The sort() method sorts an array so that it is arranged in ascending order. The sort()
method has two versions. The first version, shown here, sorts the entire array:

static void sort(byte array[])

static void sort(char array[])

static void sort(double array[])

static void sort(float array[])

static void sort(int array[])

static void sort(long array[])

static void sort(short array[])

static void sort(Object array[])

static <T> void sort(T array[], Comparator<? super T> c)

Here, array is the array to be sorted. In the last form, c is a Comparator that is used to order

the elements of array. The last two forms can throw a ClassCastException if elements of the

array being sorted are not comparable.

504 PART II The Java Library

The second version of sort() enables you to specify a range within an array that you

want to sort. Its forms are shown here:

static void sort(byte array[], int start, int end)

static void sort(char array[], int start, int end)

static void sort(double array[], int start, int end)

static void sort(float array[], int start, int end)

static void sort(int array[], int start, int end)

static void sort(long array[], int start, int end)

static void sort(short array[], int start, int end)

static void sort(Object array[], int start, int end)

static <T> void sort(T array[], int start, int end, Comparator<? super T> c)

Here, the range beginning at start and running through end–1 within array will be sorted.

In the last form, c is a Comparator that is used to order the elements of array. All of these

methods can throw an IllegalArgumentException if start is greater than end, or an

ArrayIndexOutOfBoundsException if start or end is out of bounds. The last two forms can

also throw a ClassCastException if elements of the array being sorted are not comparable.

Arrays also provides toString() and hashCode() for the various types of arrays. In

addition, deepToString() and deepHashCode() are provided, which operate effectively on

arrays that contain nested arrays.

The following program illustrates how to use some of the methods of the Arrays class:

// Demonstrate Arrays
import java.util.*;

class ArraysDemo {
 public static void main(String args[]) {

 // Allocate and initialize array.
 int array[] = new int[10];
 for(int i = 0; i < 10; i++)
 array[i] = -3 * i;

 // Display, sort, and display the array.
 System.out.print("Original contents: ");
 display(array);
 Arrays.sort(array);
 System.out.print("Sorted: ");
 display(array);

 // Fill and display the array.
 Arrays.fill(array, 2, 6, -1);
 System.out.print("After fill(): ");
 display(array);

 // Sort and display the array.
 Arrays.sort(array);
 System.out.print("After sorting again: ");
 display(array);

 // Binary search for -9.
 System.out.print("The value -9 is at location ");

 Chapter 17 java.util Part 1: The Collections Framework 505

P
a

rt
 I

I

 int index =
 Arrays.binarySearch(array, -9);

 System.out.println(index);
 }

 static void display(int array[]) {
 for(int i: array)
 System.out.print(i + " ");

 System.out.println();
 }
}

The following is the output from this program:

 Original contents: 0 -3 -6 -9 -12 -15 -18 -21 -24 -27
 Sorted: -27 -24 -21 -18 -15 -12 -9 -6 -3 0
 After fill(): -27 -24 -1 -1 -1 -1 -9 -6 -3 0
 After sorting again: -27 -24 -9 -6 -3 -1 -1 -1 -1 0
 The value -9 is at location 2

Why Generic Collections?
As mentioned at the start of this chapter, the entire Collections Framework was refitted for

generics when JDK 5 was released. Furthermore, the Collections Framework is arguably the

single most important use of generics in the Java API. The reason for this is that generics

add type safety to the Collections Framework. Before moving on, it is worth taking some

time to examine in detail the significance of this improvement. It will also show why older

pre-generics collection-based code should be updated.

Let’s begin with an example that uses pre-generics code. The following program stores

a list of strings in an ArrayList and then displays the contents of the list:

// Pre-generics example that uses a collection.
import java.util.*;

class OldStyle {
 public static void main(String args[]) {
 ArrayList list = new ArrayList();

 // These lines store strings, but any type of object
 // can be stored. In old-style code, there is no
 // convenient way to restrict the type of objects stored
 // in a collection
 list.add("one");
 list.add("two");
 list.add("three");
 list.add("four");

 Iterator itr = list.iterator();
 while(itr.hasNext()) {
 // To retrieve an element, an explicit type cast is needed
 // because the collection stores only Object.

506 PART II The Java Library

 String str = (String) itr.next(); // explicit cast needed here.

 System.out.println(str + " is " + str.length() + " chars long.");
 }
 }
}

Prior to generics, all collections stored references of type Object. This allowed any type

of reference to be stored in the collection. The preceding program uses this feature to

store references to objects of type String in list, but any type of reference could have been

stored.

Unfortunately, the fact that a pre-generics collection stored Object references could

easily lead to errors. First, it required that you, rather than the compiler, ensure that only

objects of the proper type be stored in a specific collection. For example, in the preceding

example, list is clearly intended to store Strings, but there is nothing that actually prevents

another type of reference from being added to the collection. For example, the compiler

will find nothing wrong with this line of code:

list.add(new Integer(100));

Because list stores Object references, it can store a reference to Integer as well as it can

store a reference to String. However, if you intended list to hold only strings, then the

preceding statement would corrupt the collection. Again, the compiler had no way to know

that the preceding statement is invalid.

The second problem with pre-generics collections is that when you retrieve a reference

from the collection, you must manually cast that reference into the proper type. This is

why the preceding program casts the reference returned by next() into String. Prior to

generics, collections simply stored Object references. Thus, the cast was necessary when

retrieving objects from a collection.

Aside from the inconvenience of always having to cast a retrieved reference into its

proper type, this lack of type safety often led to a rather serious, but surprisingly easy-to-

create, error. Because Object can be cast into any type of object, it was possible to cast a

reference obtained from a collection into the wrong type. For example, if the following

statement were added to the preceding example, it would still compile without error, but

generate a run-time exception when executed:

Integer i = (Integer) itr.next();

Recall that the preceding example stored only references to instances of type String in

list. Thus, when this statement attempts to cast a String into an Integer, an invalid cast

exception results! Because this happens at run time, this is a very serious error.

The addition of generics fundamentally improves the usability and safety of collections

because it

• Ensures that only references to objects of the proper type can actually be stored in a

collection. Thus, a collection will always contain references of a known type.

• Eliminates the need to cast a reference retrieved from a collection. Instead, a

reference retrieved from a collection is automatically cast into the proper type. This

prevents run-time errors due to invalid casts and avoids an entire category of errors.

 Chapter 17 java.util Part 1: The Collections Framework 507

P
a

rt
 I

I

These two improvements are made possible because each collection class has been

given a type parameter that specifies the type of the collection. For example, ArrayList is
now declared like this:

class ArrayList<E>

Here, E is the type of element stored in the collection. Therefore, the following declares an

ArrayList for objects of type String:

ArrayList<String> list = new ArrayList<String>();

Now, only references of type String can be added to list.
The Iterator and ListIterator interfaces are now also generic. This means that the type

parameter must agree with the type of the collection for which the iterator is obtained.

Furthermore, this type compatibility is enforced at compile time.

The following program shows the modern, generic form of the preceding program:

// Modern, generics version.
import java.util.*;

class NewStyle {
 public static void main(String args[]) {

 // Now, list holds references of type String.
 ArrayList<String> list = new ArrayList<String>();

 list.add("one");
 list.add("two");
 list.add("three");
 list.add("four");

 // Notice that Iterator is also generic.
 Iterator<String> itr = list.iterator();

 // The following statement will now cause a compile-time error.
// Iterator<Integer> itr = list.iterator(); // Error!

 while(itr.hasNext()) {
 String str = itr.next(); // no cast needed

 // Now, the following line is a compile-time,
 // rather than run-time, error.
// Integer i = itr.next(); // this won't compile

 System.out.println(str + " is " + str.length() + " chars long.");
 }
 }
}

Now, list can hold only references to objects of type String. Furthermore, as the following

line shows, there is no need to cast the return value of next() into String:

String str = itr.next(); // no cast needed

The cast is performed automatically.

508 PART II The Java Library

Because of support for raw types, older, pre-generics collection code will continue to

compile and run. However, all new code should use generics, and you should update older

code as soon as time permits. The addition of generics to the Collections Framework was a

fundamental improvement that should be utilized wherever possible.

The Legacy Classes and Interfaces
As explained at the start of this chapter, early versions of java.util did not include the

Collections Framework. Instead, it defined several classes and an interface that provided

an ad hoc method of storing objects. When collections were added (by J2SE 1.2), several

of the original classes were reengineered to support the collection interfaces. Thus, they

are now technically part of the Collections Framework. However, where a modern

collection duplicates the functionality of a legacy class, you will usually want to use the

newer collection class. In general, the legacy classes are supported because there is still

code that uses them.

One other point: none of the modern collection classes described in this chapter are

synchronized, but all the legacy classes are synchronized. This distinction may be important

in some situations. Of course, you can easily synchronize collections by using one of the

algorithms provided by Collections.

The legacy classes defined by java.util are shown here:

Dictionary Hashtable Properties Stack Vector

There is one legacy interface called Enumeration. The following sections examine

Enumeration and each of the legacy classes, in turn.

The Enumeration Interface

The Enumeration interface defines the methods by which you can enumerate (obtain one at

a time) the elements in a collection of objects. This legacy interface has been superseded

by Iterator. Although not deprecated, Enumeration is considered obsolete for new code.

However, it is used by several methods defined by the legacy classes (such as Vector and

Properties), is used by several other API classes, and is currently in widespread use in

application code. Because it is still in use, it was retrofitted for generics by JDK 5. It has

this declaration:

interface Enumeration<E>

where E specifies the type of element being enumerated.

Enumeration specifies the following two methods:

boolean hasMoreElements()

E nextElement()

When implemented, hasMoreElements() must return true while there are still more

elements to extract, and false when all the elements have been enumerated. nextElement()
returns the next object in the enumeration. That is, each call to nextElement() obtains the

 Chapter 17 java.util Part 1: The Collections Framework 509

P
a

rt
 I

I

next object in the enumeration. It throws NoSuchElementException when the enumeration

is complete.

Vector

Vector implements a dynamic array. It is similar to ArrayList, but with two differences:

Vector is synchronized, and it contains many legacy methods that duplicate the

functionality of methods defined by the Collections Framework. With the advent of

collections, Vector was reengineered to extend AbstractList and to implement the List
interface. With the release of JDK 5, it was retrofitted for generics and reengineered to

implement Iterable. This means that Vector is fully compatible with collections, and a

Vector can have its contents iterated by the enhanced for loop.

Vector is declared like this:

class Vector<E>

Here, E specifies the type of element that will be stored.

Here are the Vector constructors:

Vector()

Vector(int size)
Vector(int size, int incr)
Vector(Collection<? extends E> c)

The first form creates a default vector, which has an initial size of 10. The second form

creates a vector whose initial capacity is specified by size. The third form creates a vector

whose initial capacity is specified by size and whose increment is specified by incr. The

increment specifies the number of elements to allocate each time that a vector is resized

upward. The fourth form creates a vector that contains the elements of collection c.
All vectors start with an initial capacity. After this initial capacity is reached, the next

time that you attempt to store an object in the vector, the vector automatically allocates

space for that object plus extra room for additional objects. By allocating more than just

the required memory, the vector reduces the number of allocations that must take place

as the vector grows. This reduction is important, because allocations are costly in terms of

time. The amount of extra space allocated during each reallocation is determined by the

increment that you specify when you create the vector. If you don’t specify an increment,

the vector’s size is doubled by each allocation cycle.

Vector defines these protected data members:

int capacityIncrement;

int elementCount;

Object[] elementData;

The increment value is stored in capacityIncrement. The number of elements currently in

the vector is stored in elementCount. The array that holds the vector is stored in

elementData.

In addition to the collections methods defined by List, Vector defines several legacy

methods, which are summarized in Table 17-15.

510 PART II The Java Library

Method Description

void addElement(E element) The object specified by element is added to the vector.

int capacity() Returns the capacity of the vector.

Object clone() Returns a duplicate of the invoking vector.

boolean contains(Object element) Returns true if element is contained by the vector, and

returns false if it is not.

void copyInto(Object array[]) The elements contained in the invoking vector are

copied into the array specified by array.

E elementAt(int index) Returns the element at the location specified by index.

Enumeration<E> elements() Returns an enumeration of the elements in the vector.

void ensureCapacity(int size) Sets the minimum capacity of the vector to size.

E firstElement() Returns the first element in the vector.

int indexOf(Object element) Returns the index of the first occurrence of element. If
the object is not in the vector, –1 is returned.

int indexOf(Object element, int start) Returns the index of the first occurrence of element at

or after start. If the object is not in that portion of the

vector, –1 is returned.

void insertElementAt(E element,
 int index)

Adds element to the vector at the location specified

by index.

boolean isEmpty() Returns true if the vector is empty, and returns false if

it contains one or more elements.

E lastElement() Returns the last element in the vector.

int lastIndexOf(Object element) Returns the index of the last occurrence of element. If
the object is not in the vector, –1 is returned.

int lastIndexOf(Object element,
 int start)

Returns the index of the last occurrence of element
before start. If the object is not in that portion of the

vector, –1 is returned.

void removeAllElements() Empties the vector. After this method executes, the

size of the vector is zero.

boolean removeElement(Object element) Removes element from the vector. If more than one

instance of the specified object exists in the vector,

then it is the first one that is removed. Returns true if

successful and false if the object is not found.

void removeElementAt(int index) Removes the element at the location specified by index.

void setElementAt(E element,
 int index)

The location specified by index is assigned element.

void setSize(int size) Sets the number of elements in the vector to size. If the

new size is less than the old size, elements are lost. If

the new size is larger than the old size, null elements

are added.

Table 17-15 The Legacy Methods Defined by Vector

 Chapter 17 java.util Part 1: The Collections Framework 511

P
a

rt
 I

IBecause Vector implements List, you can use a vector just like you use an ArrayList
instance. You can also manipulate one using its legacy methods. For example, after you

instantiate a Vector, you can add an element to it by calling addElement(). To obtain the

element at a specific location, call elementAt(). To obtain the first element in the vector,

call firstElement(). To retrieve the last element, call lastElement(). You can obtain the

index of an element by using indexOf() and lastIndexOf(). To remove an element, call

removeElement() or removeElementAt().
The following program uses a vector to store various types of numeric objects. It

demonstrates several of the legacy methods defined by Vector. It also demonstrates the

Enumeration interface.

// Demonstrate various Vector operations.
import java.util.*;

class VectorDemo {
 public static void main(String args[]) {

 // initial size is 3, increment is 2
 Vector<Integer> v = new Vector<Integer>(3, 2);

 System.out.println("Initial size: " + v.size());
 System.out.println("Initial capacity: " +
 v.capacity());

 v.addElement(1);
 v.addElement(2);
 v.addElement(3);
 v.addElement(4);

 System.out.println("Capacity after four additions: " +
 v.capacity());

 v.addElement(5);
 System.out.println("Current capacity: " +
 v.capacity());

 v.addElement(6);
 v.addElement(7);

 System.out.println("Current capacity: " +
 v.capacity());

Method Description

int size() Returns the number of elements currently in the vector.

String toString() Returns the string equivalent of the vector.

void trimToSize() Sets the vector’s capacity equal to the number of

elements that it currently holds.

Table 17-15 The Legacy Methods Defined by Vector (continued)

512 PART II The Java Library

 v.addElement(9);
 v.addElement(10);

 System.out.println("Current capacity: " +
 v.capacity());

 v.addElement(11);
 v.addElement(12);

 System.out.println("First element: " + v.firstElement());
 System.out.println("Last element: " + v.lastElement());

 if(v.contains(3))
 System.out.println("Vector contains 3.");

 // Enumerate the elements in the vector.
 Enumeration<Integer> vEnum = v.elements();

 System.out.println("\nElements in vector:");
 while(vEnum.hasMoreElements())
 System.out.print(vEnum.nextElement() + " ");
 System.out.println();
 }
}

The output from this program is shown here:

 Initial size: 0
 Initial capacity: 3
 Capacity after four additions: 5
 Current capacity: 5
 Current capacity: 7
 Current capacity: 9
 First element: 1
 Last element: 12
 Vector contains 3.

 Elements in vector:
 1 2 3 4 5 6 7 9 10 11 12

Instead of relying on an enumeration to cycle through the objects (as the preceding

program does), you can use an iterator. For example, the following iterator-based code can

be substituted into the program:

// Use an iterator to display contents.
Iterator<Integer> vItr = v.iterator();

System.out.println("\nElements in vector:");
while(vItr.hasNext())

 Chapter 17 java.util Part 1: The Collections Framework 513

P
a

rt
 I

I

 System.out.print(vItr.next() + " ");
System.out.println();

You can also use a for-each for loop to cycle through a Vector, as the following version

of the preceding code shows:

// Use an enhanced for loop to display contents
System.out.println("\nElements in vector:");
for(int i : v)
 System.out.print(i + " ");

System.out.println();

Because the Enumeration interface is not recommended for new code, you will usually

use an iterator or a for-each for loop to enumerate the contents of a vector. Of course,

much legacy code exists that employs Enumeration. Fortunately, enumerations and iterators

work in nearly the same manner.

Stack

Stack is a subclass of Vector that implements a standard last-in, first-out stack. Stack only

defines the default constructor, which creates an empty stack. With the release of JDK 5,

Stack was retrofitted for generics and is declared as shown here:

class Stack<E>

Here, E specifies the type of element stored in the stack.

Stack includes all the methods defined by Vector and adds several of its own, shown in

Table 17-16.

To put an object on the top of the stack, call push(). To remove and return the top

element, call pop(). You can use peek() to return, but not remove, the top object. An

EmptyStackException is thrown if you call pop() or peek() when the invoking stack is

empty. The empty() method returns true if nothing is on the stack. The search() method

Table 17-16 The Methods Defined by Stack

Method Description

boolean empty() Returns true if the stack is empty, and returns false if the stack

contains elements.

E peek() Returns the element on the top of the stack, but does not remove it.

E pop() Returns the element on the top of the stack, removing it in the

process.

E push(E element) Pushes element onto the stack. element is also returned.

int search(Object element) Searches for element in the stack. If found, its offset from the top of

the stack is returned. Otherwise, –1 is returned.

514 PART II The Java Library

determines whether an object exists on the stack and returns the number of pops that are

required to bring it to the top of the stack. Here is an example that creates a stack, pushes

several Integer objects onto it, and then pops them off again:

// Demonstrate the Stack class.
import java.util.*;

class StackDemo {
 static void showpush(Stack<Integer> st, int a) {
 st.push(a);
 System.out.println("push(" + a + ")");
 System.out.println("stack: " + st);
 }

 static void showpop(Stack<Integer> st) {
 System.out.print("pop -> ");
 Integer a = st.pop();
 System.out.println(a);
 System.out.println("stack: " + st);
 }

 public static void main(String args[]) {
 Stack<Integer> st = new Stack<Integer>();

 System.out.println("stack: " + st);
 showpush(st, 42);
 showpush(st, 66);
 showpush(st, 99);
 showpop(st);
 showpop(st);
 showpop(st);

 try {
 showpop(st);
 } catch (EmptyStackException e) {
 System.out.println("empty stack");
 }
 }
}

The following is the output produced by the program; notice how the exception handler

for EmptyStackException is caught so that you can gracefully handle a stack underflow:

 stack: []
 push(42)
 stack: [42]
 push(66)
 stack: [42, 66]
 push(99)
 stack: [42, 66, 99]
 pop -> 99

 Chapter 17 java.util Part 1: The Collections Framework 515

P
a

rt
 I

I

 stack: [42, 66]
 pop -> 66
 stack: [42]
 pop -> 42
 stack: []
 pop -> empty stack

One other point: Although Stack is not deprecated, ArrayDeque is a better choice.

Dictionary

Dictionary is an abstract class that represents a key/value storage repository and operates

much like Map. Given a key and value, you can store the value in a Dictionary object. Once

the value is stored, you can retrieve it by using its key. Thus, like a map, a dictionary can be

thought of as a list of key/value pairs. Although not currently deprecated, Dictionary is

classified as obsolete, because it is fully superseded by Map. However, Dictionary is still in

use and thus is fully discussed here.

With the advent of JDK 5, Dictionary was made generic. It is declared as shown here:

class Dictionary<K, V>

Here, K specifies the type of keys, and V specifies the type of values. The abstract methods

defined by Dictionary are listed in Table 17-17.

To add a key and a value, use the put() method. Use get() to retrieve the value of a

given key. The keys and values can each be returned as an Enumeration by the keys() and

elements() methods, respectively. The size() method returns the number of key/value

Method Purpose

Enumeration<V> elements() Returns an enumeration of the values contained in the

dictionary.

V get(Object key) Returns the object that contains the value associated

with key. If key is not in the dictionary, a null object is

returned.

boolean isEmpty() Returns true if the dictionary is empty, and returns

false if it contains at least one key.

Enumeration<K> keys() Returns an enumeration of the keys contained in the

dictionary.

V put(K key, V value) Inserts a key and its value into the dictionary. Returns

null if key is not already in the dictionary; returns the

previous value associated with key if key is already in the

dictionary.

V remove(Object key) Removes key and its value. Returns the value associated

with key. If key is not in the dictionary, a null is returned.

int size() Returns the number of entries in the dictionary.

Table 17-17 The Abstract Methods Defined by Dictionary

516 PART II The Java Library

pairs stored in a dictionary, and isEmpty() returns true when the dictionary is empty. You

can use the remove() method to delete a key/value pair.

REMEMBER The Dictionary class is obsolete. You should implement the Map interface to obtain
key/value storage functionality.

Hashtable

Hashtable was part of the original java.util and is a concrete implementation of a

Dictionary. However, with the advent of collections, Hashtable was reengineered to also

implement the Map interface. Thus, Hashtable is integrated into the Collections

Framework. It is similar to HashMap, but is synchronized.

Like HashMap, Hashtable stores key/value pairs in a hash table. However, neither keys

nor values can be null. When using a Hashtable, you specify an object that is used as a key,

and the value that you want linked to that key. The key is then hashed, and the resulting

hash code is used as the index at which the value is stored within the table.

Hashtable was made generic by JDK 5. It is declared like this:

class Hashtable<K, V>

Here, K specifies the type of keys, and V specifies the type of values.

A hash table can only store objects that override the hashCode() and equals() methods

that are defined by Object. The hashCode() method must compute and return the hash

code for the object. Of course, equals() compares two objects. Fortunately, many of Java’s

built-in classes already implement the hashCode() method. For example, the most

common type of Hashtable uses a String object as the key. String implements both

hashCode() and equals().
The Hashtable constructors are shown here:

Hashtable()

Hashtable(int size)
Hashtable(int size, float fillRatio)

Hashtable(Map<? extends K, ? extends V> m)

The first version is the default constructor. The second version creates a hash table that

has an initial size specified by size. (The default size is 11.) The third version creates a hash

table that has an initial size specified by size and a fill ratio specified by fillRatio. This ratio

must be between 0.0 and 1.0, and it determines how full the hash table can be before it is

resized upward. Specifically, when the number of elements is greater than the capacity of

the hash table multiplied by its fill ratio, the hash table is expanded. If you do not specify a

fill ratio, then 0.75 is used. Finally, the fourth version creates a hash table that is initialized

with the elements in m. The default load factor of 0.75 is used.

In addition to the methods defined by the Map interface, which Hashtable now

implements, Hashtable defines the legacy methods listed in Table 17-18. Several methods

throw NullPointerException if an attempt is made to use a null key or value.

 Chapter 17 java.util Part 1: The Collections Framework 517

P
a

rt
 I

I
The following example reworks the bank account program, shown earlier, so that it uses

a Hashtable to store the names of bank depositors and their current balances:

// Demonstrate a Hashtable.
import java.util.*;

class HTDemo {
 public static void main(String args[]) {
 Hashtable<String, Double> balance =
 new Hashtable<String, Double>();

Method Description

void clear() Resets and empties the hash table.

Object clone() Returns a duplicate of the invoking object.

boolean contains(Object value) Returns true if some value equal to value exists within

the hash table. Returns false if the value isn’t found.

boolean containsKey(Object key) Returns true if some key equal to key exists within the

hash table. Returns false if the key isn’t found.

boolean containsValue(Object value) Returns true if some value equal to value exists within

the hash table. Returns false if the value isn’t found.

Enumeration<V> elements() Returns an enumeration of the values contained in

the hash table.

V get(Object key) Returns the object that contains the value associated

with key. If key is not in the hash table, a null object is

returned.

boolean isEmpty() Returns true if the hash table is empty; returns false if

it contains at least one key.

Enumeration<K> keys() Returns an enumeration of the keys contained in the

hash table.

V put(K key, V value) Inserts a key and a value into the hash table. Returns

null if key isn’t already in the hash table; returns the

previous value associated with key if key is already in the

hash table.

void rehash() Increases the size of the hash table and rehashes all of

its keys.

V remove(Object key) Removes key and its value. Returns the value associated

with key. If key is not in the hash table, a null object is

returned.

int size() Returns the number of entries in the hash table.

String toString() Returns the string equivalent of a hash table.

Table 17-18 The Legacy Methods Defined by Hashtable

518 PART II The Java Library

 Enumeration<String> names;
 String str;
 double bal;

 balance.put("John Doe", 3434.34);
 balance.put("Tom Smith", 123.22);
 balance.put("Jane Baker", 1378.00);
 balance.put("Tod Hall", 99.22);
 balance.put("Ralph Smith", -19.08);

 // Show all balances in hashtable.
 names = balance.keys();
 while(names.hasMoreElements()) {
 str = names.nextElement();
 System.out.println(str + ": " +
 balance.get(str));
 }

 System.out.println();

 // Deposit 1,000 into John Doe's account.
 bal = balance.get("John Doe");
 balance.put("John Doe", bal+1000);
 System.out.println("John Doe's new balance: " +
 balance.get("John Doe"));
 }
}

The output from this program is shown here:

 Todd Hall: 99.22
 Ralph Smith: -19.08
 John Doe: 3434.34
 Jane Baker: 1378.0
 Tom Smith: 123.22

 John Doe's new balance: 4434.34

One important point: Like the map classes, Hashtable does not directly support

iterators. Thus, the preceding program uses an enumeration to display the contents of

balance. However, you can obtain set-views of the hash table, which permits the use of

iterators. To do so, you simply use one of the collection-view methods defined by Map, such

as entrySet() or keySet(). For example, you can obtain a set-view of the keys and cycle

through them using either an iterator or an enhanced for loop. Here is a reworked version

of the program that shows this technique:

// Use iterators with a Hashtable.
import java.util.*;

class HTDemo2 {
 public static void main(String args[]) {
 Hashtable<String, Double> balance =
 new Hashtable<String, Double>();

 Chapter 17 java.util Part 1: The Collections Framework 519

P
a

rt
 I

I

 String str;
 double bal;

 balance.put("John Doe", 3434.34);
 balance.put("Tom Smith", 123.22);
 balance.put("Jane Baker", 1378.00);
 balance.put("Tod Hall", 99.22);
 balance.put("Ralph Smith", -19.08);

 // Show all balances in hashtable.
 // First, get a set view of the keys.
 Set<String> set = balance.keySet();

 // Get an iterator.
 Iterator<String> itr = set.iterator();
 while(itr.hasNext()) {
 str = itr.next();
 System.out.println(str + ": " +
 balance.get(str));

 }

 System.out.println();

 // Deposit 1,000 into John Doe's account.
 bal = balance.get("John Doe");
 balance.put("John Doe", bal+1000);
 System.out.println("John Doe's new balance: " +
 balance.get("John Doe"));
 }
}

Properties

Properties is a subclass of Hashtable. It is used to maintain lists of values in which the key

is a String and the value is also a String. The Properties class is used by many other Java

classes. For example, it is the type of object returned by System.getProperties() when

obtaining environmental values. Although the Properties class, itself, is not generic, several

of its methods are.

Properties defines the following instance variable:

Properties defaults;

This variable holds a default property list associated with a Properties object. Properties

defines these constructors:

Properties()

Properties(Properties propDefault)

The first version creates a Properties object that has no default values. The second creates

an object that uses propDefault for its default values. In both cases, the property list is empty.

In addition to the methods that Properties inherits from Hashtable, Properties defines

the methods listed in Table 17-19. Properties also contains one deprecated method: save().
This was replaced by store() because save() did not handle errors correctly.

520 PART II The Java Library

One useful capability of the Properties class is that you can specify a default property

that will be returned if no value is associated with a certain key. For example, a default

value can be specified along with the key in the getProperty() method—such as

getProperty("name" ,"default value"). If the "name" value is not found, then "default

Method Description

String getProperty(String key) Returns the value associated with key. A null object

is returned if key is neither in the list nor in the

default property list.

String getProperty(String key,
 String defaultProperty)

Returns the value associated with key. defaultProperty
is returned if key is neither in the list nor in the

default property list.

void list(PrintStream streamOut) Sends the property list to the output stream linked

to streamOut.

void list(PrintWriter streamOut) Sends the property list to the output stream linked

to streamOut.

void load(InputStream streamIn)

 throws IOException

Inputs a property list from the input stream linked

to streamIn.

void load(Reader streamIn)

 throws IOException

Inputs a property list from the input stream linked

to streamIn.

void loadFromXML(InputStream streamIn)

 throws IOException,

 InvalidPropertiesFormatException

Inputs a property list from an XML document

linked to streamIn.

Enumeration<?> propertyNames() Returns an enumeration of the keys. This includes

those keys found in the default property list, too.

Object setProperty(String key, String value) Associates value with key. Returns the previous

value associated with key, or returns null if no such

association exists.

void store(OutputStream streamOut,
 String description)

 throws IOException

After writing the string specified by description, the

property list is written to the output stream linked

to streamOut.

void store(Writer streamOut,
 String description)

 throws IOException

After writing the string specified by description, the

property list is written to the output stream linked

to streamOut.

void storeToXML(OutputStream streamOut,
 String description)

 throws IOException

After writing the string specified by description,

the property list is written to the XML document

linked to streamOut.

void storeToXML(OutputStream streamOut,
 String description,

 String enc)

The property list and the string specified by

description is written to the XML document

linked to streamOut using the specified character

encoding.

Set<String> stringPropertyNames() Returns a set of keys.

Table 17-19 The Methods Defined by Properties

 Chapter 17 java.util Part 1: The Collections Framework 521

P
a

rt
 I

I

value" is returned. When you construct a Properties object, you can pass another instance

of Properties to be used as the default properties for the new instance. In this case, if you

call getProperty("foo") on a given Properties object, and "foo" does not exist, Java looks

for "foo" in the default Properties object. This allows for arbitrary nesting of levels of

default properties.

The following example demonstrates Properties. It creates a property list in which the

keys are the names of states and the values are the names of their capitals. Notice that the

attempt to find the capital for Florida includes a default value.

// Demonstrate a Property list.
import java.util.*;

class PropDemo {
 public static void main(String args[]) {
 Properties capitals = new Properties();

 capitals.put("Illinois", "Springfield");
 capitals.put("Missouri", "Jefferson City");
 capitals.put("Washington", "Olympia");
 capitals.put("California", "Sacramento");
 capitals.put("Indiana", "Indianapolis");

 // Get a set-view of the keys.
 Set<?> states = capitals.keySet();

 // Show all of the states and capitals.
 for(Object name : states)
 System.out.println("The capital of " +
 name + " is " +
 capitals.getProperty((String)name)
 + ".");

 System.out.println();

 // Look for state not in list -- specify default.
 String str = capitals.getProperty("Florida", "Not Found");
 System.out.println("The capital of Florida is " + str + ".");
 }
}

The output from this program is shown here:

 The capital of Missouri is Jefferson City.
 The capital of Illinois is Springfield.
 The capital of Indiana is Indianapolis.
 The capital of California is Sacramento.
 The capital of Washington is Olympia.

 The capital of Florida is Not Found.

Since Florida is not in the list, the default value is used.

522 PART II The Java Library

Although it is perfectly valid to use a default value when you call getProperty(), as

the preceding example shows, there is a better way of handling default values for most

applications of property lists. For greater flexibility, specify a default property list when

constructing a Properties object. The default list will be searched if the desired key is not

found in the main list. For example, the following is a slightly reworked version of the

preceding program, with a default list of states specified. Now, when Florida is sought,

it will be found in the default list:

// Use a default property list.
import java.util.*;

class PropDemoDef {
 public static void main(String args[]) {
 Properties defList = new Properties();
 defList.put("Florida", "Tallahassee");
 defList.put("Wisconsin", "Madison");

 Properties capitals = new Properties(defList);

 capitals.put("Illinois", "Springfield");
 capitals.put("Missouri", "Jefferson City");
 capitals.put("Washington", "Olympia");
 capitals.put("California", "Sacramento");
 capitals.put("Indiana", "Indianapolis");

 // Get a set-view of the keys.
 Set<?> states = capitals.keySet();

 // Show all of the states and capitals.
 for(Object name : states)
 System.out.println("The capital of " +
 name + " is " +
 capitals.getProperty((String)name)
 + ".");

 System.out.println();

 // Florida will now be found in the default list.
 String str = capitals.getProperty("Florida");
 System.out.println("The capital of Florida is "
 + str + ".");
 }
}

Using store() and load()

One of the most useful aspects of Properties is that the information contained in a

Properties object can be easily stored to or loaded from disk with the store() and load()
methods. At any time, you can write a Properties object to a stream or read it back. This

makes property lists especially convenient for implementing simple databases. For example,

the following program uses a property list to create a simple computerized telephone book

that stores names and phone numbers. To find a person’s number, you enter his or her

 Chapter 17 java.util Part 1: The Collections Framework 523

P
a

rt
 I

I

name. The program uses the store() and load() methods to store and retrieve the list.

When the program executes, it first tries to load the list from a file called phonebook.dat. If
this file exists, the list is loaded. You can then add to the list. If you do, the new list is saved

when you terminate the program. Notice how little code is required to implement a small,

but functional, computerized phone book.

/* A simple telephone number database that uses
 a property list. */
import java.io.*;
import java.util.*;

class Phonebook {
 public static void main(String args[])
 throws IOException
 {
 Properties ht = new Properties();
 BufferedReader br =
 new BufferedReader(new InputStreamReader(System.in));
 String name, number;
 FileInputStream fin = null;
 boolean changed = false;

 // Try to open phonebook.dat file.
 try {
 fin = new FileInputStream("phonebook.dat");
 } catch(FileNotFoundException e) {
 // ignore missing file
 }

 /* If phonebook file already exists,
 load existing telephone numbers. */
 try {
 if(fin != null) {
 ht.load(fin);
 fin.close();
 }
 } catch(IOException e) {
 System.out.println("Error reading file.");
 }

 // Let user enter new names and numbers.
 do {
 System.out.println("Enter new name" +
 " ('quit' to stop): ");
 name = br.readLine();
 if(name.equals("quit")) continue;

 System.out.println("Enter number: ");
 number = br.readLine();

 ht.put(name, number);
 changed = true;
 } while(!name.equals("quit"));

524 PART II The Java Library

 // If phone book data has changed, save it.
 if(changed) {
 FileOutputStream fout = new FileOutputStream("phonebook.dat");

 ht.store(fout, "Telephone Book");
 fout.close();
 }

 // Look up numbers given a name.
 do {
 System.out.println("Enter name to find" +
 " ('quit' to quit): ");
 name = br.readLine();
 if(name.equals("quit")) continue;

 number = (String) ht.get(name);
 System.out.println(number);
 } while(!name.equals("quit"));
 }
}

Parting Thoughts on Collections
The Collections Framework gives you, the programmer, a powerful set of well-engineered

solutions to some of programming’s most common tasks. Consider using a collection the

next time that you need to store and retrieve information. Remember, collections need not

be reserved for only the “large jobs,” such as corporate databases, mailing lists, or inventory

systems. They are also effective when applied to smaller jobs. For example, a TreeMap

might make an excellent collection to hold the directory structure of a set of files. A

TreeSet could be quite useful for storing project-management information. Frankly, the

types of problems that will benefit from a collections-based solution are limited only by your

imagination.

18
CHAPTER

 525

java.util Part 2:
More Utility Classes

This chapter continues our discussion of java.util by examining those classes and interfaces

that are not part of the Collections Framework. These include classes that tokenize strings,

work with dates, compute random numbers, bundle resources, and observe events. Also

covered are the Formatter and Scanner classes which make it easy to write and read formatted

data. Finally, the subpackages of java.util are briefly mentioned at the end of this chapter.

StringTokenizer
The processing of text often consists of parsing a formatted input string. Parsing is the

division of text into a set of discrete parts, or tokens, which in a certain sequence can convey

a semantic meaning. The StringTokenizer class provides the first step in this parsing process,

often called the lexer (lexical analyzer) or scanner. StringTokenizer implements the

Enumeration interface. Therefore, given an input string, you can enumerate the individual

tokens contained in it using StringTokenizer.

To use StringTokenizer, you specify an input string and a string that contains delimiters.

Delimiters are characters that separate tokens. Each character in the delimiters string is

considered a valid delimiter—for example, ",;:" sets the delimiters to a comma, semicolon,

and colon. The default set of delimiters consists of the whitespace characters: space, tab,

newline, and carriage return.

The StringTokenizer constructors are shown here:

StringTokenizer(String str)
StringTokenizer(String str, String delimiters)
StringTokenizer(String str, String delimiters, boolean delimAsToken)

In all versions, str is the string that will be tokenized. In the first version, the default

delimiters are used. In the second and third versions, delimiters is a string that specifies the

delimiters. In the third version, if delimAsToken is true, then the delimiters are also returned

as tokens when the string is parsed. Otherwise, the delimiters are not returned. Delimiters

are not returned as tokens by the first two forms.

526 PART II The Java Library

Once you have created a StringTokenizer object, the nextToken() method is used to

extract consecutive tokens. The hasMoreTokens() method returns true while there are

more tokens to be extracted. Since StringTokenizer implements Enumeration, the

hasMoreElements() and nextElement() methods are also implemented, and they act the

same as hasMoreTokens() and nextToken(), respectively. The StringTokenizer methods

are shown in Table 18-1.

Here is an example that creates a StringTokenizer to parse "key=value" pairs.

Consecutive sets of "key=value" pairs are separated by a semicolon.

// Demonstrate StringTokenizer.
import java.util.StringTokenizer;

class STDemo {
 static String in = "title=Java: The Complete Reference;" +
 "author=Schildt;" +
 "publisher=McGraw-Hill;" +
 "copyright=2011";

 public static void main(String args[]) {
 StringTokenizer st = new StringTokenizer(in, "=;");

 while(st.hasMoreTokens()) {
 String key = st.nextToken();
 String val = st.nextToken();
 System.out.println(key + "\t" + val);
 }
 }
}

The output from this program is shown here:

 title Java: The Complete Reference
 author Schildt
 publisher McGraw-Hill
 copyright 2011

Table 18-1 The Methods Defined by StringTokenizer

Method Description

int countTokens() Using the current set of delimiters, the method determines

the number of tokens left to be parsed and returns the result.

boolean hasMoreElements() Returns true if one or more tokens remain in the string and

returns false if there are none.

boolean hasMoreTokens() Returns true if one or more tokens remain in the string and

returns false if there are none.

Object nextElement() Returns the next token as an Object.

String nextToken() Returns the next token as a String.

String nextToken(String delimiters) Returns the next token as a String and sets the delimiters

string to that specified by delimiters.

 Chapter 18 java.util Part 2: More Utility Classes 527

P
a

rt
 I

I

BitSet
A BitSet class creates a special type of array that holds bit values. This array can increase in

size as needed. This makes it similar to a vector of bits. The BitSet constructors are shown

here:

BitSet()

BitSet(int size)

The first version creates a default object. The second version allows you to specify its initial

size (that is, the number of bits that it can hold). All bits are initialized to zero.

BitSet defines the methods listed in Table 18-2.

Table 18-2 The Methods Defined by BitSet

Method Description

void and(BitSet bitSet) ANDs the contents of the invoking BitSet object with

those specified by bitSet. The result is placed into the

invoking object.

void andNot(BitSet bitSet) For each 1 bit in bitSet, the corresponding bit in the

invoking BitSet is cleared.

int cardinality() Returns the number of set bits in the invoking object.

void clear() Zeros all bits.

void clear(int index) Zeros the bit specified by index.

void clear(int startIndex, int endIndex) Zeros the bits from startIndex to endIndex –1.

Object clone() Duplicates the invoking BitSet object.

boolean equals(Object bitSet) Returns true if the invoking bit set is equivalent to the

one passed in bitSet. Otherwise, the method returns false.

void flip(int index) Reverses the bit specified by index.

void flip(int startIndex, int endIndex) Reverses the bits from startIndex to endIndex –1.

boolean get(int index) Returns the current state of the bit at the specified index.

BitSet get(int startIndex, int endIndex) Returns a BitSet that consists of the bits from startIndex

to endIndex –1. The invoking object is not changed.

int hashCode() Returns the hash code for the invoking object.

boolean intersects(BitSet bitSet) Returns true if at least one pair of corresponding bits

within the invoking object and bitSet are 1.

boolean isEmpty() Returns true if all bits in the invoking object are zero.

int length() Returns the number of bits required to hold the

contents of the invoking BitSet. This value is

determined by the location of the last 1 bit.

int nextClearBit(int startIndex) Returns the index of the next cleared bit (that is, the

next zero bit), starting from the index specified by

startIndex.

528 PART II The Java Library

Method Description

int nextSetBit(int startIndex) Returns the index of the next set bit (that is, the next

1 bit), starting from the index specified by startIndex. If

no bit is set, –1 is returned.

void or(BitSet bitSet) ORs the contents of the invoking BitSet object with that

specified by bitSet. The result is placed into the invoking

object.

int previousClearBit(int startIndex) Returns the index of the next cleared bit (that is,

the next 0 bit) at or prior to the index specified by

startIndex. If no cleared bit is found, –1 is returned.

(Added by JDK 7.)

int previousSetBit(int startIndex) Returns the index of the next set bit (that is, the next 1

bit) at or prior to the index specified by startIndex. If no

set bit is found, –1 is returned. (Added by JDK 7.)

void set(int index) Sets the bit specified by index.

void set(int index, boolean v) Sets the bit specified by index to the value passed in v.

true sets the bit; false clears the bit.

void set(int startIndex, int endIndex) Sets the bits from startIndex to endIndex –1.

void set(int startIndex, int endIndex,

 boolean v)

Sets the bits from startIndex to endIndex –1 to the value

passed in v. true sets the bits; false clears the bits.

int size() Returns the number of bits in the invoking BitSet object.

byte[] toByteArray() Returns a byte array that contains the invoking BitSet
object. (Added by JDK 7.)

long[] toLongArray() Returns a long array that contains the invoking BitSet
object. (Added by JDK 7.)

String toString() Returns the string equivalent of the invoking BitSet
object.

static BitSet valueOf(byte[] v) Returns a BitSet that contains the bits in v. (Added

by JDK 7.)

static BitSet valueOf(ByteBuffer v) Returns a BitSet that contains the bits in v. (Added

by JDK 7.)

static BitSet valueOf(long[] v) Returns a BitSet that contains the bits in v. (Added

by JDK 7.)

static BitSet valueOf(LongBuffer v) Returns a BitSet that contains the bits in v. (Added

by JDK 7.)

void xor(BitSet bitSet) XORs the contents of the invoking BitSet object with

that specified by bitSet. The result is placed into the

invoking object.

Table 18-2 The Methods Defined by BitSet (continued)

 Chapter 18 java.util Part 2: More Utility Classes 529

P
a

rt
 I

I

Here is an example that demonstrates BitSet:

// BitSet Demonstration.
import java.util.BitSet;

class BitSetDemo {
 public static void main(String args[]) {
 BitSet bits1 = new BitSet(16);
 BitSet bits2 = new BitSet(16);

 // set some bits
 for(int i=0; i<16; i++) {
 if((i%2) == 0) bits1.set(i);
 if((i%5) != 0) bits2.set(i);
 }

 System.out.println("Initial pattern in bits1: ");
 System.out.println(bits1);
 System.out.println("\nInitial pattern in bits2: ");
 System.out.println(bits2);

 // AND bits
 bits2.and(bits1);
 System.out.println("\nbits2 AND bits1: ");
 System.out.println(bits2);

 // OR bits
 bits2.or(bits1);
 System.out.println("\nbits2 OR bits1: ");
 System.out.println(bits2);

 // XOR bits
 bits2.xor(bits1);
 System.out.println("\nbits2 XOR bits1: ");
 System.out.println(bits2);
 }
}

The output from this program is shown here. When toString() converts a BitSet object to

its string equivalent, each set bit is represented by its bit position. Cleared bits are not

shown.

 Initial pattern in bits1:
 {0, 2, 4, 6, 8, 10, 12, 14}

 Initial pattern in bits2:
 {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14}

 bits2 AND bits1:
 {2, 4, 6, 8, 12, 14}

530 PART II The Java Library

 bits2 OR bits1:
 {0, 2, 4, 6, 8, 10, 12, 14}

 bits2 XOR bits1:
 {}

Date
The Date class encapsulates the current date and time. Before beginning our examination

of Date, it is important to point out that it has changed substantially from its original

version defined by Java 1.0. When Java 1.1 was released, many of the functions carried out

by the original Date class were moved into the Calendar and DateFormat classes, and as a

result, many of the original 1.0 Date methods were deprecated. Since the deprecated 1.0

methods should not be used for new code, they are not described here.

Date supports the following constructors:

Date()

Date(long millisec)

The first constructor initializes the object with the current date and time. The second

constructor accepts one argument that equals the number of milliseconds that have elapsed

since midnight, January 1, 1970. The nondeprecated methods defined by Date are shown

in Table 18-3. Date also implements the Comparable interface.

Table 18-3 The Nondeprecated Methods Defined by Date

Method Description

boolean after(Date date) Returns true if the invoking Date object contains a date that is

later than the one specified by date. Otherwise, it returns false.

boolean before(Date date) Returns true if the invoking Date object contains a date that is

earlier than the one specified by date. Otherwise, it returns false.

Object clone() Duplicates the invoking Date object.

int compareTo(Date date) Compares the value of the invoking object with that of date.
Returns 0 if the values are equal. Returns a negative value if the

invoking object is earlier than date. Returns a positive value if the

invoking object is later than date.

boolean equals(Object date) Returns true if the invoking Date object contains the same time

and date as the one specified by date. Otherwise, it returns false.

long getTime() Returns the number of milliseconds that have elapsed since

January 1, 1970.

int hashCode() Returns a hash code for the invoking object.

void setTime(long time) Sets the time and date as specified by time, which represents an

elapsed time in milliseconds from midnight, January 1, 1970.

String toString() Converts the invoking Date object into a string and returns the result.

 Chapter 18 java.util Part 2: More Utility Classes 531

P
a

rt
 I

I

As you can see by examining Table 18-3, the non-deprecated Date features do not allow

you to obtain the individual components of the date or time. As the following program

demonstrates, you can only obtain the date and time in terms of milliseconds or in its

default string representation as returned by toString(). To obtain more-detailed

information about the date and time, you will use the Calendar class.

// Show date and time using only Date methods.
import java.util.Date;

class DateDemo {
 public static void main(String args[]) {
 // Instantiate a Date object
 Date date = new Date();

 // display time and date using toString()
 System.out.println(date);

 // Display number of milliseconds since midnight, January 1, 1970 GMT
 long msec = date.getTime();
 System.out.println("Milliseconds since Jan. 1, 1970 GMT = " + msec);
 }
}

Sample output is shown here:

 Sat Jan 01 10:27:33 CST 2011
 Milliseconds since Jan. 1, 1970 GMT = 1293899253417

Calendar
The abstract Calendar class provides a set of methods that allows you to convert a time in

milliseconds to a number of useful components. Some examples of the type of information

that can be provided are year, month, day, hour, minute, and second. It is intended that

subclasses of Calendar will provide the specific functionality to interpret time information

according to their own rules. This is one aspect of the Java class library that enables you to

write programs that can operate in international environments. An example of such a

subclass is GregorianCalendar.

Calendar provides no public constructors.

Calendar defines several protected instance variables. areFieldsSet is a boolean that

indicates if the time components have been set. fields is an array of ints that holds the

components of the time. isSet is a boolean array that indicates if a specific time component

has been set. time is a long that holds the current time for this object. isTimeSet is a

boolean that indicates if the current time has been set.

Some commonly used methods defined by Calendar are shown in Table 18-4.

532 PART II The Java Library

Table 18-4 Commonly Used Methods Defined by Calendar

Method Description

abstract void add(int which, int val) Adds val to the time or date component specified by

which. To subtract, add a negative value. which must

be one of the fields defined by Calendar, such as

Calendar.HOUR.

boolean after(Object calendarObj) Returns true if the invoking Calendar object

contains a date that is later than the one specified by

calendarObj. Otherwise, it returns false.

boolean before(Object calendarObj) Returns true if the invoking Calendar object

contains a date that is earlier than the one specified

by calendarObj. Otherwise, it returns false.

final void clear() Zeros all time components in the invoking object.

final void clear(int which) Zeros the time component specified by which in the

invoking object.

Object clone() Returns a duplicate of the invoking object.

boolean equals(Object calendarObj) Returns true if the invoking Calendar object

contains a date that is equal to the one specified by

calendarObj. Otherwise, it returns false.

int get(int calendarField) Returns the value of one component of the invoking

object. The component is indicated by calendarField.

Examples of the components that can be requested

are Calendar.YEAR, Calendar.MONTH,

Calendar.MINUTE, and so forth.

static Locale[] getAvailableLocales() Returns an array of Locale objects that contains the

locales for which calendars are available.

static Calendar getInstance() Returns a Calendar object for the default locale and

time zone.

static Calendar getInstance(TimeZone tz) Returns a Calendar object for the time zone

specified by tz. The default locale is used.

static Calendar getInstance(Locale locale) Returns a Calendar object for the locale specified by

locale. The default time zone is used.

static Calendar getInstance(TimeZone tz,
 Locale locale)

Returns a Calendar object for the time zone

specified by tz and the locale specified by locale.

final Date getTime() Returns a Date object equivalent to the time of the

invoking object.

TimeZone getTimeZone() Returns the time zone for the invoking object.

final boolean isSet(int which) Returns true if the specified time component is set.

Otherwise, it returns false.

void set(int which, int val) Sets the date or time component specified by which

to the value specified by val in the invoking object.

which must be one of the fields defined by Calendar,

such as Calendar.HOUR.

 Chapter 18 java.util Part 2: More Utility Classes 533

P
a

rt
 I

I

Calendar defines the following int constants, which are used when you get or set

components of the calendar:

ALL_STYLES FRIDAY PM

AM HOUR SATURDAY

AM_PM HOUR_OF_DAY SECOND

APRIL JANUARY SEPTEMBER

AUGUST JULY SHORT

DATE JUNE SUNDAY

DAY_OF_MONTH LONG THURSDAY

DAY_OF_WEEK MARCH TUESDAY

DAY_OF_WEEK_IN_MONTH MAY UNDECIMBER

DAY_OF_YEAR MILLISECOND WEDNESDAY

DECEMBER MINUTE WEEK_OF_MONTH

DST_OFFSET MONDAY WEEK_OF_YEAR

ERA MONTH YEAR

FEBRUARY NOVEMBER ZONE_OFFSET

FIELD_COUNT OCTOBER

The following program demonstrates several Calendar methods:

// Demonstrate Calendar
import java.util.Calendar;

class CalendarDemo {
 public static void main(String args[]) {
 String months[] = {
 "Jan", "Feb", "Mar", "Apr",
 "May", "Jun", "Jul", "Aug",
 "Sep", "Oct", "Nov", "Dec"};

Method Description

final void set(int year, int month,

 int dayOfMonth)

Sets various date and time components of the

invoking object.

final void set(int year, int month,

 int dayOfMonth, int hours,
 int minutes)

Sets various date and time components of the

invoking object.

 final void set(int year, int month,

 int dayOfMonth, int hours,
 int minutes, int seconds)

Sets various date and time components of the

invoking object.

final void setTime(Date d) Sets various date and time components of the

invoking object. This information is obtained from

the Date object d.

void setTimeZone(TimeZone tz) Sets the time zone for the invoking object to that

specified by tz.

Table 18-4 Commonly Used Methods Defined by Calendar (continued)

534 PART II The Java Library

 // Create a calendar initialized with the
 // current date and time in the default
 // locale and timezone.
 Calendar calendar = Calendar.getInstance();

 // Display current time and date information.
 System.out.print("Date: ");
 System.out.print(months[calendar.get(Calendar.MONTH)]);
 System.out.print(" " + calendar.get(Calendar.DATE) + " ");
 System.out.println(calendar.get(Calendar.YEAR));

 System.out.print("Time: ");
 System.out.print(calendar.get(Calendar.HOUR) + ":");
 System.out.print(calendar.get(Calendar.MINUTE) + ":");
 System.out.println(calendar.get(Calendar.SECOND));

 // Set the time and date information and display it.
 calendar.set(Calendar.HOUR, 10);
 calendar.set(Calendar.MINUTE, 29);
 calendar.set(Calendar.SECOND, 22);
 System.out.print("Updated time: ");
 System.out.print(calendar.get(Calendar.HOUR) + ":");
 System.out.print(calendar.get(Calendar.MINUTE) + ":");
 System.out.println(calendar.get(Calendar.SECOND));
 }
}

Sample output is shown here:

 Date: Jan 1 2011
 Time: 11:24:25
 Updated time: 10:29:22

GregorianCalendar
GregorianCalendar is a concrete implementation of a Calendar that implements the

normal Gregorian calendar with which you are familiar. The getInstance() method of

Calendar will typically return a GregorianCalendar initialized with the current date and

time in the default locale and time zone.

GregorianCalendar defines two fields: AD and BC. These represent the two eras defined

by the Gregorian calendar.

There are also several constructors for GregorianCalendar objects. The default,

GregorianCalendar(), initializes the object with the current date and time in the default

locale and time zone. Three more constructors offer increasing levels of specificity:

GregorianCalendar(int year, int month, int dayOfMonth)

GregorianCalendar(int year, int month, int dayOfMonth, int hours,
 int minutes)
GregorianCalendar(int year, int month, int dayOfMonth, int hours,
 int minutes, int seconds)

 Chapter 18 java.util Part 2: More Utility Classes 535

P
a

rt
 I

I

All three versions set the day, month, and year. Here, year specifies the year. The month is

specified by month, with zero indicating January. The day of the month is specified by

dayOfMonth. The first version sets the time to midnight. The second version also sets the

hours and the minutes. The third version adds seconds.

You can also construct a GregorianCalendar object by specifying the locale and/or time

zone. The following constructors create objects initialized with the current date and time

using the specified time zone and/or locale:

GregorianCalendar(Locale locale)
GregorianCalendar(TimeZone timeZone)
GregorianCalendar(TimeZone timeZone, Locale locale)

GregorianCalendar provides an implementation of all the abstract methods in

Calendar. It also provides some additional methods. Perhaps the most interesting is

isLeapYear(), which tests if the year is a leap year. Its form is

boolean isLeapYear(int year)

This method returns true if year is a leap year and false otherwise.

The following program demonstrates GregorianCalendar:

// Demonstrate GregorianCalendar
import java.util.*;

class GregorianCalendarDemo {
 public static void main(String args[]) {
 String months[] = {
 "Jan", "Feb", "Mar", "Apr",
 "May", "Jun", "Jul", "Aug",
 "Sep", "Oct", "Nov", "Dec"};
 int year;

 // Create a Gregorian calendar initialized
 // with the current date and time in the
 // default locale and timezone.
 GregorianCalendar gcalendar = new GregorianCalendar();

 // Display current time and date information.
 System.out.print("Date: ");
 System.out.print(months[gcalendar.get(Calendar.MONTH)]);
 System.out.print(" " + gcalendar.get(Calendar.DATE) + " ");
 System.out.println(year = gcalendar.get(Calendar.YEAR));

 System.out.print("Time: ");
 System.out.print(gcalendar.get(Calendar.HOUR) + ":");
 System.out.print(gcalendar.get(Calendar.MINUTE) + ":");
 System.out.println(gcalendar.get(Calendar.SECOND));

 // Test if the current year is a leap year
 if(gcalendar.isLeapYear(year)) {
 System.out.println("The current year is a leap year");
 }
 else {

536 PART II The Java Library

 System.out.println("The current year is not a leap year");
 }
 }
}

Sample output is shown here:

 Date: Jan 1 2011
 Time: 11:25:27
 The current year is not a leap year

TimeZone
Another time-related class is TimeZone. The abstract TimeZone class allows you to work

with time zone offsets from Greenwich mean time (GMT), also referred to as Coordinated

Universal Time (UTC). It also computes daylight saving time. TimeZone only supplies the

default constructor.

A sampling of methods defined by TimeZone is given in Table 18-5.

Table 18-5 Some of the Methods Defined by TimeZone

Method Description

Object clone() Returns a TimeZone-specific version of clone().

static String[] getAvailableIDs() Returns an array of String objects representing the

names of all time zones.

static String[]

 getAvailableIDs(int timeDelta)

Returns an array of String objects representing the names

of all time zones that are timeDelta offset from GMT.

static TimeZone getDefault() Returns a TimeZone object that represents the default

time zone used on the host computer.

String getID() Returns the name of the invoking TimeZone object.

abstract int getOffset(int era, int year,
 int month,

 int dayOfMonth,

 int dayOfWeek,

 int millisec)

Returns the offset that should be added to GMT to

compute local time. This value is adjusted for daylight

saving time. The parameters to the method represent

date and time components.

abstract int getRawOffset() Returns the raw offset (in milliseconds) that should be

added to GMT to compute local time. This value is not

adjusted for daylight saving time.

static TimeZone

 getTimeZone(String tzName)
Returns the TimeZone object for the time zone named

tzName.

abstract boolean inDaylightTime(Date d) Returns true if the date represented by d is in daylight

saving time in the invoking object. Otherwise, it

returns false.

static void setDefault(TimeZone tz) Sets the default time zone to be used on this host. tz is
a reference to the TimeZone object to be used.

 Chapter 18 java.util Part 2: More Utility Classes 537

P
a

rt
 I

I

SimpleTimeZone
The SimpleTimeZone class is a convenient subclass of TimeZone. It implements

TimeZone's abstract methods and allows you to work with time zones for a Gregorian

calendar. It also computes daylight saving time.

SimpleTimeZone defines four constructors. One is

SimpleTimeZone(int timeDelta, String tzName)

This constructor creates a SimpleTimeZone object. The offset relative to Greenwich mean

time (GMT) is timeDelta. The time zone is named tzName.
The second SimpleTimeZone constructor is

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,

 int dstDayInMonth0, int dstDay0, int time0,

 int dstMonth1, int dstDayInMonth1, int dstDay1,

 int time1)

Here, the offset relative to GMT is specified in timeDelta. The time zone name is passed in

tzId. The start of daylight saving time is indicated by the parameters dstMonth0, dstDayInMonth0,

dstDay0, and time0. The end of daylight saving time is indicated by the parameters

dstMonth1, dstDayInMonth1, dstDay1, and time1.

The third SimpleTimeZone constructor is

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,

 int dstDayInMonth0, int dstDay0, int time0,

 int dstMonth1, int dstDayInMonth1,

 int dstDay1, int time1, int dstDelta)

Here, dstDelta is the number of milliseconds saved during daylight saving time.

The fourth SimpleTimeZone constructor is

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,

 int dstDayInMonth0, int dstDay0, int time0,

 int time0mode, int dstMonth1, int dstDayInMonth1,

 int dstDay1, int time1, int time1mode, int dstDelta)

Here, time0mode specifies the mode of the starting time, and time1mode specifies the mode of

the ending time. Valid mode values include

STANDARD_TIME WALL_TIME UTC_TIME

Method Description

void setID(String tzName) Sets the name of the time zone (that is, its ID) to that

specified by tzName.

abstract void setRawOffset(int millis) Sets the offset in milliseconds from GMT.

abstract boolean useDaylightTime() Returns true if the invoking object uses daylight saving

time. Otherwise, it returns false.

Table 18-5 Some of the Methods Defined by TimeZone (continued)

538 PART II The Java Library

The time mode indicates how the time values are interpreted. The default mode used by

the other constructors is WALL_TIME.

Locale
The Locale class is instantiated to produce objects that describe a geographical or cultural

region. It is one of several classes that provide you with the ability to write programs that

can execute in different international environments. For example, the formats used to

display dates, times, and numbers are different in various regions.

Internationalization is a large topic that is beyond the scope of this book. However,

many programs will only need to deal with its basics, which include setting the current

locale.

The Locale class defines the following constants that are useful for dealing with the

most common locales:

CANADA GERMAN KOREAN

CANADA_FRENCH GERMANY PRC

CHINA ITALIAN SIMPLIFIED_CHINESE

CHINESE ITALY TAIWAN

ENGLISH JAPAN TRADITIONAL_CHINESE

FRANCE JAPANESE UK

FRENCH KOREA US

For example, the expression Locale.CANADA represents the Locale object for Canada.

The constructors for Locale are

Locale(String language)
Locale(String language, String country)
Locale(String language, String country, String variant)

These constructors build a Locale object to represent a specific language and in the case

of the last two, country. These values must contain standard language and country codes.

Auxiliary variant information can be provided in variant.
Locale defines several methods. One of the most important is setDefault(), shown here:

static void setDefault(Locale localeObj)

This sets the default locale used by the JVM to that specified by localeObj.
Some other interesting methods are the following:

final String getDisplayCountry()

final String getDisplayLanguage()

final String getDisplayName()

These return human-readable strings that can be used to display the name of the country,

the name of the language, and the complete description of the locale.

The default locale can be obtained using getDefault(), shown here:

static Locale getDefault()

 Chapter 18 java.util Part 2: More Utility Classes 539

P
a

rt
 I

I

JDK 7 adds significant upgrades to the Locale class that support Internet Engineering

Task Force (IETF) BCP 47, which defines tags for identifying languages, and Unicode

Technical Standard (UTS) 35, which defines the Locale Data Markup Language (LDML).

Support for BCP 47 and UTS 35 caused several features to be added to Locale, including

several new methods and the Locale.Builder class. Among others, new methods include

getScript(), which obtains the locale’s script, and toLanguageTag(), which obtains a string

that contains the locale’s language tag. The Locale.Builder class constructs Locale instances.

It ensures that a locale specification is well-formed as defined by BCP 47. (The Locale

constructors do not provide such a check.)

Calendar and GregorianCalendar are examples of classes that operate in a locale-

sensitive manner. DateFormat and SimpleDateFormat also depend on the locale.

Random
The Random class is a generator of pseudorandom numbers. These are called pseudorandom

numbers because they are simply uniformly distributed sequences. Random defines the

following constructors:

Random()

Random(long seed)

The first version creates a number generator that uses a reasonably unique seed. The

second form allows you to specify a seed value manually.

If you initialize a Random object with a seed, you define the starting point for the

random sequence. If you use the same seed to initialize another Random object, you will

extract the same random sequence. If you want to generate different sequences, specify

different seed values. One way to do this is to use the current time to seed a Random object.

This approach reduces the possibility of getting repeated sequences.

The public methods defined by Random are shown in Table 18-6.

As you can see, there are seven types of random numbers that you can extract from a

Random object. Random Boolean values are available from nextBoolean(). Random bytes

can be obtained by calling nextBytes(). Integers can be extracted via the nextInt() method.

Long integers, uniformly distributed over their range, can be obtained with nextLong().

Method Description

boolean nextBoolean() Returns the next boolean random number.

void nextBytes(byte vals[]) Fills vals with randomly generated values.

double nextDouble() Returns the next double random number.

float nextFloat() Returns the next float random number.

double nextGaussian() Returns the next Gaussian random number.

int nextInt() Returns the next int random number.

int nextInt(int n) Returns the next int random number within the range zero to n.

long nextLong() Returns the next long random number.

void setSeed(long newSeed) Sets the seed value (that is, the starting point for the random

number generator) to that specified by newSeed.

Table 18-6 The Methods Defined by Random

540 PART II The Java Library

The nextFloat() and nextDouble() methods return a uniformly distributed float and

double, respectively, between 0.0 and 1.0. Finally, nextGaussian() returns a double value

centered at 0.0 with a standard deviation of 1.0. This is what is known as a bell curve.
Here is an example that demonstrates the sequence produced by nextGaussian(). It

obtains 100 random Gaussian values and averages these values. The program also counts the

number of values that fall within two standard deviations, plus or minus, using increments of

0.5 for each category. The result is graphically displayed sideways on the screen.

// Demonstrate random Gaussian values.
import java.util.Random;
class RandDemo {
 public static void main(String args[]) {
 Random r = new Random();
 double val;
 double sum = 0;
 int bell[] = new int[10];

 for(int i=0; i<100; i++) {
 val = r.nextGaussian();
 sum += val;
 double t = -2;

 for(int x=0; x<10; x++, t += 0.5)
 if(val < t) {
 bell[x]++;
 break;
 }
 }
 System.out.println("Average of values: " +
 (sum/100));

 // display bell curve, sideways
 for(int i=0; i<10; i++) {
 for(int x=bell[i]; x>0; x--)
 System.out.print("*");
 System.out.println();
 }
 }
}

Here is a sample program run. As you can see, a bell-like distribution of numbers is

obtained.

 Average of values: 0.0702235271133344
 **

 Chapter 18 java.util Part 2: More Utility Classes 541

P
a

rt
 I

I

Observable
The Observable class is used to create subclasses that other parts of your program can

observe. When an object of such a subclass undergoes a change, observing classes are

notified. Observing classes must implement the Observer interface, which defines the

update() method. The update() method is called when an observer is notified of a change

in an observed object.

Observable defines the methods shown in Table 18-7. An object that is being observed

must follow two simple rules. First, if it has changed, it must call setChanged(). Second,

when it is ready to notify observers of this change, it must call notifyObservers(). This

causes the update() method in the observing object(s) to be called. Be careful—if the

object calls notifyObservers() without having previously called setChanged(), no action

will take place. The observed object must call both setChanged() and notifyObservers()
before update() will be called.

Notice that notifyObservers() has two forms: one that takes an argument and one

that does not. If you call notifyObservers() with an argument, this object is passed to the

observer’s update() method as its second parameter. Otherwise, null is passed to update().
You can use the second parameter for passing any type of object that is appropriate for your

application.

The Observer Interface

To observe an observable object, you must implement the Observer interface. This

interface defines only the one method shown here:

void update(Observable observOb, Object arg)

Here, observOb is the object being observed, and arg is the value passed by notifyObservers().
The update() method is called when a change in the observed object takes place.

Method Description

void addObserver(Observer obj) Adds obj to the list of objects observing the invoking object.

protected void clearChanged() Calling this method returns the status of the invoking object

to "unchanged."

int countObservers() Returns the number of objects observing the invoking object.

void deleteObserver(Observer obj) Removes obj from the list of objects observing the invoking

object.

void deleteObservers() Removes all observers for the invoking object.

boolean hasChanged() Returns true if the invoking object has been modified and

false if it has not.

void notifyObservers() Notifies all observers of the invoking object that it has

changed by calling update(). A null is passed as the second

argument to update().

void notifyObservers(Object obj) Notifies all observers of the invoking object that it has changed

by calling update(). obj is passed as an argument to update().

protected void setChanged() Called when the invoking object has changed.

Table 18-7 The Methods Defined by Observable

542 PART II The Java Library

An Observer Example

Here is an example that demonstrates an observable object. It creates an observer class,

called Watcher, that implements the Observer interface. The class being monitored is

called BeingWatched. It extends Observable. Inside BeingWatched is the method counter(),
which simply counts down from a specified value. It uses sleep() to wait a tenth of a second

between counts. Each time the count changes, notifyObservers() is called with the current

count passed as its argument. This causes the update() method inside Watcher to be called,

which displays the current count. Inside main(), a Watcher and a BeingWatched object,

called observing and observed, respectively, are created. Then, observing is added to the

list of observers for observed. This means that observing.update() will be called each time

counter() calls notifyObservers().

/* Demonstrate the Observable class and the
 Observer interface.
*/
import java.util.*;

// This is the observing class.
class Watcher implements Observer {
 public void update(Observable obj, Object arg) {
 System.out.println("update() called, count is " +
 ((Integer)arg).intValue());
 }
}

// This is the class being observed.
class BeingWatched extends Observable {
 void counter(int period) {
 for(; period >=0; period--) {
 setChanged();
 notifyObservers(new Integer(period));
 try {
 Thread.sleep(100);
 } catch(InterruptedException e) {
 System.out.println("Sleep interrupted");
 }
 }
 }

}

class ObserverDemo {
 public static void main(String args[]) {
 BeingWatched observed = new BeingWatched();
 Watcher observing = new Watcher();

 /* Add the observing to the list of observers for
 observed object. */
 observed.addObserver(observing);

 observed.counter(10);
 }
}

 Chapter 18 java.util Part 2: More Utility Classes 543

P
a

rt
 I

I

The output from this program is shown here:

 update() called, count is 10
 update() called, count is 9
 update() called, count is 8
 update() called, count is 7
 update() called, count is 6
 update() called, count is 5
 update() called, count is 4
 update() called, count is 3
 update() called, count is 2
 update() called, count is 1
 update() called, count is 0

More than one object can be an observer. For example, the following program

implements two observing classes and adds an object of each class to the BeingWatched

observer list. The second observer waits until the count reaches zero and then rings the bell.

/* An object may be observed by two or more
 observers.
*/

import java.util.*;

// This is the first observing class.
class Watcher1 implements Observer {
 public void update(Observable obj, Object arg) {
 System.out.println("update() called, count is " +
 ((Integer)arg).intValue());

 }
}

// This is the second observing class.
class Watcher2 implements Observer {
 public void update(Observable obj, Object arg) {
 // Ring bell when done
 if(((Integer)arg).intValue() == 0)
 System.out.println("Done" + '\7');
 }
}

// This is the class being observed.
class BeingWatched extends Observable {
 void counter(int period) {
 for(; period >=0; period--) {
 setChanged();
 notifyObservers(new Integer(period));
 try {
 Thread.sleep(100);
 } catch(InterruptedException e) {
 System.out.println("Sleep interrupted");

544 PART II The Java Library

 }
 }
 }
}

class TwoObservers {
 public static void main(String args[]) {
 BeingWatched observed = new BeingWatched();
 Watcher1 observing1 = new Watcher1();
 Watcher2 observing2 = new Watcher2();

 // add both observers
 observed.addObserver(observing1);
 observed.addObserver(observing2);

 observed.counter(10);
 }
}

The Observable class and the Observer interface allow you to implement sophisticated

program architectures based on the document/view methodology. They are also useful in

multithreaded situations.

Timer and TimerTask
An interesting and useful feature offered by java.util is the ability to schedule a task for

execution at some future time. The classes that support this are Timer and TimerTask.

Using these classes, you can create a thread that runs in the background, waiting for a

specific time. When the time arrives, the task linked to that thread is executed. Various

options allow you to schedule a task for repeated execution, and to schedule a task to run

on a specific date. Although it was always possible to manually create a task that would be

executed at a specific time using the Thread class, Timer and TimerTask greatly simplify

this process.

Timer and TimerTask work together. Timer is the class that you will use to schedule a

task for execution. The task being scheduled must be an instance of TimerTask. Thus, to

schedule a task, you will first create a TimerTask object and then schedule it for execution

using an instance of Timer.

TimerTask implements the Runnable interface; thus, it can be used to create a thread

of execution. Its constructor is shown here:

TimerTask()

TimerTask defines the methods shown in Table 18-8. Notice that run() is abstract,

which means that it must be overridden. The run() method, defined by the Runnable
interface, contains the code that will be executed. Thus, the easiest way to create a timer

task is to extend TimerTask and override run().

 Chapter 18 java.util Part 2: More Utility Classes 545

P
a

rt
 I

I

Once a task has been created, it is scheduled for execution by an object of type Timer.

The constructors for Timer are shown here:

Timer()

Timer(boolean DThread)

Timer(String tName)
Timer(String tName, boolean DThread)

The first version creates a Timer object that runs as a normal thread. The second uses a

daemon thread if DThread is true. A daemon thread will execute only as long as the rest of

the program continues to execute. The third and fourth constructors allow you to specify a

name for the Timer thread. The methods defined by Timer are shown in Table 18-9.

Once a Timer has been created, you will schedule a task by calling schedule() on the

Timer that you created. As Table 18-9 shows, there are several forms of schedule() which

allow you to schedule tasks in a variety of ways.

Method Description

boolean cancel() Terminates the task. Returns true if an execution of the task

is prevented. Otherwise, returns false.

abstract void run() Contains the code for the timer task.

long scheduledExecutionTime() Returns the time at which the last execution of the task was

scheduled to have occurred.

Table 18-8 The Methods Defined by TimerTask

Method Description

void cancel() Cancels the timer thread.

int purge() Deletes cancelled tasks from the timer’s queue.

void schedule(TimerTask TTask,

 long wait)
TTask is scheduled for execution after the period passed

in wait has elapsed. The wait parameter is specified in

milliseconds.

void schedule(TimerTask TTask,

 long wait, long repeat)
TTask is scheduled for execution after the period passed

in wait has elapsed. The task is then executed repeatedly

at the interval specified by repeat. Both wait and repeat are

specified in milliseconds.

void schedule(TimerTask TTask,

 Date targetTime)
TTask is scheduled for execution at the time specified by

targetTime.

void schedule(TimerTask TTask,

 Date targetTime,
 long repeat)

TTask is scheduled for execution at the time specified by

targetTime. The task is then executed repeatedly at the

interval passed in repeat. The repeat parameter is specified

in milliseconds.

Table 18-9 The Methods Defined by Timer

546 PART II The Java Library

If you create a non-daemon task, then you will want to call cancel() to end the task when

your program ends. If you don’t do this, then your program may "hang" for a period of time.

The following program demonstrates Timer and TimerTask. It defines a timer task

whose run() method displays the message "Timer task executed." This task is scheduled

to run once every half second after an initial delay of one second.

// Demonstrate Timer and TimerTask.

import java.util.*;

class MyTimerTask extends TimerTask {
 public void run() {
 System.out.println("Timer task executed.");
 }
}

class TTest {
 public static void main(String args[]) {
 MyTimerTask myTask = new MyTimerTask();
 Timer myTimer = new Timer();

 /* Set an initial delay of 1 second,
 then repeat every half second.
 */
 myTimer.schedule(myTask, 1000, 500);

 try {
 Thread.sleep(5000);
 } catch (InterruptedException exc) {}

 myTimer.cancel();
 }
}

Method Description

void scheduleAtFixedRate(

 TimerTask TTask,

 long wait, long repeat)

TTask is scheduled for execution after the period passed

in wait has elapsed. The task is then executed repeatedly

at the interval specified by repeat. Both wait and repeat are

specified in milliseconds. The time of each repetition

is relative to the first execution, not the preceding

execution. Thus, the overall rate of execution is fixed.

void scheduleAtFixedRate(

 TimerTask TTask,

 Date targetTime,
 long repeat)

TTask is scheduled for execution at the time specified by

targetTime. The task is then executed repeatedly at the

interval passed in repeat. The repeat parameter is specified

in milliseconds. The time of each repetition is relative to

the first execution, not the preceding execution. Thus,

the overall rate of execution is fixed.

Table 18-9 The Methods Defined by Timer (continued)

 Chapter 18 java.util Part 2: More Utility Classes 547

P
a

rt
 I

I

Currency
The Currency class encapsulates information about a currency. It defines no constructors.

The methods supported by Currency are shown in Table 18-10. The following program

demonstrates Currency:

// Demonstrate Currency.
import java.util.*;

class CurDemo {
 public static void main(String args[]) {
 Currency c;

 c = Currency.getInstance(Locale.US);

 System.out.println("Symbol: " + c.getSymbol());
 System.out.println("Default fractional digits: " +
 c.getDefaultFractionDigits());
 }
}

The output is shown here:

 Symbol: $
 Default fractional digits: 2

Method Description

static Set<Currency> getAvailableCurrencies() Returns a set of the supported currencies.

(Added by JDK 7.)

String getCurrencyCode() Returns the code (as defined by ISO 4217)

that describes the invoking currency.

int getDefaultFractionDigits() Returns the number of digits after the

decimal point that are normally used by the

invoking currency. For example, there are two

fractional digits normally used for dollars.

String getDisplayName() Returns the name of the invoking currency for

the default locale. (Added by JDK 7.)

String getDisplayName(Locale loc) Returns the name of the invoking currency for

the specified locale. (Added by JDK 7.)

static Currency getInstance(Locale localeObj) Returns a Currency object for the locale

specified by localeObj.

static Currency getInstance(String code) Returns a Currency object associated with the

currency code passed in code.

Table 18-10 The Methods Defined by Currency

548 PART II The Java Library

Formatter
At the core of Java’s support for creating formatted output is the Formatter class. It provides

format conversions that let you display numbers, strings, and time and date in virtually any

format you like. It operates in a manner similar to the C/C++ printf() function, which means

that if you are familiar with C/C++, then learning to use Formatter will be very easy. It also

further streamlines the conversion of C/C++ code to Java. If you are not familiar with C/C++,

it is still quite easy to format data.

NOTE Although Java’s Formatter class operates in a manner very similar to the C/C++ printf() function,
there are some differences, and some new features. Therefore, if you have a C/C++ background, a
careful reading is advised.

The Formatter Constructors

Before you can use Formatter to format output, you must create a Formatter object. In

general, Formatter works by converting the binary form of data used by a program into

formatted text. It stores the formatted text in a buffer, the contents of which can be

obtained by your program whenever they are needed. It is possible to let Formatter supply

this buffer automatically, or you can specify the buffer explicitly when a Formatter object is

created. It is also possible to have Formatter output its buffer to a file.

The Formatter class defines many constructors, which enable you to construct a

Formatter in a variety of ways. Here is a sampling:

Formatter()

Formatter(Appendable buf)

Formatter(Appendable buf, Locale loc)

Formatter(String filename)
 throws FileNotFoundException

Formatter(String filename, String charset)
 throws FileNotFoundException, UnsupportedEncodingException

Formatter(File outF)

 throws FileNotFoundException

Formatter(OutputStream outStrm)

Method Description

int getNumericCode() Returns the numeric code (as defined by ISO

4217) for the invoking currency. (Added by

JDK 7.)

String getSymbol() Returns the currency symbol (such as $) for

the invoking object.

String getSymbol(Locale localeObj) Returns the currency symbol (such as $) for

the locale passed in localeObj.

String toString() Returns the currency code for the invoking

object.

Table 18-10 The Methods Defined by Currency (continued)

 Chapter 18 java.util Part 2: More Utility Classes 549

P
a

rt
 I

I

Here, buf specifies a buffer for the formatted output. If buf is null, then Formatter

automatically allocates a StringBuilder to hold the formatted output. The loc parameter

specifies a locale. If no locale is specified, the default locale is used. The filename
parameter specifies the name of a file that will receive the formatted output. The

charset parameter specifies the character set. If no character set is specified, then the

default character set is used. The outF parameter specifies a reference to an open file that

will receive output. The outStrm parameter specifies a reference to an output stream

that will receive output. When using a file, output is also written to the file.

Perhaps the most widely used constructor is the first, which has no parameters. It

automatically uses the default locale and allocates a StringBuilder to hold the formatted

output.

The Formatter Methods

Formatter defines the methods shown in Table 18-11.

Formatting Basics

After you have created a Formatter, you can use it to create a formatted string. To do so,

use the format() method. The most commonly used version is shown here:

Formatter format(String fmtString, Object ... args)

The fmtSring consists of two types of items. The first type is composed of characters

that are simply copied to the output buffer. The second type contains format specifiers that

define the way the subsequent arguments are displayed.

Method Description

void close() Closes the invoking Formatter. This causes any resources

used by the object to be released. After a Formatter has

been closed, it cannot be reused. An attempt to use a closed

Formatter results in a FormatterClosedException.

void flush() Flushes the format buffer. This causes any output currently

in the buffer to be written to the destination. This applies

mostly to a Formatter tied to a file.

Formatter format(String fmtString,

 Object ... args)

Formats the arguments passed via args according to the

format specifiers contained in fmtString. Returns the

invoking object.

Formatter format(Locale loc,
 String fmtString,

 Object ... args)

Formats the arguments passed via args according to the

format specifiers contained in fmtString. The locale specified

by loc is used for this format. Returns the invoking object.

IOException ioException() If the underlying object that is the destination for output

throws an IOException, then this exception is returned.

Otherwise, null is returned.

Locale locale() Returns the invoking object’s locale.

Appendable out() Returns a reference to the underlying object that is the

destination for output.

String toString() Returns a String containing the formatted output.

Table 18-11 The Methods Defined by Formatter

550 PART II The Java Library

In its simplest form, a format specifier begins with a percent sign followed by the format

conversion specifier. All format conversion specifiers consist of a single character. For

example, the format specifier for floating-point data is %f. In general, there must be the

same number of arguments as there are format specifiers, and the format specifiers and the

arguments are matched in order from left to right. For example, consider this fragment:

Formatter fmt = new Formatter();
fmt.format("Formatting %s is easy %d %f", "with Java", 10, 98.6);

This sequence creates a Formatter that contains the following string:

Formatting with Java is easy 10 98.600000

In this example, the format specifiers, %s, %d, and %f, are replaced with the arguments

that follow the format string. Thus, %s is replaced by “with Java”, %d is replaced by 10, and

%f is replaced by 98.6. All other characters are simply used as-is. As you might guess, the

format specifier %s specifies a string, and %d specifies an integer value. As mentioned

earlier, the %f specifies a floating-point value.

The format() method accepts a wide variety of format specifiers, which are shown in

Table 18-12. Notice that many specifiers have both upper- and lowercase forms. When an

uppercase specifier is used, then letters are shown in uppercase. Otherwise, the upper- and

lowercase specifiers perform the same conversion. It is important to understand that Java

type-checks each format specifier against its corresponding argument. If the argument

doesn’t match, an IllegalFormatException is thrown.

Once you have formatted a string, you can obtain it by calling toString(). For example,

continuing with the preceding example, the following statement obtains the formatted

string contained in fmt:

String str = fmt.toString();

Of course, if you simply want to display the formatted string, there is no reason to first

assign it to a String object. When a Formatter object is passed to println(), for example, its

toString() method is automatically called.

Here is a short program that puts together all of the pieces, showing how to create and

display a formatted string:

// A very simple example that uses Formatter.
import java.util.*;

class FormatDemo {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 fmt.format("Formatting %s is easy %d %f", "with Java", 10, 98.6);

 System.out.println(fmt);
 fmt.close();
 }
}

 Chapter 18 java.util Part 2: More Utility Classes 551

P
a

rt
 I

I

One other point: You can obtain a reference to the underlying output buffer by calling

out(). It returns a reference to an Appendable object.

Now that you know the general mechanism used to create a formatted string, the

remainder of this section discusses in detail each conversion. It also describes various

options, such as justification, minimum field width, and precision.

Formatting Strings and Characters

To format an individual character, use %c. This causes the matching character argument to

be output, unmodified. To format a string, use %s.

Formatting Numbers

To format an integer in decimal format, use %d. To format a floating-point value in decimal

format, use %f. To format a floating-point value in scientific notation, use %e. Numbers

represented in scientific notation take this general form:

x.dddddde+/–yy

Format Specifier Conversion Applied

%a

%A

Floating-point hexadecimal

%b

%B

Boolean

%c Character

%d Decimal integer

%h

%H

Hash code of the argument

%e

%E

Scientific notation

%f Decimal floating-point

%g

%G

Uses %e or %f, whichever is shorter

%o Octal integer

%n Inserts a newline character

%s

%S

String

%t

%T

Time and date

%x

%X

Integer hexadecimal

%% Inserts a % sign

Table 18-12 The Format Specifiers

552 PART II The Java Library

The %g format specifier causes Formatter to use either %f or %e, whichever is shorter.

The following program demonstrates the effect of the %g format specifier:

// Demonstrate the %g format specifier.
import java.util.*;

class FormatDemo2 {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 for(double i=1000; i < 1.0e+10; i *= 100) {
 fmt.format("%g ", i);
 System.out.println(fmt);
 }
 fmt.close();

 }
}

It produces the following output:

 1000.000000
 1000.000000 100000.000000
 1000.000000 100000.000000 1.000000e+07
 1000.000000 100000.000000 1.000000e+07 1.000000e+09

You can display integers in octal or hexadecimal format by using %o and %x,

respectively. For example, this fragment:

fmt.format("Hex: %x, Octal: %o", 196, 196);

produces this output:

 Hex: c4, Octal: 304

You can display floating-point values in hexadecimal format by using %a. The format

produced by %a appears a bit strange at first glance. This is because its representation uses

a form similar to scientific notation that consists of a significand and an exponent, both in

hexadecimal. Here is the general format:

0x1.sigpexp

Here, sig contains the fractional portion of the significand and exp contains the exponent.

The p indicates the start of the exponent. For example, this call:

fmt.format("%a", 123.123);

produces this output:

 0x1.ec7df3b645a1dp6

Formatting Time and Date

One of the more powerful conversion specifiers is %t. It lets you format time and date

information. The %t specifier works a bit differently than the others because it requires the

use of a suffix to describe the portion and precise format of the time or date desired. The

 Chapter 18 java.util Part 2: More Utility Classes 553

P
a

rt
 I

I

suffixes are shown in Table 18-13. For example, to display minutes, you would use %tM,

where M indicates minutes in a two-character field. The argument corresponding to the

%t specifier must be of type Calendar, Date, Long, or long.

Suffix Replaced By

a Abbreviated weekday name

A Full weekday name

b Abbreviated month name

B Full month name

c Standard date and time string formatted as

 day month date hh::mm:ss tzone year

C First two digits of year

d Day of month as a decimal (01—31)

D month/day/year

e Day of month as a decimal (1—31)

F year-month-day

h Abbreviated month name

H Hour (00 to 23)

I Hour (01 to 12)

j Day of year as a decimal (001 to 366)

k Hour (0 to 23)

l Hour (1 to 12)

L Millisecond (000 to 999)

m Month as decimal (01 to 13)

M Minute as decimal (00 to 59)

N Nanosecond (000000000 to 999999999)

p Locale’s equivalent of AM or PM in lowercase

Q Milliseconds from 1/1/1970

r hh:mm:ss (12-hour format)

R hh:mm (24-hour format)

S Seconds (00 to 60)

s Seconds from 1/1/1970 UTC

T hh:mm:ss (24-hour format)

y Year in decimal without century (00 to 99)

Y Year in decimal including century (0001 to 9999)

z Offset from UTC

Z Time zone name

Table 18-13 The Time and Date Format Suffixes

554 PART II The Java Library

Here is a program that demonstrates several of the formats:

// Formatting time and date.
import java.util.*;

class TimeDateFormat {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();
 Calendar cal = Calendar.getInstance();

 // Display standard 12-hour time format.
 fmt.format("%tr", cal);
 System.out.println(fmt);
 fmt.close();

 // Display complete time and date information.
 fmt = new Formatter();
 fmt.format("%tc", cal);
 System.out.println(fmt);
 fmt.close();

 // Display just hour and minute.
 fmt = new Formatter();
 fmt.format("%tl:%tM", cal, cal);
 System.out.println(fmt);
 fmt.close();

 // Display month by name and number.
 fmt = new Formatter();
 fmt.format("%tB %tb %tm", cal, cal, cal);
 System.out.println(fmt);
 fmt.close();
 }
}

Sample output is shown here:

 09:17:15 AM
 Sat Jan 01 09:17:15 CST 2011
 9:17
 January Jan 01

The %n and %% Specifiers

The %n and%% format specifiers differ from the others in that they do not match an

argument. Instead, they are simply escape sequences that insert a character into the output

sequence. The %n inserts a newline. The %% inserts a percent sign. Neither of these

characters can be entered directly into the format string. Of course, you can also use

the standard escape sequence \n to embed a newline character.

Here is an example that demonstrates the %n and %% format specifiers:

// Demonstrate the %n and %% format specifiers.
import java.util.*;

 Chapter 18 java.util Part 2: More Utility Classes 555

P
a

rt
 I

I

class FormatDemo3 {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 fmt.format("Copying file%nTransfer is %d%% complete", 88);
 System.out.println(fmt);
 fmt.close();
 }
}

It displays the following output:

 Copying file
 Transfer is 88% complete

Specifying a Minimum Field Width

An integer placed between the % sign and the format conversion code acts as a minimum
field-width specifier. This pads the output with spaces to ensure that it reaches a certain

minimum length. If the string or number is longer than that minimum, it will still be

printed in full. The default padding is done with spaces. If you want to pad with 0’s, place

a 0 before the field-width specifier. For example, %05d will pad a number of less than five

digits with 0’s so that its total length is five. The field-width specifier can be used with all

format specifiers except %n.

The following program demonstrates the minimum field-width specifier by applying it

to the %f conversion:

// Demonstrate a field-width specifier.
import java.util.*;

class FormatDemo4 {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 fmt.format("|%f|%n|%12f|%n|%012f|",
 10.12345, 10.12345, 10.12345);

 System.out.println(fmt);
 fmt.close();

 }
}

This program produces the following output:

 |10.123450|
 | 10.123450|
 |00010.123450|

The first line displays the number 10.12345 in its default width. The second line

displays that value in a 12-character field. The third line displays the value in a 12-character

field, padded with leading zeros.

556 PART II The Java Library

The minimum field-width modifier is often used to produce tables in which the columns

line up. For example, the next program produces a table of squares and cubes for the

numbers between 1 and 10:

// Create a table of squares and cubes.
import java.util.*;

class FieldWidthDemo {
 public static void main(String args[]) {
 Formatter fmt;

 for(int i=1; i <= 10; i++) {
 fmt = new Formatter();
 fmt.format("%4d %4d %4d", i, i*i, i*i*i);
 System.out.println(fmt);
 fmt.close();
 }

 }
}

Its output is shown here:

 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125
 6 36 216
 7 49 343
 8 64 512
 9 81 729
 10 100 1000

Specifying Precision

A precision specifier can be applied to the %f, %e, %g, and %s format specifiers. It follows the

minimum field-width specifier (if there is one) and consists of a period followed by an integer.

Its exact meaning depends upon the type of data to which it is applied.

When you apply the precision specifier to floating-point data using the %f or %e specifiers,

it determines the number of decimal places displayed. For example, %10.4f displays a number

at least ten characters wide with four decimal places. When using %g, the precision determines

the number of significant digits. The default precision is 6.

Applied to strings, the precision specifier specifies the maximum field length. For

example, %5.7s displays a string of at least five and not exceeding seven characters long.

If the string is longer than the maximum field width, the end characters will be truncated.

The following program illustrates the precision specifier:

// Demonstrate the precision modifier.
import java.util.*;

 Chapter 18 java.util Part 2: More Utility Classes 557

P
a

rt
 I

I

class PrecisionDemo {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 // Format 4 decimal places.
 fmt.format("%.4f", 123.1234567);
 System.out.println(fmt);
 fmt.close();

 // Format to 2 decimal places in a 16 character field
 fmt = new Formatter();
 fmt.format("%16.2e", 123.1234567);
 System.out.println(fmt);
 fmt.close();

 // Display at most 15 characters in a string.
 fmt = new Formatter();
 fmt.format("%.15s", "Formatting with Java is now easy.");
 System.out.println(fmt);
 fmt.close();
 }
}

It produces the following output:

 123.1235
 1.23e+02
 Formatting with

Using the Format Flags

Formatter recognizes a set of format flags that lets you control various aspects of a

conversion. All format flags are single characters, and a format flag follows the % in a

format specification. The flags are shown here:

Flag Effect

– Left justification

Alternate conversion format

0 Output is padded with zeros rather than spaces

space Positive numeric output is preceded by a space

+ Positive numeric output is preceded by a + sign

, Numeric values include grouping separators

(Negative numeric values are enclosed within parentheses

Not all flags apply to all format specifiers. The following sections explain each in detail.

558 PART II The Java Library

Justifying Output

By default, all output is right-justified. That is, if the field width is larger than the data

printed, the data will be placed on the right edge of the field. You can force output to be

left-justified by placing a minus sign directly after the %. For instance, %–10.2f left-justifies

a floating-point number with two decimal places in a 10-character field. For example,

consider this program:

// Demonstrate left justification.
import java.util.*;

class LeftJustify {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 // Right justify by default
 fmt.format("|%10.2f|", 123.123);
 System.out.println(fmt);
 fmt.close();

 // Now, left justify.
 fmt = new Formatter();
 fmt.format("|%-10.2f|", 123.123);
 System.out.println(fmt);
 fmt.close();
 }
}

It produces the following output:

 | 123.12|
 |123.12 |

As you can see, the second line is left-justified within a 10-character field.

The Space, +, 0, and (Flags

To cause a + sign to be shown before positive numeric values, add the + flag. For example,

fmt.format("%+d", 100);

creates this string:

 +100

When creating columns of numbers, it is sometimes useful to output a space before

positive values so that positive and negative values line up. To do this, add the space flag.

For example,

// Demonstrate the space format specifiers.
import java.util.*;

class FormatDemo5 {
 public static void main(String args[]) {

 Chapter 18 java.util Part 2: More Utility Classes 559

P
a

rt
 I

I

 Formatter fmt = new Formatter();

 fmt.format("% d", -100);
 System.out.println(fmt);
 fmt.close();

 fmt = new Formatter();
 fmt.format("% d", 100);
 System.out.println(fmt);
 fmt.close();

 fmt = new Formatter();
 fmt.format("% d", -200);
 System.out.println(fmt);
 fmt.close();

 fmt = new Formatter();
 fmt.format("% d", 200);
 System.out.println(fmt);
 fmt.close();
 }
}

The output is shown here:

 -100
 100
 -200
 200

Notice that the positive values have a leading space, which causes the digits in the

column to line up properly.

To show negative numeric output inside parentheses, rather than with a leading –, use

the (flag. For example,

fmt.format("%(d", -100);

creates this string:

 (100)

The 0 flag causes output to be padded with zeros rather than spaces.

The Comma Flag

When displaying large numbers, it is often useful to add grouping separators, which in

English are commas. For example, the value 1234567 is more easily read when formatted

as 1,234,567. To add grouping specifiers, use the comma (,) flag. For example,

fmt.format("%,.2f", 4356783497.34);

creates this string:

 4,356,783,497.34

560 PART II The Java Library

The # Flag

The # can be applied to %o, %x, %e, and %f. For %e, and %f, the # ensures that there

will be a decimal point even if there are no decimal digits. If you precede the %x format

specifier with a #, the hexadecimal number will be printed with a 0x prefix. Preceding the

%o specifier with # causes the number to be printed with a leading zero.

The Uppercase Option

As mentioned earlier, several of the format specifiers have uppercase versions that cause the

conversion to use uppercase where appropriate. The following table describes the effect.

Specifier Effect

%A Causes the hexadecimal digits a through f to be displayed in uppercase as A

through F. Also, the prefix 0x is displayed as 0X, and the p will be displayed as P.

%B Uppercases the values true and false.

%E Causes the e symbol that indicates the exponent to be displayed in uppercase.

%G Causes the e symbol that indicates the exponent to be displayed in uppercase.

%H Causes the hexadecimal digits a through f to be displayed in uppercase as A

through F.

%S Uppercases the corresponding string.

%T Causes all alphabetical output to be displayed in uppercase.

%X Causes the hexadecimal digits a through f to be displayed in uppercase as A

through F. Also, the optional prefix 0x is displayed as 0X, if present.

For example, this call:

fmt.format("%X", 250);

creates this string:

 FA

This call:

fmt.format("%E", 123.1234);

creates this string:

 1.231234E+02

Using an Argument Index

Formatter includes a very useful feature that lets you specify the argument to which a

format specifier applies. Normally, format specifiers and arguments are matched in order,

from left to right. That is, the first format specifier matches the first argument, the second

format specifier matches the second argument, and so on. However, by using an argument
index, you can explicitly control which argument a format specifier matches.

 Chapter 18 java.util Part 2: More Utility Classes 561

P
a

rt
 I

I

An argument index immediately follows the % in a format specifier. It has the following

format:

n$

where n is the index of the desired argument, beginning with 1. For example, consider this

example:

fmt.format("%3$d %1$d %2$d", 10, 20, 30);

It produces this string:

 30 10 20

In this example, the first format specifier matches 30, the second matches 10, and the

third matches 20. Thus, the arguments are used in an order other than strictly left to right.

One advantage of argument indexes is that they enable you to reuse an argument

without having to specify it twice. For example, consider this line:

fmt.format("%d in hex is %1$x", 255);

It produces the following string:

 255 in hex is ff

As you can see, the argument 255 is used by both format specifiers.

There is a convenient shorthand called a relative index that enables you to reuse the

argument matched by the preceding format specifier. Simply specify < for the argument

index. For example, the following call to format() produces the same results as the

previous example:

fmt.format("%d in hex is %<x", 255);

Relative indexes are especially useful when creating custom time and date formats.

Consider the following example:

// Use relative indexes to simplify the
// creation of a custom time and date format.
import java.util.*;

class FormatDemo6 {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();
 Calendar cal = Calendar.getInstance();

 fmt.format("Today is day %te of %<tB, %<tY", cal);
 System.out.println(fmt);
 fmt.close();
 }
}

562 PART II The Java Library

Here is sample output:

 Today is day 1 of January, 2011

Because of relative indexing, the argument cal need only be passed once, rather than three

times.

Closing a Formatter

In general, you should close a Formatter when you are done using it. Doing so frees any

resources that it was using. This is especially important when formatting to a file, but it can

be important in other cases, too. As the previous examples have shown, one way to close a

Formatter is to explicitly call close(). However, beginning with JDK 7, Formatter implements

the AutoCloseable interface. This means that it supports the new try-with-resources

statement. Using this approach, the Formatter is automatically closed when it is no longer

needed.

The try-with-resources statement is described in Chapter 13, in connection with files,

because files are some of the most commonly used resources that must be closed. However,

the same basic techniques apply here. For example, here is the first Formatter example

reworked to use automatic resource management:

// Use automatic resource management with Formatter.
import java.util.*;

class FormatDemo {
 public static void main(String args[]) {

 try (Formatter fmt = new Formatter())
 {
 fmt.format("Formatting %s is easy %d %f", "with Java",
 10, 98.6);
 System.out.println(fmt);
 }
 }
}

The output is the same as before.

The Java printf() Connection

Although there is nothing technically wrong with using Formatter directly (as the preceding

examples have done) when creating output that will be displayed on the console, there is a

more convenient alternative: the printf() method. The printf() method automatically uses

Formatter to create a formatted string. It then displays that string on System.out, which is

the console by default. The printf() method is defined by both PrintStream and PrintWriter.

The printf() method is described in Chapter 19.

 Chapter 18 java.util Part 2: More Utility Classes 563

P
a

rt
 I

I

Scanner
Scanner is the complement of Formatter. It reads formatted input and converts it into its

binary form. Scanner can be used to read input from the console, a file, a string, or any

source that implements the Readable interface or ReadableByteChannel. For example, you

can use Scanner to read a number from the keyboard and assign its value to a variable. As

you will see, given its power, Scanner is surprisingly easy to use.

The Scanner Constructors

Scanner defines the constructors shown in Table 18-14. In general, a Scanner can be

created for a String, an InputStream, a File, or any object that implements the Readable

or ReadableByteChannel interfaces. Here are some examples.

Method Description

Scanner(File from)

 throws FileNotFoundException

Creates a Scanner that uses the file specified by from

as a source for input.

Scanner(File from, String charset)
 throws FileNotFoundException

Creates a Scanner that uses the file specified by from

with the encoding specified by charset as a source for

input.

Scanner(InputStream from) Creates a Scanner that uses the stream specified by

from as a source for input.

Scanner(InputStream from, String charset) Creates a Scanner that uses the stream specified by

from with the encoding specified by charset as a source

for input.

Scanner(Path from)

 throws IOException

Creates a Scanner that uses the file specified by from

as a source for input. (Added by JDK 7.)

Scanner(Path from, String charset)
 throws IOException

Creates a Scanner that uses the file specified by from

with the encoding specified by charset as a source for

input. (Added by JDK 7.)

Scanner(Readable from) Creates a Scanner that uses the Readable object

specified by from as a source for input.

Scanner (ReadableByteChannel from) Creates a Scanner that uses the ReadableByteChannel
specified by from as a source for input.

Scanner(ReadableByteChannel from,

 String charset)
Creates a Scanner that uses the ReadableByteChannel
specified by from with the encoding specified by

charset as a source for input.

Scanner(String from) Creates a Scanner that uses the string specified by

from as a source for input.

Table 18-14 The Scanner Constructors

564 PART II The Java Library

The following sequence creates a Scanner that reads the file Test.txt:

FileReader fin = new FileReader("Test.txt");
Scanner src = new Scanner(fin);

This works because FileReader implements the Readable interface. Thus, the call to the

constructor resolves to Scanner(Readable).
This next line creates a Scanner that reads from standard input, which is the keyboard

by default:

Scanner conin = new Scanner(System.in);

This works because System.in is an object of type InputStream. Thus, the call to the

constructor maps to Scanner(InputStream).
The next sequence creates a Scanner that reads from a string.

String instr = "10 99.88 scanning is easy.";
Scanner conin = new Scanner(instr);

Scanning Basics
Once you have created a Scanner, it is a simple matter to use it to read formatted input.

In general, a Scanner reads tokens from the underlying source that you specified when the

Scanner was created. As it relates to Scanner, a token is a portion of input that is delineated

by a set of delimiters, which is whitespace by default. A token is read by matching it with a

particular regular expression, which defines the format of the data. Although Scanner allows

you to define the specific type of expression that its next input operation will match, it

includes many predefined patterns, which match the primitive types, such as int and double,

and strings. Thus, often you won’t need to specify a pattern to match.

In general, to use Scanner, follow this procedure:

 1. Determine if a specific type of input is available by calling one of Scanner’s

hasNextX methods, where X is the type of data desired.

 2. If input is available, read it by calling one of Scanner’s nextX methods.

 3. Repeat the process until input is exhausted.

 4. Close the Scanner by calling close().

As the preceding indicates, Scanner defines two sets of methods that enable you to read

input. The first are the hasNextX methods, which are shown in Table 18-15. These methods

determine if the specified type of input is available. For example, calling hasNextInt()
returns true only if the next token to be read is an integer. If the desired data is available,

then you read it by calling one of Scanner’s nextX methods, which are shown in Table 18-16.

For example, to read the next integer, call nextInt(). The following sequence shows how to

read a list of integers from the keyboard.

Scanner conin = new Scanner(System.in);
int i;

// Read a list of integers.
while(conin.hasNextInt()) {
 i = conin.nextInt();
 // ...
}

 Chapter 18 java.util Part 2: More Utility Classes 565

P
a

rt
 I

I

Table 18-15 The Scanner hasNext Methods

Method Description

boolean hasNext() Returns true if another token of any type is available to

be read. Returns false otherwise.

boolean hasNext(Pattern pattern) Returns true if a token that matches the pattern passed

in pattern is available to be read. Returns false otherwise.

boolean hasNext(String pattern) Returns true if a token that matches the pattern passed

in pattern is available to be read. Returns false otherwise.

boolean hasNextBigDecimal() Returns true if a value that can be stored in a BigDecimal
object is available to be read. Returns false otherwise.

boolean hasNextBigInteger() Returns true if a value that can be stored in a BigInteger

object is available to be read. Returns false otherwise. The

default radix is used. (Unless changed, the default radix is

10.)

boolean hasNextBigInteger(int radix) Returns true if a value in the specified radix that can

be stored in a BigInteger object is available to be read.

Returns false otherwise.

boolean hasNextBoolean() Returns true if a boolean value is available to be read.

Returns false otherwise.

boolean hasNextByte() Returns true if a byte value is available to be read.

Returns false otherwise. The default radix is used.

(Unless changed, the default radix is 10.)

boolean hasNextByte(int radix) Returns true if a byte value in the specified radix is

available to be read. Returns false otherwise.

boolean hasNextDouble() Returns true if a double value is available to be read.

Returns false otherwise.

boolean hasNextFloat() Returns true if a float value is available to be read.

Returns false otherwise.

boolean hasNextInt() Returns true if an int value is available to be read.

Returns false otherwise. The default radix is used.

(Unless changed, the default radix is 10.)

boolean hasNextInt(int radix) Returns true if an int value in the specified radix is

available to be read. Returns false otherwise.

boolean hasNextLine() Returns true if a line of input is available.

boolean hasNextLong() Returns true if a long value is available to be read.

Returns false otherwise. The default radix is used.

(Unless changed, the default radix is 10.)

boolean hasNextLong(int radix) Returns true if a long value in the specified radix is

available to be read. Returns false otherwise.

boolean hasNextShort() Returns true if a short value is available to be read.

Returns false otherwise. The default radix is used.

(Unless changed, the default radix is 10.)

boolean hasNextShort(int radix) Returns true if a short value in the specified radix is

available to be read. Returns false otherwise.

566 PART II The Java Library

The while loop stops as soon as the next token is not an integer. Thus, the loop stops

reading integers as soon as a non-integer is encountered in the input stream.

If a next method cannot find the type of data it is looking for, it throws an

InputMismatchException. A NoSuchElementException is thrown if no more input is

available. For this reason, it is best to first confirm that the desired type of data is available

by calling a hasNext method before calling its corresponding next method.

Method Description

String next() Returns the next token of any type from the input

source.

String next(Pattern pattern) Returns the next token that matches the pattern passed

in pattern from the input source.

String next(String pattern) Returns the next token that matches the pattern passed

in pattern from the input source.

BigDecimal nextBigDecimal() Returns the next token as a BigDecimal object.

BigInteger nextBigInteger() Returns the next token as a BigInteger object. The

default radix is used. (Unless changed, the default

radix is 10.)

BigInteger nextBigInteger(int radix) Returns the next token (using the specified radix) as a

BigInteger object.

boolean nextBoolean() Returns the next token as a boolean value.

byte nextByte() Returns the next token as a byte value. The default

radix is used. (Unless changed, the default radix is 10.)

byte nextByte(int radix) Returns the next token (using the specified radix) as a

byte value.

double nextDouble() Returns the next token as a double value.

float nextFloat() Returns the next token as a float value.

int nextInt() Returns the next token as an int value. The default

radix is used. (Unless changed, the default radix is 10.)

int nextInt(int radix) Returns the next token (using the specified radix) as

an int value.

String nextLine() Returns the next line of input as a string.

long nextLong() Returns the next token as a long value. The default

radix is used. (Unless changed, the default radix is 10.)

long nextLong(int radix) Returns the next token (using the specified radix) as a

long value.

short nextShort() Returns the next token as a short value. The default

radix is used. (Unless changed, the default radix is 10.)

short nextShort(int radix) Returns the next token (using the specified radix) as a

short value.

Table 18-16 The Scanner next Methods

 Chapter 18 java.util Part 2: More Utility Classes 567

P
a

rt
 I

I

Some Scanner Examples

Scanner makes what could be a tedious task into an easy one. To understand why, let’s look

at some examples. The following program averages a list of numbers entered at the keyboard:

// Use Scanner to compute an average of the values.
import java.util.*;

class AvgNums {
 public static void main(String args[]) {
 Scanner conin = new Scanner(System.in);

 int count = 0;
 double sum = 0.0;

 System.out.println("Enter numbers to average.");

 // Read and sum numbers.
 while(conin.hasNext()) {
 if(conin.hasNextDouble()) {
 sum += conin.nextDouble();
 count++;
 }
 else {
 String str = conin.next();
 if(str.equals("done")) break;
 else {
 System.out.println("Data format error.");
 return;
 }
 }
 }

 conin.close();
 System.out.println("Average is " + sum / count);
 }
}

The program reads numbers from the keyboard, summing them in the process, until

the user enters the string "done". It then stops input and displays the average of the

numbers. Here is a sample run:

 Enter numbers to average.
 1.2
 2
 3.4
 4
 done
 Average is 2.65

The program reads numbers until it encounters a token that does not represent a valid

double value. When this occurs, it confirms that the token is the string "done". If it is, the

program terminates normally. Otherwise, it displays an error.

568 PART II The Java Library

Notice that the numbers are read by calling nextDouble(). This method reads any

number that can be converted into a double value, including an integer value, such as 2,

and a floating-point value like 3.4. Thus, a number read by nextDouble() need not specify

a decimal point. This same general principle applies to all next methods. They will match

and read any data format that can represent the type of value being requested.

One thing that is especially nice about Scanner is that the same technique used to read

from one source can be used to read from another. For example, here is the preceding

program reworked to average a list of numbers contained in a text file:

// Use Scanner to compute an average of the values in a file.
import java.util.*;
import java.io.*;

class AvgFile {
 public static void main(String args[])
 throws IOException {

 int count = 0;
 double sum = 0.0;

 // Write output to a file.
 FileWriter fout = new FileWriter("test.txt");
 fout.write("2 3.4 5 6 7.4 9.1 10.5 done");
 fout.close();

 FileReader fin = new FileReader("Test.txt");

 Scanner src = new Scanner(fin);

 // Read and sum numbers.
 while(src.hasNext()) {
 if(src.hasNextDouble()) {
 sum += src.nextDouble();
 count++;
 }
 else {
 String str = src.next();
 if(str.equals("done")) break;
 else {
 System.out.println("File format error.");
 return;
 }
 }
 }

 src.close();
 System.out.println("Average is " + sum / count);
 }
}

Here is the output:

 Average is 6.2

 Chapter 18 java.util Part 2: More Utility Classes 569

P
a

rt
 I

I

The preceding program illustrates another important feature of Scanner. Notice that

the file reader referred to by fin is not closed directly. Rather, it is closed automatically

when src calls close(). When you close a Scanner, the Readable associated with it is also

closed (if that Readable implements the Closeable interface). Therefore, in this case, the

file referred to by fin is automatically closed when src is closed.

Beginning with JDK 7, Scanner also implements the AutoCloseable interface. This

means that it can be managed by a try-with-resources block. As explained in Chapter 13,

when try-with-resources is used, the scanner is automatically closed when the block ends.

For example, src in the preceding program could have been managed like this:

try (Scanner src = new Scanner(fin))
{
 // Read and sum numbers.
 while(src.hasNext()) {
 if(src.hasNextDouble()) {
 sum += src.nextDouble();
 count++;
 }
 else {
 String str = src.next();
 if(str.equals("done")) break;
 else {
 System.out.println("File format error.");
 return;
 }
 }
 }
}

To clearly demonstrate the closing of a Scanner, the following examples will call close()
explicitly. Doing so also allows them to be compiled by versions of Java prior to JDK 7.

However, the try-with-resources approach is more streamlined and can help prevent errors.

Its use is recommended for new code.

One other point: To keep this and the other examples in this section compact, I/O

exceptions are simply thrown out of main(). However, your real-world code will normally

handle I/O exceptions itself.

You can use Scanner to read input that contains several different types of data—even if

the order of that data is unknown in advance. You must simply check what type of data is

available before reading it. For example, consider this program:

// Use Scanner to read various types of data from a file.
import java.util.*;
import java.io.*;

class ScanMixed {
 public static void main(String args[])
 throws IOException {

 int i;
 double d;
 boolean b;
 String str;

570 PART II The Java Library

 // Write output to a file.
 FileWriter fout = new FileWriter("test.txt");
 fout.write("Testing Scanner 10 12.2 one true two false");
 fout.close();

 FileReader fin = new FileReader("Test.txt");

 Scanner src = new Scanner(fin);

 // Read to end.
 while(src.hasNext()) {
 if(src.hasNextInt()) {
 i = src.nextInt();
 System.out.println("int: " + i);
 }
 else if(src.hasNextDouble()) {
 d = src.nextDouble();
 System.out.println("double: " + d);
 }
 else if(src.hasNextBoolean()) {
 b = src.nextBoolean();
 System.out.println("boolean: " + b);
 }
 else {
 str = src.next();
 System.out.println("String: " + str);
 }
 }

 src.close();
 }
}

Here is the output:

 String: Testing
 String: Scanner
 int: 10
 double: 12.2
 String: one
 boolean: true
 String: two
 boolean: false

When reading mixed data types, as the preceding program does, you need to be a

bit careful about the order in which you call the next methods. For example, if the loop

reversed the order of the calls to nextInt() and nextDouble(), both numeric values would

have been read as doubles, because nextDouble() matches any numeric string that can be

represented as a double.

Setting Delimiters
Scanner defines where a token starts and ends based on a set of delimiters. The default

delimiters are the whitespace characters, and this is the delimiter set that the preceding

examples have used. However, it is possible to change the delimiters by calling the

useDelimiter() method, shown here:

 Chapter 18 java.util Part 2: More Utility Classes 571

P
a

rt
 I

I

Scanner useDelimiter(String pattern)

Scanner useDelimiter(Pattern pattern)

Here, pattern is a regular expression that specifies the delimiter set.

Here is the program that reworks the average program shown earlier so that it reads a

list of numbers that are separated by commas, and any number of spaces:

// Use Scanner to compute an average a list of
// comma-separated values.
import java.util.*;
import java.io.*;

class SetDelimiters {
 public static void main(String args[])
 throws IOException {

 int count = 0;
 double sum = 0.0;

 // Write output to a file.
 FileWriter fout = new FileWriter("test.txt");

 // Now, store values in comma-separated list.
 fout.write("2, 3.4, 5,6, 7.4, 9.1, 10.5, done");
 fout.close();

 FileReader fin = new FileReader("Test.txt");

 Scanner src = new Scanner(fin);

 // Set delimiters to space and comma.
 src.useDelimiter(", *");

 // Read and sum numbers.
 while(src.hasNext()) {
 if(src.hasNextDouble()) {
 sum += src.nextDouble();
 count++;
 }
 else {
 String str = src.next();
 if(str.equals("done")) break;
 else {
 System.out.println("File format error.");
 return;
 }
 }
 }

 src.close();
 System.out.println("Average is " + sum / count);
 }
}

572 PART II The Java Library

In this version, the numbers written to test.txt are separated by commas and spaces.

The use of the delimiter pattern ", * " tells Scanner to match a comma and zero or more

spaces as delimiters. The output is the same as before.

You can obtain the current delimiter pattern by calling delimiter(), shown here:

Pattern delimiter()

Other Scanner Features

Scanner defines several other methods in addition to those already discussed. One that is

particularly useful in some circumstances is findInLine(). Its general forms are shown here:

String findInLine(Pattern pattern)

String findInLine(String pattern)

This method searches for the specified pattern within the next line of text. If the

pattern is found, the matching token is consumed and returned. Otherwise, null is

returned. It operates independently of any delimiter set. This method is useful if you want

to locate a specific pattern. For example, the following program locates the Age field in the

input string and then displays the age:

// Demonstrate findInLine().
import java.util.*;

class FindInLineDemo {
 public static void main(String args[]) {
 String instr = "Name: Tom Age: 28 ID: 77";

 Scanner conin = new Scanner(instr);

 // Find and display age.
 conin.findInLine("Age:"); // find Age

 if(conin.hasNext())
 System.out.println(conin.next());
 else
 System.out.println("Error!");

 conin.close();
 }
}

The output is 28. In the program, findInLine() is used to find an occurrence of the

pattern "Age". Once found, the next token is read, which is the age.

Related to findInLine() is findWithinHorizon(). It is shown here:

String findWithinHorizon(Pattern pattern, int count)

String findWithinHorizon(String pattern, int count)

This method attempts to find an occurrence of the specified pattern within the next count
characters. If successful, it returns the matching pattern. Otherwise, it returns null. If count

 Chapter 18 java.util Part 2: More Utility Classes 573

P
a

rt
 I

I

is zero, then all input is searched until either a match is found or the end of input is

encountered.

You can bypass a pattern using skip(), shown here:

Scanner skip(Pattern pattern)

Scanner skip(String pattern)

If pattern is matched, skip() simply advances beyond it and returns a reference to the

invoking object. If pattern is not found, skip() throws NoSuchElementException.

Other Scanner methods include radix(), which returns the default radix used by the

Scanner; useRadix(), which sets the radix; reset(), which resets the scanner; and close(),
which closes the scanner.

The ResourceBundle, ListResourceBundle, and

PropertyResourceBundle Classes
The java.util package includes three classes that aid in the internationalization of your

program. The first is the abstract class ResourceBundle. It defines methods that enable you

to manage a collection of locale-sensitive resources, such as the strings that are used to label

the user interface elements in your program. You can define two or more sets of translated

strings that support various languages, such as English, German, or Chinese, with each

translation set residing in its own bundle. You can then load the bundle appropriate to

the current locale and use the strings to construct the program’s user interface.

Resource bundles are identified by their family name (also called their base name). To

the family name can be added a two-character lowercase language code which specifies the

language. In this case, if a requested locale matches the language code, then that version of

the resource bundle is used. For example, a resource bundle with a family name of SampleRB

could have a German version called SampleRB_de and a Russian version called SampleRB_ru.

(Notice that an underscore links the family name to the language code.) Therefore, if the

locale is Locale.GERMAN, SampleRB_de will be used.

It is also possible to indicate specific variants of a language that relate to a specific country

by specifying a country code after the language code. A country code is a two-character

uppercase identifier, such as AU for Australia or IN for India. A country code is also preceded

by an underscore when linked to the resource bundle name. A resource bundle that has only

the family name is the default bundle. It is used when no language-specific bundles are

applicable.

NOTE The language codes are defined by ISO standard 639 and the country codes by ISO standard 3166.

The methods defined by ResourceBundle are summarized in Table 18-17. One important

point: null keys are not allowed and several of the methods will throw a NullPointerException

if null is passed as the key. Notice the nested class ResourceBundle.Control. It was added by

Java SE 6 and is used to control the resource-bundle loading process.

574 PART II The Java Library

Table 18-17 The Methods Defined by ResourceBundle

Method Description

static final void clearCache() Deletes all resource bundles from the cache that

were loaded by the default class loader.

static final void

 clearCache(ClassLoader ldr)
Deletes all resource bundles from the cache that

were loaded by ldr.

boolean containsKey(String k) Returns true if k is a key within the invoking

resource bundle (or its parent).

static final ResourceBundle

 getBundle(String familyName)
Loads the resource bundle with a family name of

familyName using the default locale and the default

class loader. Throws MissingResourceException

if no resource bundle matching the family name

specified by familyName is available.

static final ResourceBundle

 getBundle(String familyName,
 Locale loc)

Loads the resource bundle with a family name of

familyName using the specified locale and the default

class loader. Throws MissingResourceException

if no resource bundle matching the family name

specified by familyName is available.

static ResourceBundle

 getBundle(String familyName,
 Locale loc,
 ClassLoader ldr)

Loads the resource bundle with a family name of

familyName using the specified locale and the specified

class loader. Throws MissingResourceException if no

resource bundle matching the family name specified

by familyName is available.

static final ResourceBundle

 getBundle(String familyName,
 ResourceBundle.Control cntl)

 Loads the resource bundle with a family name of

familyName using the default locale and the default

class loader. The loading process is under the

control of cntl. Throws MissingResourceException

if no resource bundle matching the family name

specified by familyName is available.

static final ResourceBundle

 getBundle(String familyName,
 Locale loc,
 ResourceBundle.Control cntl)

Loads the resource bundle with a family name of

familyName using the specified locale and the default

class loader. The loading process is under the

control of cntl. Throws MissingResourceException

if no resource bundle matching the family name

specified by familyName is available.

 static ResourceBundle

 getBundle(String familyName,
 Locale loc,
 ClassLoader ldr,
 ResourceBundle.Control cntl)

Loads the resource bundle with a family name of

familyName using the specified locale and the specified

class loader. The loading process is under the control

of cntl. Throws MissingResourceException if no

resource bundle matching the family name specified

by familyName is available.

abstract Enumeration<String> getKeys() Returns the resource bundle keys as an enumeration

of strings. Any parent’s keys are also obtained.

Locale getLocale() Returns the locale supported by the resource bundle.

 Chapter 18 java.util Part 2: More Utility Classes 575

P
a

rt
 I

I

There are two subclasses of ResourceBundle. The first is PropertyResourceBundle,

which manages resources by using property files. PropertyResourceBundle adds no

methods of its own. The second is the abstract class ListResourceBundle, which manages

resources in an array of key/value pairs. ListResourceBundle adds the method getContents(),
which all subclasses must implement. It is shown here:

protected abstract Object[][] getContents()

It returns a two-dimensional array that contains key/value pairs that represent resources.

The keys must be strings. The values are typically strings, but can be other types of objects.

Here is an example that demonstrates using a resource bundle. The resource bundle

has the family name SampleRB. Two resource bundle classes of this family are created by

extending ListResourceBundle. The first is called SampleRB, and it is the default bundle

(which uses English). It is shown here:

import java.util.*;
public class SampleRB extends ListResourceBundle {
 protected Object[][] getContents() {
 Object[][] resources = new Object[3][2];

Method Description

final Object getObject(String k) Returns the object associated with the key passed

via k. Throws MissingResourceException if k is not

in the resource bundle.

final String getString(String k) Returns the string associated with the key passed via

k. Throws MissingResourceException if k is not in

the resource bundle. Throws ClassCastException if

the object associated with k is not a string.

final String[] getStringArray(String k) Returns the string array associated with the key

passed via k. Throws MissingResourceException

if k is not in the resource bundle. Throws

MissingResourceException if the object associated

with k is not a string array.

protected abstract Object

 handleGetObject(String k)

Returns the object associated with the key passed

via k. Returns null if k is not in the resource bundle.

protected Set<String> handleKeySet() Returns the resource bundle keys as a set of strings.

No parent’s keys are obtained. Also, keys with null
values are not obtained.

Set<String> keySet() Returns the resource bundle keys as a set of strings.

Any parent keys are also obtained.

protected void

 setParent(ResourceBundle parent)
Sets parent as the parent bundle for the resource

bundle. When a key is looked up, the parent will

be searched if the key is not found in the invoking

resource object.

Table 18-17 The Methods Defined by ResourceBundle (continued)

576 PART II The Java Library

 resources[0][0] = "title";
 resources[0][1] = "My Program";

 resources[1][0] = "StopText";
 resources[1][1] = "Stop";

 resources[2][0] = "StartText";
 resources[2][1] = "Start";

 return resources;
 }
}

The second resource bundle, shown next, is called SampleRB_de. It contains the

German translation.

import java.util.*;

// German version.
public class SampleRB_de extends ListResourceBundle {
 protected Object[][] getContents() {
 Object[][] resources = new Object[3][2];

 resources[0][0] = "title";
 resources[0][1] = "Mein Programm";

 resources[1][0] = "StopText";
 resources[1][1] = "Anschlag";

 resources[2][0] = "StartText";
 resources[2][1] = "Anfang";

 return resources;
 }
}

The following program demonstrates these two resource bundles by displaying the

string associated with each key for both the default (English) version and the German

version:

// Demonstrate a resource bundle.
import java.util.*;

class LRBDemo {
 public static void main(String args[]) {
 // Load the default bundle.
 ResourceBundle rd = ResourceBundle.getBundle("SampleRB");

 System.out.println("English version: ");
 System.out.println("String for Title key : " +
 rd.getString("title"));

 Chapter 18 java.util Part 2: More Utility Classes 577

P
a

rt
 I

I

 System.out.println("String for StopText key: " +
 rd.getString("StopText"));

 System.out.println("String for StartText key: " +
 rd.getString("StartText"));

 // Load the German bundle.
 rd = ResourceBundle.getBundle("SampleRB", Locale.GERMAN);

 System.out.println("\nGerman version: ");
 System.out.println("String for Title key : " +
 rd.getString("title"));

 System.out.println("String for StopText key: " +
 rd.getString("StopText"));

 System.out.println("String for StartText key: " +
 rd.getString("StartText"));
 }
}

The output from the program is shown here:

 English version:
 String for Title key : My Program
 String for StopText key: Stop
 String for StartText key: Start

 German version:
 String for Title key : Mein Programm
 String for StopText key: Anschlag
 String for StartText key: Anfang

Miscellaneous Utility Classes and Interfaces
In addition to the classes already discussed, java.util includes the following classes:

EventListenerProxy Extends the EventListener class to allow additional

parameters. See Chapter 23 for a discussion of event listeners.

EventObject The superclass for all event classes. Events are discussed in

Chapter 23.

FormattableFlags Defines formatting flags that are used with the Formattable

interface.

Objects Various methods that operate on objects. (Added by JDK 7.)

PropertyPermission Manages property permissions.

ServiceLoader Provides a means of finding service providers.

UUID Encapsulates and manages Universally Unique Identifiers

(UUIDs).

578 PART II The Java Library

The following interfaces are also packaged in java.util:

EventListener Indicates that a class is an event listener. Events are discussed in

Chapter 23.

Formattable Enables a class to provide custom formatting.

The java.util Subpackages
Java defines the following subpackages to java.util:

• java.util.concurrent

• java.util.concurrent.atomic

• java.util.concurrent.locks

• java.util.jar

• java.util.logging

• java.util.prefs

• java.util.regex

• java.util.spi

• java.util.zip

Each is briefly examined here.

java.util.concurrent, java.util.concurrent.atomic,

and java.util.concurrent.locks

The java.util.concurrent package along with its two subpackages, java.util.concurrent.atomic

and java.util.concurrent.locks, support concurrent programming. These packages provide a

high-performance alternative to using Java’s built-in synchronization features when thread-

safe operation is required. Beginning with JDK 7, java.util.concurrent also provides the

Fork/Join Framework. These packages are examined in detail in Chapter 27.

java.util.jar

The java.util.jar package provides the ability to read and write Java Archive (JAR) files.

java.util.logging

The java.util.logging package provides support for program activity logs, which can be used

to record program actions, and to help find and debug problems.

java.util.prefs

The java.util.prefs package provides support for user preferences. It is typically used to

support program configuration.

 Chapter 18 java.util Part 2: More Utility Classes 579

P
a

rt
 I

I

java.util.regex

The java.util.regex package provides support for regular expression handling. It is

described in detail in Chapter 28.

java.util.spi

The java.util.spi package provides support for service providers.

java.util.zip

The java.util.zip package provides the ability to read and write files in the popular ZIP and

GZIP formats. Both ZIP and GZIP input and output streams are available.

This page intentionally left blank

19
CHAPTER

 581

Input/Output:
Exploring java.io

This chapter explores java.io, which provides support for I/O operations. Chapter 13

presented an overview of Java’s I/O system, including basic techniques for reading and

writing files, handling I/O exceptions, and closing a file. Here, we will examine the Java

I/O system in greater detail.

As all programmers learn early on, most programs cannot accomplish their goals

without accessing external data. Data is retrieved from an input source. The results of a

program are sent to an output destination. In Java, these sources or destinations are defined

very broadly. For example, a network connection, memory buffer, or disk file can be

manipulated by the Java I/O classes. Although physically different, these devices are all

handled by the same abstraction: the stream. A stream, as explained in Chapter 13, is a

logical entity that either produces or consumes information. A stream is linked to a physical

device by the Java I/O system. All streams behave in the same manner, even if the actual

physical devices they are linked to differ.

NOTE The stream-based I/O system packaged in java.io and described in this chapter has been part of
Java since its original release and is widely used. However, beginning with version 1.4, a second I/O
system was added to Java. It is called NIO (which was originally an acronym for New I/O). NIO is
packaged in java.nio and its subpackages. With the release of JDK 7, the capabilities of the NIO
system have been greatly expanded and its use is expected to grow. The NIO system is described in
Chapter 20.

The I/O Classes and Interfaces
The I/O classes defined by java.io are listed here:

BufferedInputStream FileWriter PipedOutputStream

BufferedOutputStream FilterInputStream PipedReader

BufferedReader FilterOutputStream PipedWriter

582 PART II The Java Library

BufferedWriter FilterReader PrintStream

ByteArrayInputStream FilterWriter PrintWriter

ByteArrayOutputStream InputStream PushbackInputStream

CharArrayReader InputStreamReader PushbackReader

CharArrayWriter LineNumberReader RandomAccessFile

Console ObjectInputStream Reader

DataInputStream ObjectInputStream.GetField SequenceInputStream

DataOutputStream ObjectOutputStream SerializablePermission

File ObjectOutputStream.PutField StreamTokenizer

FileDescriptor ObjectStreamClass StringReader

FileInputStream ObjectStreamField StringWriter

FileOutputStream OutputStream Writer

FilePermission OutputStreamWriter

FileReader PipedInputStream

The java.io package also contains two deprecated classes that are not shown in the

preceding table: LineNumberInputStream and StringBufferInputStream. These classes

should not be used for new code.

The following interfaces are defined by java.io:

Closeable FileFilter ObjectInputValidation

DataInput FilenameFilter ObjectOutput

DataOutput Flushable ObjectStreamConstants

Externalizable ObjectInput Serializable

As you can see, there are many classes and interfaces in the java.io package. These

include byte and character streams, and object serialization (the storage and retrieval of

objects). This chapter examines several of the most commonly used I/O components. We

begin our discussion with one of the most distinctive I/O classes: File.

File
Although most of the classes defined by java.io operate on streams, the File class does not.

It deals directly with files and the file system. That is, the File class does not specify how

information is retrieved from or stored in files; it describes the properties of a file itself. A

File object is used to obtain or manipulate the information associated with a disk file, such

as the permissions, time, date, and directory path, and to navigate subdirectory hierarchies.

NOTE The Path interface and Files class, added by JDK 7 to the NIO system, offer a powerful alternative
to File in many cases. See Chapter 20 for details.

 Chapter 19 Input/Output: Exploring java.io 583

P
a

rt
 I

I

Files are a primary source and destination for data within many programs. Although

there are severe restrictions on their use within applets for security reasons, files are still a

central resource for storing persistent and shared information. A directory in Java is treated

simply as a File with one additional property—a list of filenames that can be examined by

the list() method.

The following constructors can be used to create File objects:

File(String directoryPath)

File(String directoryPath, String filename)
File(File dirObj, String filename)
File(URI uriObj)

Here, directoryPath is the path name of the file; filename is the name of the file or subdirectory;

dirObj is a File object that specifies a directory; and uriObj is a URI object that describes a file.

The following example creates three files: f1, f2, and f3. The first File object is constructed

with a directory path as the only argument. The second includes two arguments—the path and

the filename. The third includes the file path assigned to f1 and a filename; f3 refers to the

same file as f2.

File f1 = new File("/");
File f2 = new File("/","autoexec.bat");
File f3 = new File(f1,"autoexec.bat");

NOTE Java does the right thing with path separators between UNIX and Windows conventions. If you use
a forward slash (/) on a Windows version of Java, the path will still resolve correctly. Remember, if
you are using the Windows convention of a backslash character (\), you will need to use its escape
sequence (\\) within a string.

File defines many methods that obtain the standard properties of a File object. For

example, getName() returns the name of the file; getParent() returns the name of the

parent directory; and exists() returns true if the file exists, false if it does not. The File

class, however, is not symmetrical. There are a few methods that allow you to examine the

properties of a simple file object, but no corresponding function exists to change those

attributes.

The following example demonstrates several of the File methods. It assumes that

a directory called java exists off the root directory and that it contains a file called

COPYRIGHT.

// Demonstrate File.
import java.io.File;

class FileDemo {
 static void p(String s) {
 System.out.println(s);
 }

 public static void main(String args[]) {
 File f1 = new File("/java/COPYRIGHT");

584 PART II The Java Library

 p("File Name: " + f1.getName());
 p("Path: " + f1.getPath());
 p("Abs Path: " + f1.getAbsolutePath());
 p("Parent: " + f1.getParent());
 p(f1.exists() ? "exists" : "does not exist");
 p(f1.canWrite() ? "is writeable" : "is not writeable");
 p(f1.canRead() ? "is readable" : "is not readable");
 p("is " + (f1.isDirectory() ? "" : "not" + " a directory"));
 p(f1.isFile() ? "is normal file" : "might be a named pipe");
 p(f1.isAbsolute() ? "is absolute" : "is not absolute");
 p("File last modified: " + f1.lastModified());
 p("File size: " + f1.length() + " Bytes");
 }
}

This program will produce output similar to this:

File Name: COPYRIGHT
Path: \java\COPYRIGHT
Abs Path: C:\java\COPYRIGHT
Parent: \java
exists
is writeable
is readable
is not a directory
is normal file
is not absolute
File last modified: 1282832030047
File size: 695 Bytes

Most of the File methods are self-explanatory. isFile() and isAbsolute() are not. isFile()
returns true if called on a file and false if called on a directory. Also, isFile() returns false

for some special files, such as device drivers and named pipes, so this method can be used

to make sure the file will behave as a file. The isAbsolute() method returns true if the file

has an absolute path and false if its path is relative.

File also includes two useful utility methods. The first is renameTo(), shown here:

boolean renameTo(File newName)

Here, the filename specified by newName becomes the new name of the invoking File

object. It will return true upon success and false if the file cannot be renamed (if you

attempt to rename a file so that it uses an existing filename, for example).

The second utility method is delete(), which deletes the disk file represented by the

path of the invoking File object. It is shown here:

boolean delete()

You can also use delete() to delete a directory if the directory is empty. delete() returns

true if it deletes the file and false if the file cannot be removed.

Here are some other File methods that you will find helpful:

 Chapter 19 Input/Output: Exploring java.io 585

P
a

rt
 I

I

Method Description

void deleteOnExit() Removes the file associated with the invoking object

when the Java Virtual Machine terminates.

long getFreeSpace() Returns the number of free bytes of storage available on

the partition associated with the invoking object.

long getTotalSpace() Returns the storage capacity of the partition associated

with the invoking object.

long getUsableSpace() Returns the number of usable free bytes of storage

available on the partition associated with the invoking

object.

boolean isHidden() Returns true if the invoking file is hidden. Returns false

otherwise.

boolean setLastModified(long millisec) Sets the time stamp on the invoking file to that specified

by millisec, which is the number of milliseconds from

January 1, 1970, Coordinated Universal Time (UTC).

boolean setReadOnly() Sets the invoking file to read-only.

Methods also exist to mark files as readable, writable, and executable. Because File

implements the Comparable interface, the method compareTo() is also supported.

JDK 7 adds a new method to File called toPath(), which is shown here:

Path toPath()

toPath() returns a Path object that represents the file encapsulated by the invoking File

object. (In other words, toPath() converts a File into a Path.) Path is a new interface added

by JDK 7. It is packaged in java.nio.file and is part of NIO. Thus, toPath() forms a bridge

between the older File class and the new Path interface. (See Chapter 20 for a discussion

of Path.)

Directories
A directory is a File that contains a list of other files and directories. When you create a File

object that is a directory, the isDirectory() method will return true. In this case, you can

call list() on that object to extract the list of other files and directories inside. It has two

forms. The first is shown here:

String[] list()

The list of files is returned in an array of String objects.

The program shown here illustrates how to use list() to examine the contents of a

directory:

// Using directories.
import java.io.File;

class DirList {
 public static void main(String args[]) {
 String dirname = "/java";
 File f1 = new File(dirname);

586 PART II The Java Library

 if (f1.isDirectory()) {
 System.out.println("Directory of " + dirname);
 String s[] = f1.list();

 for (int i=0; i < s.length; i++) {
 File f = new File(dirname + "/" + s[i]);
 if (f.isDirectory()) {
 System.out.println(s[i] + " is a directory");
 } else {
 System.out.println(s[i] + " is a file");
 }
 }
 } else {
 System.out.println(dirname + " is not a directory");
 }
 }
}

Here is sample output from the program. (Of course, the output you see will be different,

based on what is in the directory.)

Directory of /java
bin is a directory
lib is a directory
demo is a directory
COPYRIGHT is a file
README is a file
index.html is a file
include is a directory
src.zip is a file
src is a directory

Using FilenameFilter

You will often want to limit the number of files returned by the list() method to include

only those files that match a certain filename pattern, or filter. To do this, you must use a

second form of list(), shown here:

String[] list(FilenameFilter FFObj)

In this form, FFObj is an object of a class that implements the FilenameFilter interface.

FilenameFilter defines only a single method, accept(), which is called once for each file

in a list. Its general form is given here:

boolean accept(File directory, String filename)

The accept() method returns true for files in the directory specified by directory that should

be included in the list (that is, those that match the filename argument) and returns false

for those files that should be excluded.

The OnlyExt class, shown next, implements FilenameFilter. It will be used to modify the

preceding program to restrict the visibility of the filenames returned by list() to files with

names that end in the file extension specified when the object is constructed.

 Chapter 19 Input/Output: Exploring java.io 587

P
a

rt
 I

I

import java.io.*;

public class OnlyExt implements FilenameFilter {
 String ext;

 public OnlyExt(String ext) {
 this.ext = "." + ext;
 }

 public boolean accept(File dir, String name) {
 return name.endsWith(ext);
 }
}

The modified directory listing program is shown here. Now it will only display files that use

the .html extension.

// Directory of .HTML files.
import java.io.*;

class DirListOnly {
 public static void main(String args[]) {
 String dirname = "/java";
 File f1 = new File(dirname);
 FilenameFilter only = new OnlyExt("html");
 String s[] = f1.list(only);

 for (int i=0; i < s.length; i++) {
 System.out.println(s[i]);
 }
 }
}

The listFiles() Alternative

There is a variation to the list() method, called listFiles(), which you might find useful.

The signatures for listFiles() are shown here:

File[] listFiles()

File[] listFiles(FilenameFilter FFObj)
File[] listFiles(FileFilter FObj)

These methods return the file list as an array of File objects instead of strings. The first

method returns all files, and the second returns those files that satisfy the specified

FilenameFilter. Aside from returning an array of File objects, these two versions of listFiles()
work like their equivalent list() methods.

The third version of listFiles() returns those files with path names that satisfy the

specified FileFilter. FileFilter defines only a single method, accept(), which is called once

for each file in a list. Its general form is given here:

boolean accept(File path)

The accept() method returns true for files that should be included in the list (that is, those

that match the path argument) and false for those that should be excluded.

588 PART II The Java Library

Creating Directories

Another two useful File utility methods are mkdir() and mkdirs(). The mkdir() method

creates a directory, returning true on success and false on failure. Failure can occur for

various reasons, such as the path specified in the File object already exists, or the directory

cannot be created because the entire path does not exist yet. To create a directory for

which no path exists, use the mkdirs() method. It creates both a directory and all the

parents of the directory.

The AutoCloseable, Closeable, and Flushable Interfaces
There are three interfaces that are quite important to the stream classes. Two are Closeable

and Flushable. They are defined in java.io and were added by JDK 5. The third, AutoCloseable,

is new, being added by JDK 7. It is packaged in java.lang.

AutoCloseable provides support for JDK 7’s new try-with-resources statement, which

automates the process of closing a resource. (See Chapter 13.) Only objects of classes that

implement AutoCloseable can be managed by try-with-resources. AutoCloseable is

discussed in Chapter 16, but it is reviewed here for convenience. The AutoCloseable

interface defines only the close() method:

void close() throws Exception

This method closes the invoking object, releasing any resources that it may hold. It is called

automatically at the end of a try-with-resources statement, thus eliminating the need to

explicitly call close(). Because this interface is implemented by all of the I/O classes that

open a stream, all such streams can be automatically closed by a try-with-resources statement.

Automatically closing a stream ensures that it is properly closed when it is no longer

needed, thus preventing memory leaks and other problems.

The Closeable interface also defines the close() method. Objects of a class that

implement Closeable can be closed. Beginning with JDK 7, Closeable extends AutoCloseable.

Therefore, in JDK 7, any class that implements Closeable also implements AutoCloseable.

Objects of a class that implements Flushable can force buffered output to be written to

the stream to which the object is attached. It defines the flush() method, shown here:

void flush() throws IOException

Flushing a stream typically causes buffered output to be physically written to the underlying

device. This interface is implemented by all of the I/O classes that write to a stream.

I/O Exceptions
Two exceptions play an important role in I/O handling. The first is IOException. As it

relates to most of the I/O classes described in this chapter, if an I/O error occurs, an

IOException is thrown. In many cases, if a file cannot be opened, a FileNotFoundException
is thrown. FileNotFoundException is a subclass of IOException, so both can be caught with

a single catch that catches IOException. For brevity, this is the approach used by most of

the sample code in this chapter. However, in your own applications, you might find it useful

to catch each exception separately.

 Chapter 19 Input/Output: Exploring java.io 589

P
a

rt
 I

I

Another exception class that is sometimes important when performing I/O is

SecurityException. As explained in Chapter 13, in situations in which a security manager

is present, several of the file classes will throw a SecurityException if a security violation

occurs when attempting to open a file. By default, applications run via java do not use a

security manager. For that reason, the I/O examples in this book do not need to watch for

a possible SecurityException. However, applets will use the security manager provided by

the browser, and file I/O performed by an applet could generate a SecurityException. In

such a case, you will need to handle this exception.

Two Ways to Close a Stream
In general, a stream must be closed when it is no longer needed. Failure to do so can lead

to memory leaks and resource starvation. The techniques used to close a stream were

described in Chapter 13, but because of their importance, they warrant a brief review here

before the stream classes are examined.

Beginning with JDK 7, there are two basic ways in which you can close a stream. The

first is to explicitly call close() on the stream. This is the traditional approach that has been

used since the original release of Java. With this approach, close() is typically called within

a finally block. Thus, a simplified skeleton for the traditional approach is shown here:

try {

 // open and access file

} catch(I/O-exception) {

 // ...

} finally {

 // close the file

}

This general technique (or variation thereof) is common in code that predates JDK 7.

The second approach to closing a stream is to automate the process by using the new

try-with-resources statement that was added by JDK 7. The try-with-resources statement is an

enhanced form of try that has the following form:

try (resource-specification) {

 // use the resource

}

Here, resource-specification is a statement or statements that declares and initializes a

resource, such as a file or other stream-related resource. It consists of a variable declaration

in which the variable is initialized with a reference to the object being managed. When the

try block ends, the resource is automatically released. In the case of a file, this means that

the file is automatically closed. Thus, there is no need to call close() explicitly.

Here are three key points about the try-with-resources statement:

• Resources managed by try-with-resources must be objects of classes that implement

AutoCloseable.

• The resource declared in the try is implicitly final.

• You can manage more than one resource by separating each declaration by a

semicolon.

590 PART II The Java Library

Also, remember that the scope of the declared resource is limited to the try-with-resources

statement.

The principal advantage of try-with-resources is that the resource (in this case, a

stream) is closed automatically when the try block ends. Thus, it is not possible to forget to

close the stream, for example. The try-with-resources approach also typically results in

shorter, clearer, easier-to-maintain source code.

Because of its advantages, try-with-resources is expected to be used extensively in new

code. As a result, most of the code in this chapter (and in this book) will use it. However,

because there are millions of lines of pre-JDK 7 code, it is important for all programmers to

also be familiar with the traditional approach to closing a stream. For example, you will

quite likely have to work on legacy code that uses the traditional approach or in an

environment that uses a version of Java that predates JDK 7. There may also be times when

the automated approach is not appropriate because of other aspects of your code. For this

reason, a few I/O examples in this book will demonstrate the traditional approach so you

can see it in action.

One last point: The examples that use try-with-resources must be compiled by a JDK 7

or later. They won’t work with an older compiler. The examples that use the traditional

approach can be compiled by older versions of Java.

REMEMBER Because try-with-resources streamlines the process of releasing a resource and eliminates
the possibility of accidentally forgetting to release a resource, it is the approach recommended for
new code when its use is appropriate.

The Stream Classes
Java’s stream-based I/O is built upon four abstract classes: InputStream, OutputStream,

Reader, and Writer. These classes were briefly discussed in Chapter 13. They are used to

create several concrete stream subclasses. Although your programs perform their I/O

operations through concrete subclasses, the top-level classes define the basic functionality

common to all stream classes.

InputStream and OutputStream are designed for byte streams. Reader and Writer are

designed for character streams. The byte stream classes and the character stream classes

form separate hierarchies. In general, you should use the character stream classes when

working with characters or strings and use the byte stream classes when working with bytes

or other binary objects.

In the remainder of this chapter, both the byte- and character-oriented streams are

examined.

The Byte Streams
The byte stream classes provide a rich environment for handling byte-oriented I/O. A byte

stream can be used with any type of object, including binary data. This versatility makes

byte streams important to many types of programs. Since the byte stream classes are topped

by InputStream and OutputStream, our discussion begins with them.

 Chapter 19 Input/Output: Exploring java.io 591

P
a

rt
 I

I

InputStream

InputStream is an abstract class that defines Java’s model of streaming byte input. It

implements the AutoCloseable and Closeable interfaces. Most of the methods in this class

will throw an IOException when an I/O error occurs. (The exceptions are mark() and

markSupported().) Table 19-1 shows the methods in InputStream.

NOTE Most of the methods described in Table 19-1 are implemented by the subclasses of InputStream.
The mark() and reset() methods are exceptions; notice their use, or lack thereof, by each subclass
in the discussions that follow.

OutputStream

OutputStream is an abstract class that defines streaming byte output. It implements the

AutoCloseable, Closeable, and Flushable interfaces. Most of the methods in this class

return void and throw an IOException in the case of I/O errors. Table 19-2 shows the

methods in OutputStream.

Table 19-1 The Methods Defined by InputStream

Method Description

int available() Returns the number of bytes of input currently available for

reading.

void close() Closes the input source. Further read attempts will generate an

IOException.

void mark(int numBytes) Places a mark at the current point in the input stream that will

remain valid until numBytes bytes are read.

boolean markSupported() Returns true if mark() / reset() are supported by the invoking

stream.

int read() Returns an integer representation of the next available byte of

input. –1 is returned when the end of the file is encountered.

int read(byte buffer[]) Attempts to read up to buffer.length bytes into buffer and returns the

actual number of bytes that were successfully read. –1 is returned

when the end of the file is encountered.

int read(byte buffer[],

 int offset,
 int numBytes)

Attempts to read up to numBytes bytes into buffer starting at

buffer[offset], returning the number of bytes successfully read. –1

is returned when the end of the file is encountered.

void reset() Resets the input pointer to the previously set mark.

long skip(long numBytes) Ignores (that is, skips) numBytes bytes of input, returning the

number of bytes actually ignored.

592 PART II The Java Library

FileInputStream

The FileInputStream class creates an InputStream that you can use to read bytes from a file.

Two commonly used constructors are shown here:

FileInputStream(String filePath)

FileInputStream(File fileObj)

Either can throw a FileNotFoundException. Here, filePath is the full path name of a file,

and fileObj is a File object that describes the file.

The following example creates two FileInputStreams that use the same disk file and

each of the two constructors:

FileInputStream f0 = new FileInputStream("/autoexec.bat")
File f = new File("/autoexec.bat");
FileInputStream f1 = new FileInputStream(f);

Although the first constructor is probably more commonly used, the second allows you

to closely examine the file using the File methods, before attaching it to an input stream.

When a FileInputStream is created, it is also opened for reading. FileInputStream overrides

six of the methods in the abstract class InputStream. The mark() and reset() methods are

not overridden, and any attempt to use reset() on a FileInputStream will generate an

IOException.

The next example shows how to read a single byte, an array of bytes, and a subrange of

an array of bytes. It also illustrates how to use available() to determine the number of bytes

remaining and how to use the skip() method to skip over unwanted bytes. The program

reads its own source file, which must be in the current directory. Notice that it uses JDK 7’s

new try-with-resources statement to automatically close the file when it is no longer needed.

// Demonstrate FileInputStream.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

Method Description

void close() Closes the output stream. Further write attempts will generate

an IOException.

void flush() Finalizes the output state so that any buffers are cleared. That is,

it flushes the output buffers.

void write(int b) Writes a single byte to an output stream. Note that the

parameter is an int, which allows you to call write() with an

expression without having to cast it back to byte.

void write(byte buffer[]) Writes a complete array of bytes to an output stream.

void write(byte buffer[],

 int offset,
 int numBytes)

Writes a subrange of numBytes bytes from the array buffer,
beginning at buffer[offset].

Table 19-2 The Methods Defined by OutputStream

 Chapter 19 Input/Output: Exploring java.io 593

P
a

rt
 I

I

class FileInputStreamDemo {
 public static void main(String args[]) {
 int size;

 // Use try-with-resources to close the stream.
 try (FileInputStream f =
 new FileInputStream("FileInputStreamDemo.java")) {

 System.out.println("Total Available Bytes: " +
 (size = f.available()));

 int n = size/40;
 System.out.println("First " + n +
 " bytes of the file one read() at a time");
 for (int i=0; i < n; i++) {
 System.out.print((char) f.read());
 }

 System.out.println("\nStill Available: " + f.available());

 System.out.println("Reading the next " + n +
 " with one read(b[])");
 byte b[] = new byte[n];
 if (f.read(b) != n) {
 System.err.println("couldn’t read " + n + " bytes.");
 }

 System.out.println(new String(b, 0, n));
 System.out.println("\nStill Available: " + (size = f.available()));
 System.out.println("Skipping half of remaining bytes with skip()");
 f.skip(size/2);
 System.out.println("Still Available: " + f.available());

 System.out.println("Reading " + n/2 + " into the end of array");
 if (f.read(b, n/2, n/2) != n/2) {
 System.err.println("couldn’t read " + n/2 + " bytes.");
 }

 System.out.println(new String(b, 0, b.length));
 System.out.println("\nStill Available: " + f.available());
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Here is the output produced by this program:

Total Available Bytes: 1785
First 44 bytes of the file one read() at a time
// Demonstrate FileInputStream.
// This pr
Still Available: 1741

594 PART II The Java Library

Reading the next 44 with one read(b[])
ogram uses try-with-resources. It requires J

Still Available: 1697
Skipping half of remaining bytes with skip()
Still Available: 849
Reading 22 into the end of array
ogram uses try-with-rebyte[n];
 if (

Still Available: 827

This somewhat contrived example demonstrates how to read three ways, to skip input, and

to inspect the amount of data available on a stream.

NOTE The preceding example and the other examples in this chapter handle any I/O exceptions that
might occur as described in Chapter 13. See Chapter 13 for details and alternatives.

FileOutputStream

FileOutputStream creates an OutputStream that you can use to write bytes to a file. It

implements the AutoCloseable, Closeable, and Flushable interfaces. Four of its constructors

are shown here:

FileOutputStream(String filePath)

FileOutputStream(File fileObj)
FileOutputStream(String filePath, boolean append)

FileOutputStream(File fileObj, boolean append)

They can throw a FileNotFoundException. Here, filePath is the full path name of a file, and

fileObj is a File object that describes the file. If append is true, the file is opened in append

mode.

Creation of a FileOutputStream is not dependent on the file already existing.

FileOutputStream will create the file before opening it for output when you create the

object. In the case where you attempt to open a read-only file, an exception will be thrown.

The following example creates a sample buffer of bytes by first making a String and

then using the getBytes() method to extract the byte array equivalent. It then creates three

files. The first, file1.txt, will contain every other byte from the sample. The second, file2.txt,
will contain the entire set of bytes. The third and last, file3.txt, will contain only the last

quarter.

// Demonstrate FileOutputStream.
// This program uses the traditional approach to closing a file.

import java.io.*;

class FileOutputStreamDemo {
 public static void main(String args[]) {
 String source = "Now is the time for all good men\n"
 + " to come to the aid of their country\n"
 + " and pay their due taxes.";

 Chapter 19 Input/Output: Exploring java.io 595

P
a

rt
 I

I

 byte buf[] = source.getBytes();
 FileOutputStream f0 = null;
 FileOutputStream f1 = null;
 FileOutputStream f2 = null;

 try {
 f0 = new FileOutputStream("file1.txt");
 f1 = new FileOutputStream("file2.txt");
 f2 = new FileOutputStream("file3.txt");

 // write to first file
 for (int i=0; i < buf.length; i += 2) f0.write(buf[i]);

 // write to second file
 f1.write(buf);

 // write to third file
 f2.write(buf, buf.length-buf.length/4, buf.length/4);
 } catch(IOException e) {
 System.out.println("An I/O Error Occurred");
 } finally {
 try {
 if(f0 != null) f0.close();
 } catch(IOException e) {
 System.out.println("Error Closing file1.txt");
 }
 try {
 if(f1 != null) f1.close();
 } catch(IOException e) {
 System.out.println("Error Closing file2.txt");
 }
 try {
 if(f2 != null) f2.close();
 } catch(IOException e) {
 System.out.println("Error Closing file3.txt");
 }
 }
 }
}

Here are the contents of each file after running this program. First, file1.txt:

 Nwi h iefralgo e
 t oet h i ftercuty n a hi u ae.

Next, file2.txt:

 Now is the time for all good men
 to come to the aid of their country
 and pay their due taxes.

Finally, file3.txt:

 nd pay their due taxes.

596 PART II The Java Library

As the comment at the top of the program states, the preceding program shows an

example that uses the traditional approach to closing a file when it is no longer needed.

This approach is required by all versions of Java prior to JDK 7 and is widely used in legacy

code. As you can see, quite a bit of rather awkward code is required to explicitly call close()
because each call could generate an IOException if the close operation fails. This program

can be substantially improved by using the new try-with-resources statement. For

comparison, here is the revised version. Notice that it is much shorter and streamlined:

// Demonstrate FileOutputStream.
// This version uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class FileOutputStreamDemo {
 public static void main(String args[]) {
 String source = "Now is the time for all good men\n"
 + " to come to the aid of their country\n"
 + " and pay their due taxes.";
 byte buf[] = source.getBytes();

 // Use try-with-resources to close the files.
 try (FileOutputStream f0 = new FileOutputStream("file1.txt");
 FileOutputStream f1 = new FileOutputStream("file2.txt");
 FileOutputStream f2 = new FileOutputStream("file3.txt"))
 {

 // write to first file
 for (int i=0; i < buf.length; i += 2) f0.write(buf[i]);

 // write to second file
 f1.write(buf);

 // write to third file
 f2.write(buf, buf.length-buf.length/4, buf.length/4);
 } catch(IOException e) {
 System.out.println("An I/O Error Occurred");
 }
 }
}

ByteArrayInputStream

ByteArrayInputStream is an implementation of an input stream that uses a byte array as the

source. This class has two constructors, each of which requires a byte array to provide the

data source:

ByteArrayInputStream(byte array [])

ByteArrayInputStream(byte array [], int start, int numBytes)

Here, array is the input source. The second constructor creates an InputStream from a subset of

the byte array that begins with the character at the index specified by start and is numBytes long.

The close() method has no effect on a ByteArrayInputStream. Therefore, it is not

necessary to call close() on a ByteArrayInputStream, but doing so is not an error.

 Chapter 19 Input/Output: Exploring java.io 597

P
a

rt
 I

I

The following example creates a pair of ByteArrayInputStreams, initializing them with

the byte representation of the alphabet:

// Demonstrate ByteArrayInputStream.
import java.io.*;

class ByteArrayInputStreamDemo {
 public static void main(String args[]) {
 String tmp = "abcdefghijklmnopqrstuvwxyz";
 byte b[] = tmp.getBytes();

 ByteArrayInputStream input1 = new ByteArrayInputStream(b);
 ByteArrayInputStream input2 = new ByteArrayInputStream(b,0,3);
 }
}

The input1 object contains the entire lowercase alphabet, whereas input2 contains only the

first three letters.

A ByteArrayInputStream implements both mark() and reset(). However, if mark() has

not been called, then reset() sets the stream pointer to the start of the stream—which, in

this case, is the start of the byte array passed to the constructor. The next example shows

how to use the reset() method to read the same input twice. In this case, the program reads

and prints the letters "abc" once in lowercase and then again in uppercase.

import java.io.*;

class ByteArrayInputStreamReset {
 public static void main(String args[]) {
 String tmp = "abc";
 byte b[] = tmp.getBytes();
 ByteArrayInputStream in = new ByteArrayInputStream(b);

 for (int i=0; i<2; i++) {
 int c;
 while ((c = in.read()) != -1) {
 if (i == 0) {
 System.out.print((char) c);
 } else {
 System.out.print(Character.toUpperCase((char) c));
 }
 }
 System.out.println();
 in.reset();
 }
 }
}

This example first reads each character from the stream and prints it as-is in lowercase. It

then resets the stream and begins reading again, this time converting each character to

uppercase before printing. Here’s the output:

 abc
 ABC

598 PART II The Java Library

ByteArrayOutputStream

ByteArrayOutputStream is an implementation of an output stream that uses a byte array as

the destination. ByteArrayOutputStream has two constructors, shown here:

ByteArrayOutputStream()

ByteArrayOutputStream(int numBytes)

In the first form, a buffer of 32 bytes is created. In the second, a buffer is created with

a size equal to that specified by numBytes. The buffer is held in the protected buf field

of ByteArrayOutputStream. The buffer size will be increased automatically, if needed.

The number of bytes held by the buffer is contained in the protected count field of

ByteArrayOutputStream.

The close() method has no effect on a ByteArrayOutputStream. Therefore, it is not

necessary to call close() on a ByteArrayOutputStream, but doing so is not an error.

The following example demonstrates ByteArrayOutputStream:

// Demonstrate ByteArrayOutputStream.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class ByteArrayOutputStreamDemo {
 public static void main(String args[]) {
 ByteArrayOutputStream f = new ByteArrayOutputStream();
 String s = "This should end up in the array";
 byte buf[] = s.getBytes();

 try {
 f.write(buf);
 } catch(IOException e) {
 System.out.println("Error Writing to Buffer");
 return;
 }

 System.out.println("Buffer as a string");
 System.out.println(f.toString());
 System.out.println("Into array");
 byte b[] = f.toByteArray();
 for (int i=0; i<b.length; i++) System.out.print((char) b[i]);

 System.out.println("\nTo an OutputStream()");

 // Use try-with-resources to manage the file stream.
 try (FileOutputStream f2 = new FileOutputStream("test.txt"))
 {
 f.writeTo(f2);
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 return;
 }

 Chapter 19 Input/Output: Exploring java.io 599

P
a

rt
 I

I

 System.out.println("Doing a reset");
 f.reset();

 for (int i=0; i\<3; i++) f.write('X');

 System.out.println(f.toString());
 }
}

When you run the program, you will create the following output. Notice how after the call

to reset(), the three X’s end up at the beginning.

 Buffer as a string
 This should end up in the array
 Into array
 This should end up in the array
 To an OutputStream()
 Doing a reset
 XXX

This example uses the writeTo() convenience method to write the contents of f to test.txt.
Examining the contents of the test.txt file created in the preceding example shows the

result we expected:

 This should end up in the array

Filtered Byte Streams

Filtered streams are simply wrappers around underlying input or output streams that

transparently provide some extended level of functionality. These streams are typically

accessed by methods that are expecting a generic stream, which is a superclass of the

filtered streams. Typical extensions are buffering, character translation, and raw data

translation. The filtered byte streams are FilterInputStream and FilterOutputStream.

Their constructors are shown here:

FilterOutputStream(OutputStream os)
FilterInputStream(InputStream is)

The methods provided in these classes are identical to those in InputStream and

OutputStream.

Buffered Byte Streams

For the byte-oriented streams, a buffered stream extends a filtered stream class by attaching a

memory buffer to the I/O stream. This buffer allows Java to do I/O operations on more

than a byte at a time, thereby improving performance. Because the buffer is available,

skipping, marking, and resetting of the stream become possible. The buffered byte stream

classes are BufferedInputStream and BufferedOutputStream. PushbackInputStream also

implements a buffered stream.

600 PART II The Java Library

BufferedInputStream
Buffering I/O is a very common performance optimization. Java’s BufferedInputStream

class allows you to "wrap" any InputStream into a buffered stream to improve performance.

BufferedInputStream has two constructors:

BufferedInputStream(InputStream inputStream)

BufferedInputStream(InputStream inputStream, int bufSize)

The first form creates a buffered stream using a default buffer size. In the second, the size

of the buffer is passed in bufSize. Use of sizes that are multiples of a memory page, a disk

block, and so on, can have a significant positive impact on performance. This is, however,

implementation-dependent. An optimal buffer size is generally dependent on the host

operating system, the amount of memory available, and how the machine is configured. To

make good use of buffering doesn’t necessarily require quite this degree of sophistication.

A good guess for a size is around 8,192 bytes, and attaching even a rather small buffer to an

I/O stream is always a good idea. That way, the low-level system can read blocks of data

from the disk or network and store the results in your buffer. Thus, even if you are reading

the data a byte at a time out of the InputStream, you will be manipulating fast memory most

of the time.

Buffering an input stream also provides the foundation required to support moving

backward in the stream of the available buffer. Beyond the read() and skip() methods

implemented in any InputStream, BufferedInputStream also supports the mark() and

reset() methods. This support is reflected by BufferedInputStream.markSupported()
returning true.

The following example contrives a situation where we can use mark() to remember

where we are in an input stream and later use reset() to get back there. This example is

parsing a stream for the HTML entity reference for the copyright symbol. Such a reference

begins with an ampersand (&) and ends with a semicolon (;) without any intervening

whitespace. The sample input has two ampersands to show the case where the reset()
happens and where it does not.

// Use buffered input.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class BufferedInputStreamDemo {
 public static void main(String args[]) {
 String s = "This is a © copyright symbol " +
 "but this is © not.\n";
 byte buf[] = s.getBytes();

 ByteArrayInputStream in = new ByteArrayInputStream(buf);
 int c;
 boolean marked = false;

 // Use try-with-resources to manage the file.
 try (BufferedInputStream f = new BufferedInputStream(in))

 Chapter 19 Input/Output: Exploring java.io 601

P
a

rt
 I

I

 {
 while ((c = f.read()) != -1) {
 switch(c) {
 case '&':
 if (!marked) {
 f.mark(32);
 marked = true;
 } else {
 marked = false;
 }
 break;
 case ‘;’:
 if (marked) {
 marked = false;
 System.out.print("(c)");
 } else
 System.out.print((char) c);
 break;
 case ' ':
 if (marked) {
 marked = false;
 f.reset();
 System.out.print("&");
 } else
 System.out.print((char) c);
 break;
 default:
 if (!marked)
 System.out.print((char) c);
 break;
 }
 }
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Notice that this example uses mark(32), which preserves the mark for the next 32 bytes

read (which is enough for all entity references). Here is the output produced by this

program:

 This is a (c) copyright symbol but this is © not.

BufferedOutputStream
A BufferedOutputStream is similar to any OutputStream with the exception of an added

flush() method that is used to ensure that data buffers are written to the stream being

buffered. Since the point of a BufferedOutputStream is to improve performance by

reducing the number of times the system actually writes data, you may need to call flush()
to cause any data that is in the buffer to be immediately written.

602 PART II The Java Library

Unlike buffered input, buffering output does not provide additional functionality.

Buffers for output in Java are there to increase performance. Here are the two available

constructors:

BufferedOutputStream(OutputStream outputStream)

BufferedOutputStream(OutputStream outputStream, int bufSize)

The first form creates a buffered stream using the default buffer size. In the second form,

the size of the buffer is passed in bufSize.

PushbackInputStream
One of the novel uses of buffering is the implementation of pushback. Pushback is used on

an input stream to allow a byte to be read and then returned (that is, "pushed back") to the

stream. The PushbackInputStream class implements this idea. It provides a mechanism to

"peek" at what is coming from an input stream without disrupting it.

PushbackInputStream has the following constructors:

PushbackInputStream(InputStream inputStream)

PushbackInputStream(InputStream inputStream, int numBytes)

The first form creates a stream object that allows one byte to be returned to the input

stream. The second form creates a stream that has a pushback buffer that is numBytes long.

This allows multiple bytes to be returned to the input stream.

Beyond the familiar methods of InputStream, PushbackInputStream provides unread(),
shown here:

void unread(int b)

void unread(byte buffer [])

void unread(byte buffer, int offset, int numBytes)

The first form pushes back the low-order byte of b. This will be the next byte returned by a

subsequent call to read(). The second form pushes back the bytes in buffer. The third form

pushes back numBytes bytes beginning at offset from buffer. An IOException will be thrown if

there is an attempt to push back a byte when the pushback buffer is full.

Here is an example that shows how a programming language parser might use a

PushbackInputStream and unread() to deal with the difference between the = = operator

for comparison and the = operator for assignment:

// Demonstrate unread().
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class PushbackInputStreamDemo {
 public static void main(String args[]) {
 String s = "if (a == 4) a = 0;\n";
 byte buf[] = s.getBytes();
 ByteArrayInputStream in = new ByteArrayInputStream(buf);
 int c;

 Chapter 19 Input/Output: Exploring java.io 603

P
a

rt
 I

I

 try (PushbackInputStream f = new PushbackInputStream(in))
 {
 while ((c = f.read()) != -1) {
 switch(c) {
 case '=':
 if ((c = f.read()) == '=')
 System.out.print(".eq.");
 else {
 System.out.print("<-");
 f.unread(c);
 }
 break;
 default:
 System.out.print((char) c);
 break;
 }
 }
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Here is the output for this example. Notice that == was replaced by ".eq." and = was

replaced by "<–".

 if (a .eq. 4) a <- 0;

CAUTION PushbackInputStream has the side effect of invalidating the mark() or reset() methods of
the InputStream used to create it. Use markSupported() to check any stream on which you are
going to use mark()/reset().

SequenceInputStream

The SequenceInputStream class allows you to concatenate multiple InputStreams. The

construction of a SequenceInputStream is different from any other InputStream. A

SequenceInputStream constructor uses either a pair of InputStreams or an Enumeration

of InputStreams as its argument:

SequenceInputStream(InputStream first, InputStream second)

SequenceInputStream(Enumeration <? extends InputStream> streamEnum)

Operationally, the class fulfills read requests from the first InputStream until it runs out

and then switches over to the second one. In the case of an Enumeration, it will continue

through all of the InputStreams until the end of the last one is reached. When the end

of each file is reached, its associated stream is closed. Closing the stream created by

SequenceInputStream causes all unclosed streams to be closed.

Here is a simple example that uses a SequenceInputStream to output the contents of

two files. For demonstration purposes, this program uses the traditional technique used to

604 PART II The Java Library

close a file. As an exercise, you might want to try changing it to use the try-with-resources

statement.

// Demonstrate sequenced input.
// This program uses the traditional approach to closing a file.

import java.io.*;
import java.util.*;

class InputStreamEnumerator implements Enumeration<FileInputStream> {
 private Enumeration<String> files;

 public InputStreamEnumerator(Vector<String> files) {
 this.files = files.elements();
 }

 public boolean hasMoreElements() {
 return files.hasMoreElements();
 }

 public FileInputStream nextElement() {
 try {
 return new FileInputStream(files.nextElement().toString());
 } catch (IOException e) {
 return null;
 }
 }
}

class SequenceInputStreamDemo {
 public static void main(String args[]) {
 int c;
 Vector<String> files = new Vector<String>();

 files.addElement("file1.txt");
 files.addElement("file2.txt");
 files.addElement("file3.txt");
 InputStreamEnumerator ise = new InputStreamEnumerator(files);
 InputStream input = new SequenceInputStream(ise);

 try {
 while ((c = input.read()) != -1)
 System.out.print((char) c);
 } catch(NullPointerException e) {
 System.out.println("Error Opening File.");
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 } finally {
 try {
 input.close();
 } catch(IOException e) {
 System.out.println("Error Closing SequenceInputStream");

 Chapter 19 Input/Output: Exploring java.io 605

P
a

rt
 I

I

 }
 }
 }
}

This example creates a Vector and then adds three filenames to it. It passes that vector of

names to the InputStreamEnumerator class, which is designed to provide a wrapper on the

vector where the elements returned are not the filenames but, rather, open FileInputStreams

on those names. The SequenceInputStream opens each file in turn, and this example prints

the contents of the files.

Notice in nextElement() that if a file cannot be opened, null is returned. This results in

a NullPointerException, which is caught in main().

PrintStream

The PrintStream class provides all of the output capabilities we have been using from the

System file handle, System.out, since the beginning of the book. This makes PrintStream
one of Java’s most often used classes. It implements the Appendable, AutoCloseable,

Closeable, and Flushable interfaces.

PrintStream defines several constructors. The ones shown next have been specified

from the start:

PrintStream(OutputStream outputStream)

PrintStream(OutputStream outputStream, boolean flushOnNewline)
PrintStream(OutputStream outputStream, boolean flushOnNewline, String charSet)
 throws UnsupportedEncodingException

Here, outputStream specifies an open OutputStream that will receive output. The

flushOnNewline parameter controls whether the output buffer is automatically flushed

every time a newline (\n) character or a byte array is written or when println() is called.

If flushOnNewline is true, flushing automatically takes place. If it is false, flushing is not

automatic. The first constructor does not automatically flush. You can specify a character

encoding by passing its name in charSet.
The next set of constructors gives you an easy way to construct a PrintStream that writes

its output to a file:

PrintStream(File outputFile) throws FileNotFoundException

PrintStream(File outputFile, String charSet)
 throws FileNotFoundException, UnsupportedEncodingException

PrintStream(String outputFileName) throws FileNotFoundException

PrintStream(String outputFileName, String charSet) throws FileNotFoundException,

 UnsupportedEncodingException

These allow a PrintStream to be created from a File object or by specifying the name of a

file. In either case, the file is automatically created. Any preexisting file by the same name is

destroyed. Once created, the PrintStream object directs all output to the specified file. You

can specify a character encoding by passing its name in charSet.

606 PART II The Java Library

NOTE If a security manager is present, some PrintStream constructors will throw a SecurityException if
a security violation occurs.

PrintStream supports the print() and println() methods for all types, including Object.
If an argument is not a primitive type, the PrintStream methods will call the object’s

toString() method and then display the result.

Somewhat recently (with the release of JDK 5), the printf() method was added to

PrintStream. It allows you to specify the precise format of the data to be written. The printf()
method uses the Formatter class (described in Chapter 18) to format data. It then writes

this data to the invoking stream. Although formatting can be done manually, by using

Formatter directly, printf() streamlines the process. It also parallels the C/C++ printf()
function, which makes it easy to convert existing C/C++ code into Java. Frankly, printf()
was a much welcome addition to the Java API because it greatly simplified the output of

formatted data to the console.

The printf() method has the following general forms:

PrintStream printf(String fmtString, Object … args)
PrintStream printf(Locale loc, String fmtString, Object … args)

The first version writes args to standard output in the format specified by fmtString, using

the default locale. The second lets you specify a locale. Both return the invoking

PrintStream.

In general, printf() works in a manner similar to the format() method specified by

Formatter. The fmtString consists of two types of items. The first type is composed of

characters that are simply copied to the output buffer. The second type contains format

specifiers that define the way the subsequent arguments, specified by args, are displayed.

For complete information on formatting output, including a description of the format

specifiers, see the Formatter class in Chapter 18.

Because System.out is a PrintStream, you can call printf() on System.out. Thus, printf()
can be used in place of println() when writing to the console whenever formatted output is

desired. For example, the following program uses printf() to output numeric values in

various formats. Prior to JDK 5, such formatting required a bit of work. With the addition

of printf(), this is now an easy task.

// Demonstrate printf().

class PrintfDemo {
 public static void main(String args[]) {
 System.out.println("Here are some numeric values " +
 "in different formats.\n");

 System.out.printf("Various integer formats: ");
 System.out.printf("%d %(d %+d %05d\n", 3, -3, 3, 3);

 System.out.println();
 System.out.printf("Default floating-point format: %f\n",
 1234567.123);
 System.out.printf("Floating-point with commas: %,f\n",
 1234567.123);

 Chapter 19 Input/Output: Exploring java.io 607

P
a

rt
 I

I

 System.out.printf("Negative floating-point default: %,f\n",
 -1234567.123);
 System.out.printf("Negative floating-point option: %,(f\n",
 -1234567.123);

 System.out.println();

 System.out.printf("Line up positive and negative values:\n");
 System.out.printf("% ,.2f\n% ,.2f\n",
 1234567.123, -1234567.123);
 }
}

The output is shown here:

 Here are some numeric values in different formats.

 Various integer formats: 3 (3) +3 00003

 Default floating-point format: 1234567.123000
 Floating-point with commas: 1,234,567.123000
 Negative floating-point default: -1,234,567.123000
 Negative floating-point option: (1,234,567.123000)

 Line up positive and negative values:
 1,234,567.12
 -1,234,567.12

PrintStream also defines the format() method. It has these general forms:

PrintStream format(String fmtString, Object … args)
PrintStream format(Locale loc, String fmtString, Object … args)

It works exactly like printf().

DataOutputStream and DataInputStream

DataOutputStream and DataInputStream enable you to write or read primitive data to or

from a stream. They implement the DataOutput and DataInput interfaces, respectively.

These interfaces define methods that convert primitive values to or from a sequence of

bytes. These streams make it easy to store binary data, such as integers or floating-point

values, in a file. Each is examined here.

DataOutputStream extends FilterOutputStream, which extends OutputStream. In

addition to implementing DataOutput, DataOutputStream also implements AutoCloseable,

Closeable, and Flushable. DataOutputStream defines the following constructor:

DataOutputStream(OutputStream outputStream)

Here, outputStream specifies the output stream to which data will be written. When a

DataOutputStream is closed (by calling close()), the underlying stream specified by

outputStream is also closed automatically.

608 PART II The Java Library

DataOutputStream supports all of the methods defined by its superclasses. However,

it is the methods defined by the DataOutput interface, which it implements, that make it

interesting. DataOutput defines methods that convert values of a primitive type into a byte

sequence and then writes it to the underlying stream. Here is a sampling of these methods:

final void writeDouble(double value) throws IOException

final void writeBoolean(boolean value) throws IOException

final void writeInt(int value) throws IOException

Here, value is the value written to the stream.

DataInputStream is the complement of DataOuputStream. It extends

FilterInputStream, which extends InputStream. In addition to implementing

the DataInput interface, DataInputStream also implements AutoCloseable and

Closeable. Here is its only constructor:

DataInputStream(InputStream inputStream)

Here, inputStream specifies the input stream from which data will be read. When a

DataInputStream is closed (by calling close()), the underlying stream specified by

inputStream is also closed automatically.

Like DataOutputStream, DataInputStream supports all of the methods of its

superclasses, but it is the methods defined by the DataInput interface that make it unique.

These methods read a sequence of bytes and convert them into values of a primitive type.

Here is a sampling of these methods:

final double readDouble() throws IOException

final boolean readBoolean() throws IOException

final int readInt() throws IOException

The following program demonstrates the use of DataOutputStream and

DataInputStream:

// Demonstrate DataInputStream and DataOutputStream.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class DataIODemo {
 public static void main(String args[]) throws IOException {

 // First, write the data.
 try (DataOutputStream dout =
 new DataOutputStream(new FileOutputStream("Test.dat")))
 {
 dout.writeDouble(98.6);
 dout.writeInt(1000);
 dout.writeBoolean(true);

 Chapter 19 Input/Output: Exploring java.io 609

P
a

rt
 I

I

 } catch(FileNotFoundException e) {
 System.out.println("Cannot Open Output File");
 return;
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }

 // Now, read the data back.
 try (DataInputStream din =
 new DataInputStream(new FileInputStream("Test.dat")))
 {

 double d = din.readDouble();
 int i = din.readInt();
 boolean b = din.readBoolean();

 System.out.println("Here are the values: " +
 d + " " + i + " " + b);
 } catch(FileNotFoundException e) {
 System.out.println("Cannot Open Input File");
 return;
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

The output is shown here:

 Here are the values: 98.6 1000 true

RandomAccessFile

RandomAccessFile encapsulates a random-access file. It is not derived from InputStream

or OutputStream. Instead, it implements the interfaces DataInput and DataOutput, which

define the basic I/O methods. It also implements the AutoCloseable and Closeable

interfaces. RandomAccessFile is special because it supports positioning requests—that

is, you can position the file pointer within the file. It has these two constructors:

RandomAccessFile(File fileObj, String access)
 throws FileNotFoundException

RandomAccessFile(String filename, String access)
 throws FileNotFoundException

In the first form, fileObj specifies the file to open as a File object. In the second form, the

name of the file is passed in filename. In both cases, access determines what type of file access

is permitted. If it is "r", then the file can be read, but not written. If it is "rw", then the file is

opened in read-write mode. If it is "rws", the file is opened for read-write operations and

610 PART II The Java Library

every change to the file’s data or metadata will be immediately written to the physical

device. If it is "rwd", the file is opened for read-write operations and every change to the

file’s data will be immediately written to the physical device.

The method seek(), shown here, is used to set the current position of the file pointer

within the file:

void seek(long newPos) throws IOException

Here, newPos specifies the new position, in bytes, of the file pointer from the beginning of

the file. After a call to seek(), the next read or write operation will occur at the new file

position.

RandomAccessFile implements the standard input and output methods, which you can

use to read and write to random access files. It also includes some additional methods. One

is setLength(). It has this signature:

void setLength(long len) throws IOException

This method sets the length of the invoking file to that specified by len. This method

can be used to lengthen or shorten a file. If the file is lengthened, the added portion is

undefined.

The Character Streams
While the byte stream classes provide sufficient functionality to handle any type of I/O

operation, they cannot work directly with Unicode characters. Since one of the main

purposes of Java is to support the "write once, run anywhere" philosophy, it was necessary

to include direct I/O support for characters. In this section, several of the character I/O

classes are discussed. As explained earlier, at the top of the character stream hierarchies

are the Reader and Writer abstract classes. We will begin with them.

NOTE As discussed in Chapter 13, the character I/O classes were added by the 1.1 release of Java.
Because of this, you may still find legacy code that uses byte streams where character streams
would be more appropriate. When working on such code, it is a good idea to update it.

Reader

Reader is an abstract class that defines Java’s model of streaming character input. It

implements the AutoCloseable, Closeable, and Readable interfaces. All of the methods in

this class (except for markSupported()) will throw an IOException on error conditions.

Table 19-3 provides a synopsis of the methods in Reader.

Writer

Writer is an abstract class that defines streaming character output. It implements the

AutoCloseable, Closeable, Flushable, and Appendable interfaces. All of the methods in

this class throw an IOException in the case of errors. Table 19-4 shows a synopsis of the

methods in Writer.

 Chapter 19 Input/Output: Exploring java.io 611

P
a

rt
 I

I

Method Description

abstract void close() Closes the input source. Further read attempts will generate an

IOException.

void mark(int numChars) Places a mark at the current point in the input stream that will

remain valid until numChars characters are read.

boolean markSupported() Returns true if mark()/reset() are supported on this stream.

int read() Returns an integer representation of the next available character

from the invoking input stream. –1 is returned when the end of

the file is encountered.

int read(char buffer[]) Attempts to read up to buffer.length characters into buffer and

returns the actual number of characters that were successfully

read. –1 is returned when the end of the file is encountered.

int read(CharBuffer buffer) Attempts to read characters into buffer and returns the actual

number of characters that were successfully read. –1 is returned

when the end of the file is encountered.

abstract

 int read(char buffer[],

 int offset,
 int numChars)

Attempts to read up to numChars characters into buffer starting at

buffer[offset], returning the number of characters successfully read.

–1 is returned when the end of the file is encountered.

boolean ready() Returns true if the next input request will not wait. Otherwise, it

returns false.

void reset() Resets the input pointer to the previously set mark.

long skip(long numChars) Skips over numChars characters of input, returning the number of

characters actually skipped.

Table 19-3 The Methods Defined by Reader

Method Description

Writer append(char ch) Appends ch to the end of the invoking output stream. Returns a

reference to the invoking stream.

Writer

 append(CharSequence chars)
Appends chars to the end of the invoking output stream.

Returns a reference to the invoking stream.

Writer

 append(CharSequence chars,
 int begin, int end)

Appends the subrange of chars specified by begin and end–1 to

the end of the invoking output stream. Returns a reference to

the invoking stream.

abstract void close() Closes the output stream. Further write attempts will generate

an IOException.

abstract void flush() Finalizes the output state so that any buffers are cleared. That is,

it flushes the output buffers.

Table 19-4 The Methods Defined by Writer

612 PART II The Java Library

FileReader

The FileReader class creates a Reader that you can use to read the contents of a file. Its two

most commonly used constructors are shown here:

FileReader(String filePath)

FileReader(File fileObj)

Either can throw a FileNotFoundException. Here, filePath is the full path name of a file,

and fileObj is a File object that describes the file.

The following example shows how to read lines from a file and display them on the

standard output device. It reads its own source file, which must be in the current directory.

// Demonstrate FileReader.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class FileReaderDemo {
 public static void main(String args[]) {

 try (FileReader fr = new FileReader("FileReaderDemo.java"))
 {
 int c;

 // Read and display the file.
 while((c = fr.read()) != -1) System.out.print((char) c);

 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Method Description

void write(int ch) Writes a single character to the invoking output stream. Note

that the parameter is an int, which allows you to call write with

an expression without having to cast it back to char. However,

only the low-order 16 bits are written.

void write(char buffer[]) Writes a complete array of characters to the invoking output

stream.

abstract

 void write(char buffer[],

 int offset,
 int numChars)

Writes a subrange of numChars characters from the array buffer,
beginning at buffer[offset] to the invoking output stream.

void write(String str) Writes str to the invoking output stream.

void write(String str, int offset,
 int numChars)

Writes a subrange of numChars characters from the string str,
beginning at the specified offset.

Table 19-4 The Methods Defined by Writer (continued)

 Chapter 19 Input/Output: Exploring java.io 613

P
a

rt
 I

I

FileWriter

FileWriter creates a Writer that you can use to write to a file. Four of its most commonly

used constructors are shown here:

FileWriter(String filePath)

FileWriter(String filePath, boolean append)

FileWriter(File fileObj)
FileWriter(File fileObj, boolean append)

They can all throw an IOException. Here, filePath is the full path name of a file, and fileObj
is a File object that describes the file. If append is true, then output is appended to the end

of the file.

Creation of a FileWriter is not dependent on the file already existing. FileWriter will

create the file before opening it for output when you create the object. In the case where

you attempt to open a read-only file, an IOException will be thrown.

The following example is a character stream version of an example shown earlier when

FileOutputStream was discussed. This version creates a sample buffer of characters by first

making a String and then using the getChars() method to extract the character array

equivalent. It then creates three files. The first, file1.txt, will contain every other character

from the sample. The second, file2.txt, will contain the entire set of characters. Finally, the

third, file3.txt, will contain only the last quarter.

// Demonstrate FileWriter.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class FileWriterDemo {
 public static void main(String args[]) throws IOException {
 String source = "Now is the time for all good men\n"
 + " to come to the aid of their country\n"
 + " and pay their due taxes.";
 char buffer[] = new char[source.length()];
 source.getChars(0, source.length(), buffer, 0);

 try (FileWriter f0 = new FileWriter("file1.txt");
 FileWriter f1 = new FileWriter("file2.txt");
 FileWriter f2 = new FileWriter("file3.txt"))
 {
 // write to first file
 for (int i=0; i < buffer.length; i += 2) {
 f0.write(buffer[i]);
 }

 // write to second file
 f1.write(buffer);

 // write to third file
 f2.write(buffer,buffer.length-buffer.length/4,buffer.length/4);

614 PART II The Java Library

 } catch(IOException e) {
 System.out.println("An I/O Error Occurred");
 }
 }
}

CharArrayReader

CharArrayReader is an implementation of an input stream that uses a character array as the

source. This class has two constructors, each of which requires a character array to provide

the data source:

CharArrayReader(char array [])

CharArrayReader(char array [], int start, int numChars)

Here, array is the input source. The second constructor creates a Reader from a subset of

your character array that begins with the character at the index specified by start and is

numChars long.

The close() method implemented by CharArrayReader does not throw any exceptions.

This is because it cannot fail.

The following example uses a pair of CharArrayReaders:

// Demonstrate CharArrayReader.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

public class CharArrayReaderDemo {
 public static void main(String args[]) {
 String tmp = "abcdefghijklmnopqrstuvwxyz";
 int length = tmp.length();
 char c[] = new char[length];

 tmp.getChars(0, length, c, 0);
 int i;

 try (CharArrayReader input1 = new CharArrayReader(c))
 {
 System.out.println("input1 is:");
 while((i = input1.read()) != -1) {
 System.out.print((char)i);
 }
 System.out.println();
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }

 try (CharArrayReader input2 = new CharArrayReader(c, 0, 5))
 {
 System.out.println("input2 is:");
 while((i = input2.read()) != -1) {
 System.out.print((char)i);
 }

 Chapter 19 Input/Output: Exploring java.io 615

P
a

rt
 I

I

 System.out.println();
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

The input1 object is constructed using the entire lowercase alphabet, whereas input2

contains only the first five letters. Here is the output:

 input1 is:
 abcdefghijklmnopqrstuvwxyz
 input2 is:
 abcde

CharArrayWriter

CharArrayWriter is an implementation of an output stream that uses an array as the

destination. CharArrayWriter has two constructors, shown here:

CharArrayWriter()

CharArrayWriter(int numChars)

In the first form, a buffer with a default size is created. In the second, a buffer is created

with a size equal to that specified by numChars. The buffer is held in the buf field of

CharArrayWriter. The buffer size will be increased automatically, if needed. The number of

characters held by the buffer is contained in the count field of CharArrayWriter. Both buf

and count are protected fields.

The close() method has no effect on a CharArrayWriter.

The following example demonstrates CharArrayWriter by reworking the sample

program shown earlier for ByteArrayOutputStream. It produces the same output as the

previous version.

// Demonstrate CharArrayWriter.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class CharArrayWriterDemo {
 public static void main(String args[]) throws IOException {
 CharArrayWriter f = new CharArrayWriter();
 String s = "This should end up in the array";
 char buf[] = new char[s.length()];

 s.getChars(0, s.length(), buf, 0);

 try {
 f.write(buf);
 } catch(IOException e) {
 System.out.println("Error Writing to Buffer");
 return;
 }

616 PART II The Java Library

 System.out.println("Buffer as a string");
 System.out.println(f.toString());
 System.out.println("Into array");

 char c[] = f.toCharArray();
 for (int i=0; i<c.length; i++) {
 System.out.print(c[i]);
 }

 System.out.println("\nTo a FileWriter()");

 // Use try-with-resources to manage the file stream.
 try (FileWriter f2 = new FileWriter("test.txt"))
 {
 f.writeTo(f2);
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }

 System.out.println("Doing a reset");
 f.reset();

 for (int i=0; i<3; i++) f.write('X');

 System.out.println(f.toString());
 }
}

BufferedReader

BufferedReader improves performance by buffering input. It has two constructors:

BufferedReader(Reader inputStream)

BufferedReader(Reader inputStream, int bufSize)

The first form creates a buffered character stream using a default buffer size. In the second,

the size of the buffer is passed in bufSize.
Closing a BufferedReader also causes the underlying stream specified by inputStream to

be closed.

As is the case with the byte-oriented stream, buffering an input character stream also

provides the foundation required to support moving backward in the stream within the

available buffer. To support this, BufferedReader implements the mark() and reset()
methods, and BufferedReader.markSupported() returns true.

The following example reworks the BufferedInputStream example, shown earlier, so

that it uses a BufferedReader character stream rather than a buffered byte stream. As

before, it uses the mark() and reset() methods to parse a stream for the HTML entity

reference for the copyright symbol. Such a reference begins with an ampersand (&) and

ends with a semicolon (;) without any intervening whitespace. The sample input has two

ampersands to show the case where the reset() happens and where it does not. Output is

the same as that shown earlier.

 Chapter 19 Input/Output: Exploring java.io 617

P
a

rt
 I

I

// Use buffered input.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class BufferedReaderDemo {
 public static void main(String args[]) throws IOException {
 String s = "This is a © copyright symbol " +
 "but this is © not.\n";
 char buf[] = new char[s.length()];
 s.getChars(0, s.length(), buf, 0);

 CharArrayReader in = new CharArrayReader(buf);
 int c;
 boolean marked = false;

 try (BufferedReader f = new BufferedReader(in))
 {

 while ((c = f.read()) != -1) {
 switch(c) {
 case '&':
 if (!marked) {
 f.mark(32);
 marked = true;
 } else {
 marked = false;
 }
 break;
 case ';':
 if (marked) {
 marked = false;
 System.out.print("(c)");
 } else
 System.out.print((char) c);
 break;
 case ' ':
 if (marked) {
 marked = false;
 f.reset();
 System.out.print("&");
 } else
 System.out.print((char) c);
 break;
 default:
 if (!marked)
 System.out.print((char) c);
 break;
 }
 }
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

618 PART II The Java Library

BufferedWriter

A BufferedWriter is a Writer that buffers output. Using a BufferedWriter can improve

performance by reducing the number of times data is actually physically written to the

output device.

A BufferedWriter has these two constructors:

BufferedWriter(Writer outputStream)

BufferedWriter(Writer outputStream, int bufSize)

The first form creates a buffered stream using a buffer with a default size. In the second,

the size of the buffer is passed in bufSize.

PushbackReader

The PushbackReader class allows one or more characters to be returned to the input

stream. This allows you to look ahead in the input stream. Here are its two constructors:

PushbackReader(Reader inputStream)

PushbackReader(Reader inputStream, int bufSize)

The first form creates a buffered stream that allows one character to be pushed back. In the

second, the size of the pushback buffer is passed in bufSize.
Closing a PushbackReader also closes the underlying stream specified by inputStream.

PushbackReader provides unread(), which returns one or more characters to the

invoking input stream. It has the three forms shown here:

void unread(int ch) throws IOException

void unread(char buffer []) throws IOException

void unread(char buffer [], int offset, int numChars) throws IOException

The first form pushes back the character passed in ch. This will be the next character

returned by a subsequent call to read(). The second form returns the characters in buffer.
The third form pushes back numChars characters beginning at offset from buffer. An

IOException will be thrown if there is an attempt to return a character when the pushback

buffer is full.

The following program reworks the earlier PushbackInputStream example by replacing

PushbackInputStream with PushbackReader. As before, it shows how a programming

language parser can use a pushback stream to deal with the difference between the ==

operator for comparison and the = operator for assignment.

// Demonstrate unread().
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class PushbackReaderDemo {
 public static void main(String args[]) {
 String s = "if (a == 4) a = 0;\n";
 char buf[] = new char[s.length()];
 s.getChars(0, s.length(), buf, 0);
 CharArrayReader in = new CharArrayReader(buf);

 int c;

 Chapter 19 Input/Output: Exploring java.io 619

P
a

rt
 I

I

 try (PushbackReader f = new PushbackReader(in))
 {
 while ((c = f.read()) != -1) {
 switch(c) {
 case '=':
 if ((c = f.read()) == '=')
 System.out.print(".eq.");
 else {
 System.out.print("<-");
 f.unread(c);
 }
 break;
 default:
 System.out.print((char) c);
 break;
 }
 }
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

PrintWriter

PrintWriter is essentially a character-oriented version of PrintStream. It implements the

Appendable, AutoCloseable, Closeable, and Flushable interfaces. PrintWriter has several

constructors. The following have been supplied by PrintWriter from the start:

PrintWriter(OutputStream outputStream)

PrintWriter(OutputStream outputStream, boolean flushOnNewline)
PrintWriter(Writer outputStream)

PrintWriter(Writer outputStream, boolean flushOnNewline)

Here, outputStream specifies an open OutputStream that will receive output. The

flushOnNewline parameter controls whether the output buffer is automatically flushed

every time println(), printf(), or format() is called. If flushOnNewline is true, flushing

automatically takes place. If false, flushing is not automatic. Constructors that do not

specify the flushOnNewline parameter do not automatically flush.

The next set of constructors gives you an easy way to construct a PrintWriter that writes

its output to a file.

PrintWriter(File outputFile) throws FileNotFoundException

PrintWriter(File outputFile, String charSet)
 throws FileNotFoundException, UnsupportedEncodingException

PrintWriter(String outputFileName) throws FileNotFoundException

PrintWriter(String outputFileName, String charSet)
 throws FileNotFoundException, UnsupportedEncodingException

These allow a PrintWriter to be created from a File object or by specifying the name of a

file. In either case, the file is automatically created. Any preexisting file by the same name is

destroyed. Once created, the PrintWriter object directs all output to the specified file. You

can specify a character encoding by passing its name in charSet.

620 PART II The Java Library

PrintWriter supports the print() and println() methods for all types, including Object.
If an argument is not a primitive type, the PrintWriter methods will call the object’s toString()
method and then output the result.

PrintWriter also supports the printf() method. It works the same way it does in the

PrintStream class described earlier: It allows you to specify the precise format of the data.

Here is how printf() is declared in PrintWriter:

PrintWriter printf(String fmtString, Object … args)
PrintWriter printf(Locale loc, String fmtString, Object …args)

The first version writes args to standard output in the format specified by fmtString, using

the default locale. The second lets you specify a locale. Both return the invoking

PrintWriter.

The format() method is also supported. It has these general forms:

PrintWriter format(String fmtString, Object … args)
PrintWriter format(Locale loc, String fmtString, Object … args)

It works exactly like printf().

The Console Class
Recently (in JDK 6), the Console class was added to java.io. It is used to read from and write

to the console, if one exists. It implements the Flushable interface. Console is primarily a

convenience class because most of its functionality is available through System.in and

System.out. However, its use can simplify some types of console interactions, especially

when reading strings from the console.

Console supplies no constructors. Instead, a Console object is obtained by calling

System.console(), which is shown here:

static Console console()

If a console is available, then a reference to it is returned. Otherwise, null is returned. A

console will not be available in all cases. Thus, if null is returned, no console I/O is possible.

Console defines the methods shown in Table 19-5. Notice that the input methods, such

as readLine(), throw IOError if an input error occurs. IOError is a subclass of Error. It

indicates an I/O failure that is beyond the control of your program. Thus, you will not

normally catch an IOError. Frankly, if an IOError is thrown while accessing the console,

it usually means there has been a catastrophic system failure.

Also notice the readPassword() methods. These methods let your application read a

password without echoing what is typed. When reading passwords, you should "zero-out"

both the array that holds the string entered by the user and the array that holds the

password that the string is tested against. This reduces the chance that a malicious program

will be able to obtain a password by scanning memory.

 Chapter 19 Input/Output: Exploring java.io 621

P
a

rt
 I

I
Here is an example that demonstrates the Console class:

// Demonstrate Console.
import java.io.*;

class ConsoleDemo {
 public static void main(String args[]) {
 String str;
 Console con;

Method Description

void flush() Causes buffered output to be written physically to the

console.

Console format(String fmtString,

 Object...args)
Writes args to the console using the format specified by

fmtString.

Console printf(String fmtString,

 Object...args)
Writes args to the console using the format specified by

fmtString.

Reader reader() Returns a reference to a Reader connected to the

console.

String readLine() Reads and returns a string entered at the keyboard.

Input stops when the user presses enter. If the end

of the console input stream has been reached, null is
returned. An IOError is thrown on failure.

String readLine(String fmtString,

 Object…args)
Displays a prompting string formatted as specified by

fmtString and args, and then reads and returns a string

entered at the keyboard. Input stops when the user

presses enter. If the end of the console input stream

has been reached, null is returned. An IOError is

thrown on failure.

char[] readPassword() Reads a string entered at the keyboard. Input stops

when the user presses enter. The string is not

displayed. If the end of the console input stream has

been reached, null is returned. An IOError is thrown

on failure.

char[] readPassword(String fmtString,

 Object… args)
Displays a prompting string formatted as specified by

fmtString and args, and then reads a string entered at the

keyboard. Input stops when the user presses enter. The

string is not displayed. If the end of the console input

stream has been reached, null is returned. An IOError

is thrown on failure.

PrintWriter writer() Returns a reference to a Writer connected to the console.

Table 19-5 The Methods Defined by Console

622 PART II The Java Library

 // Obtain a reference to the console.
 con = System.console();
 // If no console available, exit.
 if(con == null) return;

 // Read a string and then display it.
 str = con.readLine("Enter a string: ");
 con.printf("Here is your string: %s\n", str);
 }
}

Here is sample output:

 Enter a string: This is a test.
 Here is your string: This is a test.

Serialization
Serialization is the process of writing the state of an object to a byte stream. This is useful

when you want to save the state of your program to a persistent storage area, such as a file.

At a later time, you may restore these objects by using the process of deserialization.

Serialization is also needed to implement Remote Method Invocation (RMI). RMI allows a

Java object on one machine to invoke a method of a Java object on a different machine.

An object may be supplied as an argument to that remote method. The sending machine

serializes the object and transmits it. The receiving machine deserializes it. (More

information about RMI appears in Chapter 28.)

Assume that an object to be serialized has references to other objects, which, in turn,

have references to still more objects. This set of objects and the relationships among them

form a directed graph. There may also be circular references within this object graph. That

is, object X may contain a reference to object Y, and object Y may contain a reference back

to object X. Objects may also contain references to themselves. The object serialization and

deserialization facilities have been designed to work correctly in these scenarios. If you

attempt to serialize an object at the top of an object graph, all of the other referenced

objects are recursively located and serialized. Similarly, during the process of deserialization,

all of these objects and their references are correctly restored.

An overview of the interfaces and classes that support serialization follows.

Serializable

Only an object that implements the Serializable interface can be saved and restored by the

serialization facilities. The Serializable interface defines no members. It is simply used to

indicate that a class may be serialized. If a class is serializable, all of its subclasses are also

serializable.

 Chapter 19 Input/Output: Exploring java.io 623

P
a

rt
 I

I

Variables that are declared as transient are not saved by the serialization facilities. Also,

static variables are not saved.

Externalizable

The Java facilities for serialization and deserialization have been designed so that much of

the work to save and restore the state of an object occurs automatically. However, there are

cases in which the programmer may need to have control over these processes. For example,

it may be desirable to use compression or encryption techniques. The Externalizable

interface is designed for these situations.

The Externalizable interface defines these two methods:

void readExternal(ObjectInput inStream)

 throws IOException, ClassNotFoundException

void writeExternal(ObjectOutput outStream)

 throws IOException

In these methods, inStream is the byte stream from which the object is to be read, and

outStream is the byte stream to which the object is to be written.

ObjectOutput

The ObjectOutput interface extends the DataOutput and AutoCloseable interfaces and

supports object serialization. It defines the methods shown in Table 19-6. Note especially

the writeObject() method. This is called to serialize an object. All of these methods will

throw an IOException on error conditions.

Method Description

void close() Closes the invoking stream. Further write attempts will

generate an IOException.

void flush() Finalizes the output state so any buffers are cleared. That is,

it flushes the output buffers.

void write(byte buffer[]) Writes an array of bytes to the invoking stream.

void write(byte buffer[],

 int offset,
 int numBytes)

Writes a subrange of numBytes bytes from the array buffer,
beginning at buffer[offset].

void write(int b) Writes a single byte to the invoking stream. The byte

written is the low-order byte of b.

void writeObject(Object obj) Writes object obj to the invoking stream.

Table 19-6 The Methods Defined by ObjectOutput

624 PART II The Java Library

ObjectOutputStream

The ObjectOutputStream class extends the OutputStream class and implements the

ObjectOutput interface. It is responsible for writing objects to a stream. One constructor of

this class is shown here:

ObjectOutputStream(OutputStream outStream) throws IOException

The argument outStream is the output stream to which serialized objects will be written.

Closing an ObjectOutputStream automatically closes the underlying stream specified by

outStream.

Several commonly used methods in this class are shown in Table 19-7. They will throw

an IOException on error conditions. There is also an inner class to ObjectOuputStream

called PutField. It facilitates the writing of persistent fields, and its use is beyond the scope

of this book.

Method Description

void close() Closes the invoking stream. Further write attempts will

generate an IOException. The underlying stream is also

closed.

void flush() Finalizes the output state so any buffers are cleared. That is,

it flushes the output buffers.

void write(byte buffer[]) Writes an array of bytes to the invoking stream.

void write(byte buffer[],

 int offset,
 int numBytes)

Writes a subrange of numBytes bytes from the array buffer,
beginning at buffer[offset].

void write(int b) Writes a single byte to the invoking stream. The byte written

is the low-order byte of b.

void writeBoolean(boolean b) Writes a boolean to the invoking stream.

void writeByte(int b) Writes a byte to the invoking stream. The byte written is the

low-order byte of b.

void writeBytes(String str) Writes the bytes representing str to the invoking stream.

void writeChar(int c) Writes a char to the invoking stream.

void writeChars(String str) Writes the characters in str to the invoking stream.

void writeDouble(double d) Writes a double to the invoking stream.

void writeFloat(float f) Writes a float to the invoking stream.

void writeInt(int i) Writes an int to the invoking stream.

void writeLong(long l) Writes a long to the invoking stream.

final void writeObject(Object obj) Writes obj to the invoking stream.

void writeShort(int i) Writes a short to the invoking stream.

Table 19-7 A Sampling of Commonly Used Methods Defined by ObjectOutputStream

 Chapter 19 Input/Output: Exploring java.io 625

P
a

rt
 I

I

ObjectInput

The ObjectInput interface extends the DataInput and AutoCloseable interfaces and

defines the methods shown in Table 19-8. It supports object serialization. Note especially

the readObject() method. This is called to deserialize an object. All of these methods will

throw an IOException on error conditions. The readObject() method can also throw

ClassNotFoundException.

ObjectInputStream

The ObjectInputStream class extends the InputStream class and implements the ObjectInput
interface. ObjectInputStream is responsible for reading objects from a stream. One

constructor of this class is shown here:

ObjectInputStream(InputStream inStream) throws IOException

The argument inStream is the input stream from which serialized objects should be read.

Closing an ObjectInputStream automatically closes the underlying stream specified by

inStream.

Several commonly used methods in this class are shown in Table 19-9. They will

throw an IOException on error conditions. The readObject() method can also throw

ClassNotFoundException. There is also an inner class to ObjectInputStream called

GetField. It facilitates the reading of persistent fields, and its use is beyond the scope

of this book.

Method Description

int available() Returns the number of bytes that are now available in the

input buffer.

void close() Closes the invoking stream. Further read attempts will

generate an IOException.

int read() Returns an integer representation of the next available byte of

input. –1 is returned when the end of the file is encountered.

int read(byte buffer[]) Attempts to read up to buffer.length bytes into buffer, returning

the number of bytes that were successfully read. –1 is returned

when the end of the file is encountered.

int read(byte buffer[],

 int offset,
 int numBytes)

Attempts to read up to numBytes bytes into buffer starting

at buffer[offset], returning the number of bytes that were

successfully read. –1 is returned when the end of the file is

encountered.

Object readObject() Reads an object from the invoking stream.

long skip(long numBytes) Ignores (that is, skips) numBytes bytes in the invoking stream,

returning the number of bytes actually ignored.

Table 19-8 The Methods Defined by ObjectInput

626 PART II The Java Library

A Serialization Example

The following program illustrates how to use object serialization and deserialization. It

begins by instantiating an object of class MyClass. This object has three instance variables

that are of types String, int, and double. This is the information we want to save and restore.

A FileOutputStream is created that refers to a file named "serial", and an

ObjectOutputStream is created for that file stream. The writeObject() method

of ObjectOutputStream is then used to serialize our object. The object output stream

is flushed and closed.

A FileInputStream is then created that refers to the file named "serial", and

an ObjectInputStream is created for that file stream. The readObject() method of

ObjectInputStream is then used to deserialize our object. The object input stream

is then closed.

Method Description

int available() Returns the number of bytes that are now available in the

input buffer.

void close() Closes the invoking stream. Further read attempts will generate

an IOException. The underlying stream is also closed.

int read() Returns an integer representation of the next available

byte of input. –1 is returned when the end of the file is

encountered.

int read(byte buffer[],

 int offset,
 int numBytes)

 Attempts to read up to numBytes bytes into buffer starting at

buffer[offset], returning the number of bytes successfully read.

–1 is returned when the end of the file is encountered.

Boolean readBoolean() Reads and returns a boolean from the invoking stream.

byte readByte() Reads and returns a byte from the invoking stream.

char readChar() Reads and returns a char from the invoking stream.

double readDouble() Reads and returns a double from the invoking stream.

float readFloat() Reads and returns a float from the invoking stream.

void readFully(byte buffer[]) Reads buffer.length bytes into buffer. Returns only when all bytes

have been read.

void readFully(byte buffer[],

 int offset,
 int numBytes)

Reads numBytes bytes into buffer starting at buffer[offset].

Returns only when numBytes have been read.

int readInt() Reads and returns an int from the invoking stream.

long readLong() Reads and returns a long from the invoking stream.

final Object readObject() Reads and returns an object from the invoking stream.

short readShort() Reads and returns a short from the invoking stream.

int readUnsignedByte() Reads and returns an unsigned byte from the invoking stream.

int readUnsignedShort() Reads and returns an unsigned short from the invoking stream.

Table 19-9 Commonly Used Methtods Defined by ObjectInputStream

 Chapter 19 Input/Output: Exploring java.io 627

P
a

rt
 I

I

Note that MyClass is defined to implement the Serializable interface. If this is not done,

a NotSerializableException is thrown. Try experimenting with this program by declaring

some of the MyClass instance variables to be transient. That data is then not saved during

serialization.

// A serialization demo.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

public class SerializationDemo {
 public static void main(String args[]) {

 // Object serialization

 try (ObjectOutputStream objOStrm =
 new ObjectOutputStream(new FileOutputStream("serial")))
 {
 MyClass object1 = new MyClass("Hello", -7, 2.7e10);
 System.out.println("object1: " + object1);

 objOStrm.writeObject(object1);
 }
 catch(IOException e) {
 System.out.println("Exception during serialization: " + e);
 }

 // Object deserialization

 try (ObjectInputStream objIStrm =
 new ObjectInputStream(new FileInputStream("serial")))
 {
 MyClass object2 = (MyClass)objIStrm.readObject();
 System.out.println("object2: " + object2);
 }
 catch(Exception e) {
 System.out.println("Exception during deserialization: " + e);
 }
 }
}

class MyClass implements Serializable {
 String s;
 int i;
 double d;

 public MyClass(String s, int i, double d) {
 this.s = s;
 this.i = i;
 this.d = d;
 }

628 PART II The Java Library

 public String toString() {
 return "s=" + s + "; i=" + i + "; d=" + d;
 }
}

This program demonstrates that the instance variables of object1 and object2 are identical.

The output is shown here:

 object1: s=Hello; i=-7; d=2.7E10
 object2: s=Hello; i=-7; d=2.7E10

Stream Benefits
The streaming interface to I/O in Java provides a clean abstraction for a complex and often

cumbersome task. The composition of the filtered stream classes allows you to dynamically

build the custom streaming interface to suit your data transfer requirements. Java programs

written to adhere to the abstract, high-level InputStream, OutputStream, Reader, and

Writer classes will function properly in the future even when new and improved concrete

stream classes are invented. As you will see in Chapter 21, this model works very well when

we switch from a file system–based set of streams to the network and socket streams. Finally,

serialization of objects plays an important role in many types of Java programs. Java’s

serialization I/O classes provide a portable solution to this sometimes tricky task.

20
CHAPTER

 629

Exploring NIO

Beginning with version 1.4, Java has provided a second I/O system called NIO (which is

short for New I/O). It supports a buffer-oriented, channel-based approach to I/O operations.

With the release of JDK 7, the NIO system has been greatly expanded and now provides

enhanced support for file-handling and file system features. In fact, so significant are the

changes that the term NIO.2 is often used. Because of the capabilities provided by the new

NIO file classes, NIO is expected to become an increasingly important part of file handling

going forward. This chapter explores several of the key features of the NIO system,

including its new file-handling capabilities.

The NIO Classes
The NIO classes are contained in the packages shown here:

Package Purpose

java.nio Top-level package for the NIO system. Encapsulates various types

of buffers that contain data operated upon by the NIO system.

java.nio.channels Supports channels, which are essentially open I/O connections.

java.nio.channels.spi Supports service providers for channels.

java.nio.charset Encapsulates character sets. Also supports encoders and decoders

that convert characters to bytes and bytes to characters, respectively.

java.nio.charset.spi Supports service providers for character sets.

java.nio.file Provides support for files. (Added by JDK 7.)

java.nio.file.attribute Provides support for file attributes. (Added by JDK 7.)

java.nio.file.spi Supports service providers for file systems. (Added by JDK 7.)

Before we begin, it is important to emphasize that the NIO subsystem does not replace the

stream-based I/O classes found in java.io, which are discussed in Chapter 19, and good

working knowledge of the stream-based I/O in java.io is helpful to understanding NIO.

630 PART II The Java Library

NOTE This chapter assumes that you have read the overview of I/O given in Chapter 13 and the
discussion of stream-based I/O supplied in Chapter 19.

NIO Fundamentals
The NIO system is built on two foundational items: buffers and channels. A buffer holds

data. A channel represents an open connection to an I/O device, such as a file or a socket.

In general, to use the NIO system, you obtain a channel to an I/O device and a buffer to

hold data. You then operate on the buffer, inputting or outputting data as needed. The

following sections examine buffers and channels in more detail.

Buffers

Buffers are defined in the java.nio package. All buffers are subclasses of the Buffer class,

which defines the core functionality common to all buffers: current position, limit, and

capacity. The current position is the index within the buffer at which the next read or write

operation will take place. The current position is advanced by most read or write operations.

The limit is the index value one past the last valid location in the buffer. The capacity is the

number of elements that the buffer can hold. Often the limit equals the capacity of the

buffer. Buffer also supports mark and reset. Buffer defines several methods, which are

shown in Table 20-1.

Table 20-1 The Methods Defined by Buffer

Method Description

abstract Object array() If the invoking buffer is backed by an array, returns a reference

to the array. Otherwise, an UnsupportedOperationException is

thrown. If the array is read-only, a ReadOnlyBufferException

is thrown.

abstract int arrayOffset() If the invoking buffer is backed by an array, returns

the index of the first element. Otherwise, an

UnsupportedOperationException is thrown. If the array

is read-only, a ReadOnlyBufferException is thrown.

final int capacity() Returns the number of elements that the invoking buffer is

capable of holding.

final Buffer clear() Clears the invoking buffer and returns a reference to the buffer.

final Buffer flip() Sets the invoking buffer’s limit to the current position and resets

the current position to 0. Returns a reference to the buffer.

abstract boolean hasArray() Returns true if the invoking buffer is backed by a read/write

array and false otherwise.

final boolean hasRemaining() Returns true if there are elements remaining in the invoking

buffer. Returns false otherwise.

 Chapter 20 Exploring NIO 631

P
a

rt
 I

I

From Buffer, the following specific buffer classes are derived, which hold the type of

data that their names imply:

ByteBuffer CharBuffer DoubleBuffer FloatBuffer

IntBuffer LongBuffer MappedByteBuffer ShortBuffer

MappedByteBuffer is a subclass of ByteBuffer and is used to map a file to a buffer.

All buffers provide various get() and put() methods, which allow you to get data from a

buffer or put data into a buffer. (Of course, if a buffer is read-only, then put() operations

are not available.) Table 20-2 shows the get() and put() methods defined by ByteBuffer.

The other buffer classes have similar methods. All buffer classes also support methods that

perform various buffer operations. For example, you can allocate a buffer manually using

allocate(). You can wrap an array inside a buffer using wrap(). You can create a

subsequence of a buffer using slice().

Channels

Channels are defined in java.nio.channels. A channel represents an open connection to an

I/O source or destination. Channels implement the Channel interface. It extends Closeable,

and, beginning with JDK 7, it extends AutoCloseable. By implementing AutoCloseable,

Method Description

abstract boolean isDirect() Returns true if the invoking buffer is direct, which means I/O

operations act directly upon it. Returns false otherwise.

abstract boolean isReadOnly() Returns true if the invoking buffer is read-only. Returns false

otherwise.

final int limit() Returns the invoking buffer’s limit.

final Buffer limit(int n) Sets the invoking buffer’s limit to n. Returns a reference to

the buffer.

final Buffer mark() Sets the mark and returns a reference to the invoking buffer.

final int position() Returns the current position.

final Buffer position(int n) Sets the invoking buffer’s current position to n. Returns a

reference to the buffer.

int remaining() Returns the number of elements available before the limit is

reached. In other words, it returns the limit minus the current

position.

final Buffer reset() Resets the current position of the invoking buffer to the

previously set mark. Returns a reference to the buffer.

final Buffer rewind() Sets the position of the invoking buffer to 0. Returns a

reference to the buffer.

Table 20-1 The Methods Defined by Buffer (continued)

632 PART II The Java Library

channels can be managed by JDK 7’s new try-with-resources statement. When used in a try-

with-resources block, a channel is closed automatically when it is no longer needed. (See

Chapter 13 for a discussion of try-with-resources.)

One way to obtain a channel is by calling getChannel() on an object that supports

channels. For example, getChannel() is supported by the following I/O classes:

DatagramSocket FileInputStream FileOutputStream

RandomAccessFile ServerSocket Socket

The specific type of channel returned depends upon the type of object getChannel()
is called on. For example, when called on a FileInputStream, FileOutputStream, or

RandomAccessFile, getChannel() returns a channel of type FileChannel. When called

on a Socket, getChannel() returns a SocketChannel.

Table 20-2 The get() and put() Methods Defined for ByteBuffer

Method Description

abstract byte get() Returns the byte at the current position.

ByteBuffer get(byte vals[]) Copies the invoking buffer into the array referred to

by vals. Returns a reference to the buffer. If there are

not vals.length elements remaining in the buffer, a

BufferUnderflowException is thrown.

ByteBuffer get(byte vals[],

 int start, int num)

Copies num elements from the invoking buffer into

the array referred to by vals, beginning at the index

specified by start. Returns a reference to the buffer. If

there are not num elements remaining in the buffer, a

BufferUnderflowException is thrown.

abstract byte get(int idx) Returns the byte at the index specified by idx within the

invoking buffer.

abstract ByteBuffer put(byte b) Copies b into the invoking buffer at the current position.

Returns a reference to the buffer. If the buffer is full, a

BufferOverflowException is thrown.

final ByteBuffer put(byte vals[]) Copies all elements of vals into the invoking buffer,

beginning at the current position. Returns a reference to

the buffer. If the buffer cannot hold all of the elements, a

BufferOverflowException is thrown.

ByteBuffer put(byte vals[],

 int start, int num)

Copies num elements from vals, beginning at start,
into the invoking buffer. Returns a reference to the

buffer. If the buffer cannot hold all of the elements, a

BufferOverflowException is thrown.

ByteBuffer put(ByteBuffer bb) Copies the elements in bb to the invoking buffer,

beginning at the current position. If the buffer cannot

hold all of the elements, a BufferOverflowException is

thrown. Returns a reference to the buffer.

abstract ByteBuffer put(int idx, byte b) Copies b into the invoking buffer at the location specified

by idx. Returns a reference to the buffer.

 Chapter 20 Exploring NIO 633

P
a

rt
 I

I

Another way to obtain a channel is to use one of the static methods defined by the Files

class, which was added by JDK 7. For example, using Files, you can obtain a byte channel

by calling newByteChannel(). It returns a SeekableByteChannel, which is an interface

implemented by FileChannel. (The Files class is examined in detail later in this chapter.)

Channels such as FileChannel and SocketChannel support various read() and write()
methods that enable you to perform I/O operations through the channel. For example,

here are a few of the read() and write() methods defined for FileChannel.

Method Description

abstract int read(ByteBuffer bb)

 throws IOException

Reads bytes from the invoking channel into bb until

the buffer is full or there is no more input. Returns the

number of bytes actually read.

abstract int read(ByteBuffer bb,

 long start)
 throws IOException

Beginning at the file location specified by start, reads

bytes from the invoking channel into bb until the buffer

is full or there is no more input. The current position is

unchanged. Returns the number of bytes actually read

or –1 if start is beyond the end of the file.

abstract int write(ByteBuffer bb)

 throws IOException

Writes the contents of bb to the invoking channel, starting

at the current position. Returns the number of bytes

written.

abstract int write(ByteBuffer bb,

 long start)
 throws IOException

Beginning at the file location specified by start, writes the

contents of bb to the invoking channel. The current

position is unchanged. Returns the number of bytes

written.

All channels support additional methods that give you access to and control over the

channel. For example, FileChannel supports methods to get or set the current position,

transfer information between file channels, obtain the current size of the channel, and lock

the channel, among others. Beginning with JDK 7, FileChannel provides a static method

called open(), which opens a file and returns a channel to it. This provides another way to

obtain a channel. FileChannel also provides the map() method, which lets you map a file

to a buffer.

Charsets and Selectors

Two other entities used by NIO are charsets and selectors. A charset defines the way that

bytes are mapped to characters. You can encode a sequence of characters into bytes using

an encoder. You can decode a sequence of bytes into characters using a decoder. Charsets,

encoders, and decoders are supported by classes defined in the java.nio.charset package.

Because default encoders and decoders are provided, you will not often need to work

explicitly with charsets.

A selector supports key-based, non-blocking, multiplexed I/O. In other words, selectors

enable you to perform I/O through multiple channels. Selectors are supported by classes

defined in the java.nio.channels package. Selectors are most applicable to socket-backed

channels.

We will not use charsets or selectors in this chapter, but you might find them useful in

your own applications.

634 PART II The Java Library

Enhancements Added to NIO by JDK 7
Beginning with JDK 7, the NIO system was substantially expanded and enhanced. In

addition to support for the try-with-resources statement (which provides automatic

resource management), the improvements include three new packages (java.nio.file,

java.nio.file.attribute, and java.nio.file.spi); several new classes, interfaces, and methods;

and direct support for stream-based I/O. The additions have greatly expanded the ways

in which NIO can be used, especially with files. Several of the key additions are described in

the following sections.

The Path Interface

Perhaps the single most important addition to the NIO system is the Path interface because it

encapsulates a path to a file. As you will see, Path is the glue that binds together many of the

new NIO.2 file-based features. It describes a file’s location within the directory structure. Path

is packaged in java.nio.file, and it inherits the following interfaces: Watchable, Iterable<Path>,

and Comparable<Path>. Watchable describes an object that can be monitored for changes. It

was also added by JDK 7. The Iterable and Comparable interfaces were described earlier in

this book.

Path declares a number of methods that operate on the path. A sampling is shown in

Table 20-3. Pay special attention to the getName() method. It is used to obtain an element

in a path. It works using an index. At index zero, is the part of the path nearest the root,

which is the leftmost element in a path. Subsequent indexes specify elements to the right of

the root. The number of elements in a path can be obtained by calling getNameCount(). If
you want to obtain a string representation of the entire path, simply call toString(). Notice

that you can resolve a relative path into an absolute path by using the resolve() method.

Table 20-3 A Sampling of Methods Specified by Path

Method Description

boolean endsWith(String path) Returns true if the invoking Path ends with the path specified

by path. Otherwise, returns false.

boolean endsWith(Path path) Returns true if the invoking Path ends with the path specified

by path. Otherwise, returns false.

Path getFileName() Returns the filename associated with the invoking Path.

Path getName(int idx) Returns a Path object that contains the name of the path

element specified by idx within the invoking object. The

leftmost element is at index 0. This is the element nearest the

root. The rightmost element is at getNameCount() – 1.

int getNameCount() Returns the number of elements beyond the root directory in

the invoking Path.

Path getParent() Returns a Path that contains the entire path except for the

name of the file specified by the invoking Path.

Path getRoot() Returns the root of the invoking Path.

 Chapter 20 Exploring NIO 635

P
a

rt
 I

I

One other point: When updating legacy code that uses the File class defined by java.io,

it is possible to convert a File instance into a Path instance by calling toPath() on the File

object. This method was added to File by JDK 7. Furthermore, it is possible to obtain a

File instance by calling the toFile() method defined by Path.

The Files Class

Many of the actions that you perform on a file are provided by static methods within the

Files class. The file to be acted upon is specified by its Path. Thus, the Files methods use a

Path to specify the file that is being operated upon. Files contains a wide array of functionality.

For example, it has methods that let you open or create a file that has the specified path.

You can obtain information about a Path, such as whether it is executable, hidden, or read-

only. Files also supplies methods that let you copy or move files. A sampling is shown in

Table 20-4. In addition to IOException, several other exceptions are possible.

Notice that several of the methods in Table 20-4 take an argument of type OpenOption.

This is an interface that describes how to open a file. It is implemented by the

StandardOpenOption class, which defines an enumeration that has the values shown

in Table 20-5.

Table 20-3 A Sampling of Methods Specified by Path (continued)

Method Description

boolean isAbsolute() Returns true if the invoking Path is absolute. Otherwise,

returns false.

Path resolve(Path path) If path is absolute, path is returned. Otherwise, if path does

not contain a root, path is prefixed by the root specified by

the invoking Path and the result is returned. If path is empty,

the invoking Path is returned. Otherwise, the behavior is

unspecified.

Path resolve(String path) If path is absolute, path is returned. Otherwise, if path does

not contain a root, path is prefixed by the root specified by

the invoking Path and the result is returned. If path is empty,

the invoking Path is returned. Otherwise, the behavior is

unspecified.

boolean startsWith(String path) Returns true if the invoking Path starts with the path specified

by path. Otherwise, returns false.

boolean startsWith(Path path) Returns true if the invoking Path starts with the path specified

by path. Otherwise, returns false.

Path toAbsolutePath() Returns the invoking Path as an absolute path.

String toString() Returns a string representation of the invoking Path.

636 PART II The Java Library

Table 20-4 A Sampling of Methods Defi ned by Files

Method Description

static Path copy(Path src, Path dest,
 CopyOption ... how)

 throws IOException

Copies the file specified by src to the location

specified by dest. The how parameter specifies how

the copy will take place.

static Path createDirectory(Path path,

 FileAttribute<?> ... attribs)
 throws IOException

Creates the directory whose path is specified by

path. The directory attributes are specified by attribs.

static Path createFile(Path path,

 FileAttribute<?> ... attribs)
 throws IOException

Creates the file whose path is specified by path. The

file attributes are specified by attribs.

static void delete(Path path)

 throws IOException

Deletes the file whose path is specified by path.

static boolean exists(Path path,

 LinkOptions ... opts)
Returns true if the file specified by path exists

and false otherwise. If opts is not specified,

then symbolic links are followed. To prevent

the following of symbolic links, pass

NOFOLLOW_LINKS to opts.

static boolean isDirectory(Path path,

 LinkOptions ... opts)
Returns true if path specifies a directory and false

otherwise. If opts is not specified, then symbolic

links are followed. To prevent the following of

symbolic links, pass NOFOLLOW_LINKS to opts.

static boolean isExecutable(Path path) Returns true if the file specified by path is

executable and false otherwise.

static boolean isHidden(Path path)

 throws IOException

Returns true if the file specified by path is hidden

and false otherwise.

static boolean isReadable(Path path) Returns true if the file specified by path can be read

from and false otherwise.

static boolean isRegularFile(Path path,

 LinkOptions ... opts)

Returns true if path specifies a file and false

otherwise. If opts is not specified, then symbolic

links are followed. To prevent the following of

symbolic links, pass NOFOLLOW_LINKS to opts.

static boolean isWritable(Path path) Returns true if the file specified by path can be

written to and false otherwise.

static Path move(Path src, Path dest,
 CopyOption ... how)

 throws IOException

Moves the file specified by src to the location

specified by dest. The how parameter specifies how

the move will take place.

static SeekableByteChannel

 newByteChannel(Path path,

 OpenOption ... how)

 throws IOException

Opens the file specified by path, as specified by how.

Returns a SeekableByteChannel to the file. This

is a byte channel whose current position can be

changed. SeekableByteChannel is implemented by

FileChannel.

static DirectoryStream<Path>

 newDirectoryStream(Path path)

 throws IOException

Opens the directory specified by path. Returns a

DirectoryStream linked to the directory.

 Chapter 20 Exploring NIO 637

P
a

rt
 I

I

Table 20-4 A Sampling of Methods Defi ned by Files (continued)

Method Description

static InputStream

 newInputStream(Path path,

 OpenOption ... how)

 throws IOException

Opens the file specified by path, as specified by how.

Returns an InputStream linked to the file.

static OutputStream

 newOutputStream(Path path,

 OpenOption ... how)

 throws IOException

Opens the file specified by the invoking object, as

specified by how. Returns an OutputStream linked

to the file.

static boolean

 notExists(Path path,
 LinkOption ... opts)

Returns true if the file specified by path does not
exist and false otherwise. If opts is not specified,

then symbolic links are followed. To prevent

the following of symbolic links, pass

NOFOLLOW_LINKS to opts.

 static <A extends BasicFileAttributes> A

 readAttributes(Path path,

 Class<A> attribType,
 LinkOption ... opts)
 throws IOException

Obtains the attributes associated with the file

specified by path. The type of attributes to obtain

is passed in attribType. If opts is not specified,

then symbolic links are followed. To prevent

the following of symbolic links, pass

NOFOLLOW_LINKS to opts.

static long size(Path path)

 throws IOException

Returns the size of the file specified by path.

Table 20-5 The Standard Open Options

Value Meaning

APPEND Causes output to be written to the end of the file.

CREATE Creates the file if it does not already exist.

CREATE_NEW Creates the file only if it does not already exist.

DELETE_ON_CLOSE Deletes the file when it is closed.

DSYNC Causes changes to the file to be immediately written to the physical

file. Normally, changes to a file are buffered by the file system in the

interest of efficiency, being written to the file only as needed.

READ Opens the file for input operations.

SPARSE Indicates to the file system that the file is sparse, meaning that it may

not be completely filled with data. If the file system does not support

sparse files, this option is ignored.

SYNC Causes changes to the file or its metadata to be immediately written

to the physical file. Normally, changes to a file are buffered by the file

system in the interest of efficiency, being written to the file only as

needed.

TRUNCATE_EXISTING Causes a preexisting file opened for output to be reduced to zero length.

WRITE Opens the file for output operations.

638 PART II The Java Library

The Paths Class

Because Path is an interface, not a class, you can’t create an instance of Path directly

through the use of a constructor. Instead, you obtain a Path by a calling a method that

returns one. Frequently, you do this by using the get() method defined by the Paths class.

There are two forms of get(). The one used in this chapter is shown here:

static Path get(String pathname, String ... parts)

It returns a Path that encapsulates the specified path. The path can be specified in two

ways. First, if parts is not used, then the path must be specified in its entirety by pathname.
Alternatively, you can pass the path in pieces, with the first part passed in pathname and the

subsequent elements specified by the parts varargs parameter. In either case, if the path

specified is syntactically invalid, get() will throw an InvalidPathException.

The second form of get() creates a Path from a URI. It is shown here:

static Path get(URI uri)

The Path corresponding to uri is returned.

It is important to understand that creating a Path to a file does not open or create a file.

It simply creates an object that encapsulates the file’s directory path.

The File Attribute Interfaces

Associated with a file is a set of attributes. These attributes include such things as the file’s

time of creation, the time of its last modification, whether the file is a directory, and its size.

NIO organizes file attributes into several different interfaces. Attributes are represented by

a hierarchy of interfaces defined in java.nio.file.attribute. At the top is BasicFileAttributes.

It encapsulates the set of attributes that are commonly found in a variety of file systems.

The methods defined by BasicFileAttributes are shown in Table 20-6.

Method Description

FileTime creationTime() Returns the time at which the file was created. If creation time

is not provided by the file system, then an implementation-

dependent value is returned.

Object fileKey() Returns the file key. If not supported, null is returned.

boolean isDirectory() Returns true if the file represents a directory.

boolean isOther() Returns true if the file is not a file, symbolic link, or a directory.

boolean isRegularFile() Returns true if the file is a normal file, rather than a directory

or symbolic link.

boolean isSymbolicLink() Returns true if the file is a symbolic link.

FileTime lastAccessTime() Returns the time at which the file was last accessed. If the

time of last access is not provided by the file system, then an

implementation-dependent value is returned.

FileTime lastModifiedTime() Returns the time at which the file was last modified. If the time

of last modification is not provided by the file system, then an

implementation-dependent value is returned.

long size() Returns the size of the file.

Table 20-6 The Methods Defined by BasicFileAttributes

 Chapter 20 Exploring NIO 639

P
a

rt
 I

I

From BasicFileAttributes two interfaces are derived: DosFileAttributes and

PosixFileAttributes. DosFileAttributes describes those attributes related to the FAT

file system as first defined by DOS. It defines the methods shown here:

Method Description

boolean isArchive() Returns true if the file is flagged for archiving and false otherwise.

boolean isHidden() Returns true if the file is hidden and false otherwise.

boolean isReadOnly() Returns true if the file is read-only and false otherwise.

boolean isSystem() Returns true if the file is flagged as a system file and false otherwise.

PosixFileAttributes encapsulates attributes defined by the POSIX standards. (POSIX stands

for Portable Operating System Interface.) It defines the methods shown here:

Method Description

GroupPrincipal group() Returns the file’s group owner.

UserPrincipal owner() Returns the file’s owner.

Set<PosixFilePermission> permissions() Returns the file’s permissions.

There are various ways to access a file’s attributes. First, you can obtain an object that

encapsulates a file’s attributes by calling readAttributes(), which is a static method defined

by Files. One of its forms is shown here:

static <A extends BasicFileAttributes>

 A readAttributes(Path path, Class<A> attrType, LinkOption... opts)
 throws IOException

This method returns a reference to an object that specifies the attributes associated with the

file passed in path. The specific type of attributes is specified as a Class object in the attrType
parameter. For example, to obtain the basic file attributes, pass BasicFileAttributes.class to

attrType. For DOS attributes, use DosFileAttributes.class, and for POSIX attributes, use

PosixFileAttributes.class. Optional link options are passed via opts. If not specified, symbolic

links are followed. The method returns a reference to requested attributes. If the requested

attribute type is not available, UnsupportedOperationException is thrown. Using the object

returned, you can access the file’s attributes.

A second way to gain access to a file’s attributes is to call getFileAttributeView()
defined by Files. NIO defines several attribute view interfaces, including AttributeView,

BasicFileAttributeView, DosFileAttributeView, and PosixFileAttributeView, among others.

Although we won’t be using attribute views in this chapter, they are a feature that you may

find helpful in some situations.

In some cases, you won’t need to use the file attribute interfaces directly because the

Files class offers static convenience methods that access several of the attributes. For example,

Files includes methods such as isHidden() and isWritable().
It is important to understand that not all file systems support all possible attributes. For

example, the DOS file attributes apply to the older FAT file system as first defined by DOS. The

attributes that will apply to a wide variety of file systems are described by BasicFileAttributes.

For this reason, these attributes are used in the examples in this chapter.

640 PART II The Java Library

The FileSystem, FileSystems, and FileStore Classes

JDK 7 adds the ability to easily access the file system through the FileSystem and FileSystems

classes packaged in java.nio.file. In fact, by using the newFileSystem() method defined by

FileSystems, it is even possible to obtain a new file system. The FileStore class encapsulates

the file storage system. Although these classes are not used directly in this chapter, you may

find them helpful in your own applications.

Using the NIO System
This section illustrates how to apply the NIO system to a variety of tasks. Before beginning,

it is important to emphasize that with the release of JDK 7, the NIO subsystem was greatly

expanded. As a result, its uses have also been greatly expanded. As mentioned, the

enhanced version is sometimes referred to as NIO.2. Because the features added by NIO.2

are so substantial, they have changed the way that much NIO-based code is written and

have increased the types of tasks to which NIO can be applied. Because of its importance,

most of the remaining discussion and examples in this chapter utilize NIO.2 features and,

therefore, require JDK 7 or later. However, at the end of the chapter is a brief description

of pre-JDK 7 code. This will be of aid to those programmers working in pre-JDK 7

environments or maintaining older code.

REMEMBER Most of the examples in this chapter require JDK 7 or later.

In the past, the primary purpose of NIO was channel-based I/O, and this is still a very

important use. However, you can now use NIO for stream-based I/O and for performing

file-system operations. As a result, the discussion of using NIO is divided into three parts:

• Using NIO for channel-based I/O

• Using NIO for stream-based I/O

• Using NIO for path and file system operations

Because the most common I/O device is the disk file, the rest of this chapter uses disk

files in the examples. Because all file channel operations are byte-based, the type of buffers

that we will be using are of type ByteBuffer.

Before you can open a file for access via the NIO system, you must obtain a Path that

describes the file. One way to do this is to call the Paths.get() factory method, which was

described earlier. The form of get() used in the examples is shown here:

static Path get(String pathname, String ... parts)

Recall that the path can be specified in two ways. It can be passed in pieces, with the

first part passed in pathname and the subsequent elements specified by the parts varargs

parameter. Alternatively, the entire path can be specified in pathname and parts is not used.

This is the approach used by the examples.

Use NIO for Channel-Based I/O

An important use of NIO is to access a file via a channel and buffers. The following sections

demonstrate some techniques that use a channel to read from and write to a file.

 Chapter 20 Exploring NIO 641

P
a

rt
 I

I

Reading a File via a Channel
There are several ways to read data from a file using a channel. Perhaps the most common

way is to manually allocate a buffer and then perform an explicit read operation that loads

that buffer with data from the file. It is with this approach that we begin.

Before you can read from a file, you must open it. To do this, first create a Path that

describes the file. Then use this Path to open the file. There are various ways to open the

file depending on how it will be used. In this example, the file will be opened for byte-based

input via explicit input operations. Therefore, this example will open the file and establish

a channel to it by calling Files.newByteChannel(). The newByteChannel() method has this

general form:

static SeekableByteChannel newByteChannel(Path path, OpenOption ... how)

 throws IOException

It returns a SeekableByteChannel object, which encapsulates the channel for file operations.

The Path that describes the file is passed in path. The how parameter specifies how the file

will be opened. Because it is a varargs parameter, you can specify zero or more comma-

separated arguments. (The valid values were discussed earlier and shown in Table 20-5.) If

no arguments are specified, the file is opened for input operations. SeekableByteChannel is
an interface that describes a channel that can be used for file operations. It is implemented

by the FileChannel class. When the default file system is used, the returned object can be

cast to FileChannel. You must close the channel after you have finished with it. Since all

channels, including FileChannel, implement AutoCloseable, you can use a try-with-resources

statement to close the file automatically instead of calling close() explicitly. This approach is

used in the examples.

Next, you must obtain a buffer that will be used by the channel either by wrapping an

existing array or by allocating the buffer dynamically. The examples use allocation, but the

choice is yours. Because file channels operate on byte buffers, we will use the allocate()
method defined by ByteBuffer to obtain the buffer. It has this general form:

static ByteBuffer allocate(int cap)

Here, cap specifies the capacity of the buffer. A reference to the buffer is returned.

After you have created the buffer, call read() on the channel, passing a reference to the

buffer. The version of read() that we will use is shown next:

int read(ByteBuffer buf) throws IOException

Each time it is called, read() fills the buffer specified by buf with data from the file. The

reads are sequential, meaning that each call to read() reads the next buffer’s worth of bytes

from the file. The read() method returns the number of bytes actually read. It returns –1

when there is an attempt to read at the end of the file.

The following program puts the preceding discussion into action by reading a file

called test.txt through a channel using explicit input operations:

// Use Channel I/O to read a file. Requires JDK 7 or later.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

642 PART II The Java Library

public class ExplicitChannelRead {
 public static void main(String args[]) {
 int count;
 Path filepath = null;

 // First, obtain a path to the file.
 try {
 filepath = Paths.get("test.txt");
 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 return;
 }

 // Next, obtain a channel to that file within a try-with-resources block.
 try (SeekableByteChannel fChan = Files.newByteChannel(filepath))
 {

 // Allocate a buffer.
 ByteBuffer mBuf = ByteBuffer.allocate(128);

 do {
 // Read a buffer.
 count = fChan.read(mBuf);

 // Stop when end of file is reached.
 if(count != -1) {

 // Rewind the buffer so that it can be read.
 mBuf.rewind();

 // Read bytes from the buffer and show
 // them on the screen as characters.
 for(int i=0; i < count; i++)
 System.out.print((char)mBuf.get());
 }
 } while(count != -1);

 System.out.println();
 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 }
 }
}

Here is how the program works. First, a Path object is obtained that contains the relative

path to a file called test.txt. A reference to this object is assigned to filepath. Next, a channel

connected to the file is obtained by calling newByteChannel(), passing in filepath. Because

no open option is specified, the file is opened for reading. Notice that this channel is the

object managed by the try-with-resources statement. Thus, the channel is automatically

closed when the block ends. The program then calls the allocate() method of ByteBuffer

to allocate a buffer that will hold the contents of the file when it is read. A reference to this

buffer is stored in mBuf. The contents of the file are then read, one buffer at a time, into

mBuf through a call to read(). The number of bytes read is stored in count. Next, the

 Chapter 20 Exploring NIO 643

P
a

rt
 I

I

buffer is rewound through a call to rewind(). This call is necessary because the current

position is at the end of the buffer after the call to read(). It must be reset to the start of

the buffer in order for the bytes in mBuf to be read by calling get(). (Recall that get() is
defined by ByteBuffer.) Because mBuf is a byte buffer, the values returned by get() are

bytes. They are cast to char so the file can be displayed as text. (Alternatively, it is possible

to create a buffer that encodes the bytes into characters and then read that buffer.) When

the end of the file has been reached, the value returned by read() will be –1. When this

occurs, the program ends, and the channel is automatically closed.

As a point of interest, notice that the program obtains the Path within one try block

and then uses another try block to obtain and manage a channel linked to that path.

Although there is nothing wrong, per se, with this approach, in many cases, it can be

streamlined so that only one try block is needed. In this approach, the calls to Paths.get()
and newByteChannel() are sequenced together. For example, here is a reworked version

of the program that uses this approach:

// A more compact way to open a channel. Requires JDK 7 or later.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

public class ExplicitChannelRead {
 public static void main(String args[]) {
 int count;

 // Here, the channel is opened on the Path returned by Paths.get().
 // There is no need for the filepath variable.
 try (SeekableByteChannel fChan =
 Files.newByteChannel(Paths.get("test.txt")))
 {
 // Allocate a buffer.
 ByteBuffer mBuf = ByteBuffer.allocate(128);

 do {
 // Read a buffer.
 count = fChan.read(mBuf);

 // Stop when end of file is reached.
 if(count != -1) {

 // Rewind the buffer so that it can be read.
 mBuf.rewind();

 // Read bytes from the buffer and show
 // them on the screen as characters.
 for(int i=0; i < count; i++)
 System.out.print((char)mBuf.get());
 }
 } while(count != -1);

644 PART II The Java Library

 System.out.println();
 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 }
 }
}

In this version, the variable filepath is not needed and both exceptions are handled by

the same try statement. Because this approach is more compact, it is the approach used

in the rest of the examples in this chapter. Of course, in your own code, you may encounter

situations in which the creation of a Path object needs to be separate from the acquisition

of a channel. In these cases, the previous approach can be used.

Another way to read a file is to map it to a buffer. The advantage is that the buffer

automatically contains the contents of the file. No explicit read operation is necessary.

To map and read the contents of a file, follow this general procedure. First, obtain a Path

object that encapsulates the file as previously described. Next, obtain a channel to that file

by calling Files.newByteChannel(), passing in the Path and casting the returned object to

FileChannel. As explained, newByteChannel() returns a SeekableByteChannel. When using

the default file system, this object can be cast to FileChannel. Then, map the channel to a

buffer by calling map() on the channel. The map() method is defined by FileChannel.
This is why the cast to FileChannel is needed. The map() function is shown here:

MappedByteBuffer map(FileChannel.MapMode how,

 long pos, long size) throws IOException

The map() method causes the data in the file to be mapped into a buffer in memory. The

value in how determines what type of operations are allowed. It must be one of these values:

MapMode.READ_ONLY MapMode.READ_WRITE MapMode.PRIVATE

For reading a file, use MapMode.READ_ONLY. To read and write, use

MapMode.READ_WRITE. MapMode.PRIVATE causes a private copy of the file to

be made, and changes to the buffer do not affect the underlying file. The location

within the file to begin mapping is specified by pos, and the number of bytes to map are

specified by size. A reference to this buffer is returned as a MappedByteBuffer, which is a

subclass of ByteBuffer. Once the file has been mapped to a buffer, you can read the file

from that buffer. Here is an example that illustrates this approach:

// Use a mapped file to read a file. Requires JDK 7 or later.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

public class MappedChannelRead {
 public static void main(String args[]) {

 Chapter 20 Exploring NIO 645

P
a

rt
 I

I

 // Obtain a channel to a file within a try-with-resources block.
 try (FileChannel fChan =
 (FileChannel) Files.newByteChannel(Paths.get("test.txt")))
 {

 // Get the size of the file.
 long fSize = fChan.size();

 // Now, map the file into a buffer.
 MappedByteBuffer mBuf = fChan.map(FileChannel.MapMode.READ_ONLY, 0, fSize);

 // Read and display bytes from buffer.
 for(int i=0; i < fSize; i++)
 System.out.print((char)mBuf.get());

 System.out.println();

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 }
 }
}

In the program, a Path to the file is created and then opened via newByteChannel(). The

channel is cast to FileChannel and stored in fChan. Next, the size of the file is obtained by

calling size() on the channel. Then, the entire file is mapped into memory by calling map()
on fChan and a reference to the buffer is stored in mBuf. Notice that mBuf is declared as a

reference to a MappedByteBuffer. The bytes in mBuf are read by calling get().

Writing to a File via a Channel
As is the case when reading from a file, there are also several ways to write data to a file

using a channel. We will begin with one of the most common. In this approach, you

manually allocate a buffer, write data to that buffer, and then perform an explicit write

operation to write that data to a file.

Before you can write to a file, you must open it. To do this, first obtain a Path that

describes the file and then use this Path to open the file. In this example, the file will be

opened for byte-based output via explicit output operations. Therefore, this example will

open the file and establish a channel to it by calling Files.newByteChannel(). As shown in

the previous section, the newByteChannel() method has this general form:

static SeekableByteChannel newByteChannel(Path path, OpenOption ... how)

 throws IOException

It returns a SeekableByteChannel object, which encapsulates the channel for file operations.

To open a file for output, the how parameter must specify StandardOpenOption.WRITE.

If you want to create the file if it does not already exist, then you must also specify

StandardOpenOption.CREATE. (Other options, which are shown in Table 20-5, are also

available.) As explained in the previous section, SeekableByteChannel is an interface that

describes a channel that can be used for file operations. It is implemented by the FileChannel

646 PART II The Java Library

class. When the default file system is used, the return object can be cast to FileChannel. You

must close the channel after you have finished with it.

Here is one way to write to a file through a channel using explicit calls to write(). First,

obtain a Path to the file and then open it with a call to newByteChannel(), casting the result

to FileChannel. Next, allocate a byte buffer and write data to that buffer. Before the data

is written to the file, call rewind() on the buffer to set its current position to zero. (Each

output operation on the buffer increases the current position. Thus, it must be reset prior

to writing to the file.) Then, call write() on the channel, passing in the buffer. The following

program demonstrates this procedure. It writes the alphabet to a file called test.txt.

// Write to a file using NIO. Requires JDK 7 or later.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

public class ExplicitChannelWrite {
 public static void main(String args[]) {

 // Obtain a channel to a file within a try-with-resources block.
 try (FileChannel fChan = (FileChannel)
 Files.newByteChannel(Paths.get("test.txt"),
 StandardOpenOption.WRITE,
 StandardOpenOption.CREATE))
 {
 // Create a buffer.
 ByteBuffer mBuf = ByteBuffer.allocate(26);

 // Write some bytes to the buffer.
 for(int i=0; i<26; i++)
 mBuf.put((byte)('A' + i));

 // Reset the buffer so that it can be written.
 mBuf.rewind();

 // Write the buffer to the output file.
 fChan.write(mBuf);

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch (IOException e) {
 System.out.println("I/O Error: " + e);
 System.exit(1);
 }
 }
}

It is useful to emphasize an important aspect of this program. As mentioned, after data

is written to mBuf, but before it is written to the file, a call to rewind() on mBuf is made.

This is necessary in order to reset the current position to zero after data has been written

to mBuf. Remember, each call to put() on mBuf advances the current position. Therefore,

 Chapter 20 Exploring NIO 647

P
a

rt
 I

I

it is necessary for the current position to be reset to the start of the buffer before calling

write(). If this is not done, write() will think that there is no data in the buffer.

Another way to handle the resetting of the buffer between input and output operations

is to call flip() instead of rewind(). The flip() method sets the value of the current position

to zero and the limit to the previous current position. In the preceding example, because

the capacity of the buffer equals its limit, flip() could have been used instead of rewind().
However, the two methods are not interchangeable in all cases.

In general, you must reset the buffer between read and write operations. For example,

assuming the preceding example, the following loop will write the alphabet to the file three

times. Pay special attention to the calls to rewind().

for(int h=0; h<3; h++) {
 // Write some bytes to the buffer.
 for(int i=0; i<26; i++)
 mBuf.put((byte)('A' + i));

 // Rewind the buffer so that it can be written.
 mBuf.rewind();

 // Write the buffer to the output file.
 fChan.write(mBuf);

 // Rewind the buffer so that it can be written to again.
 mBuf.rewind();
}

Notice that rewind() is called between each read and write operation.

One other thing about the program warrants mentioning: When the buffer is written to

the file, the first 26 bytes in the file will contain the output. If the file test.txt was preexisting,

then after the program executes, the first 26 bytes of test.txt will contain the alphabet, but

the remainder of the file will remain unchanged.

Another way to write to a file is to map it to a buffer. The advantage to this approach is

that the data written to the buffer will automatically be written to the file. No explicit write

operation is necessary. To map and write the contents of a file, we will use this general

procedure. First, obtain a Path object that encapsulates the file and then create a channel

to that file by calling Files.newByteChannel(), passing in the Path. Cast the reference

returned by newByteChannel() to FileChannel. Next, map the channel to a buffer by

calling map() on the channel. The map() method was described in detail in the previous

section. It is summarized here for your convenience. Here is its general form:

MappedByteBuffer map(FileChannel.MapMode how,

 long pos, long size) throws IOException

The map() method causes the data in the file to be mapped into a buffer in memory.

The value in how determines what type of operations are allowed. For writing to a file,

how must be MapMode.READ_WRITE. The location within the file to begin mapping is

specified by pos, and the number of bytes to map are specified by size. A reference to this

buffer is returned. Once the file has been mapped to a buffer, you can write data to that

buffer, and it will automatically be written to the file. Therefore, no explicit write

operations to the channel are necessary.

648 PART II The Java Library

Here is the preceding program reworked so that a mapped file is used. Notice that in

the call to newByteChannel(), the open option StandardOpenOption.READ has been

added. This is because a mapped buffer can either be read-only or read/write. Thus, to

write to the mapped buffer, the channel must be opened as read/write.

// Write to a mapped file. Requires JDK 7 or later.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

public class MappedChannelWrite {
 public static void main(String args[]) {

 // Obtain a channel to a file within a try-with-resources block.
 try (FileChannel fChan = (FileChannel)
 Files.newByteChannel(Paths.get("test.txt"),
 StandardOpenOption.WRITE,
 StandardOpenOption.READ,
 StandardOpenOption.CREATE))
 {

 // Then, map the file into a buffer.
 MappedByteBuffer mBuf = fChan.map(FileChannel.MapMode.READ_WRITE, 0, 26);

 // Write some bytes to the buffer.
 for(int i=0; i<26; i++)
 mBuf.put((byte)('A' + i));

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 }
 }
}

As you can see, there are no explicit write operations to the channel itself. Because mBuf is

mapped to the file, changes to mBuf are automatically reflected in the underlying file.

Copying a File Using NIO
NIO simplifies several types of file operations. Although we can’t examine them all, an

example will give you an idea of what is available. The following program copies a file using

a call to a single NIO method: copy(), which is a static method defined by Files. It has

several forms. Here is the one we will be using:

static Path copy(Path src, Path dest, CopyOption ... how) throws IOException

The file specified by src is copied to the file specified by dest. How the copy is performed is

specified by how. Because it is a varargs parameter, it can be missing. If specified, it can be

one or more of these values, which are valid for all file systems:

 Chapter 20 Exploring NIO 649

P
a

rt
 I

I

StandardCopyOption.COPY_ATTRIBUTES Request that the file’s attributes be copied.

StandardLinkOption.NOFOLLOW_LINKS Do not follow symbolic links.

StandardCopyOption.REPLACE_EXISTING Overwrite a preexisting file.

Other options may be supported, depending on the implementation.

The following program demonstrates copy(). The source and destination files are

specified on the command line, with the source file specified first. Notice how short the

program is. You might want to compare this version of the file copy program to the one

found in Chapter 13. As you will find, the part of the program that actually copies the file

is substantially shorter in the NIO version shown here.

// Copy a file using NIO. Requires JDK 7 or later.
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

public class NIOCopy {

 public static void main(String args[]) {

 if(args.length != 2) {
 System.out.println("Usage: Copy from to");
 return;
 }

 try {
 Path source = Paths.get(args[0]);
 Path target = Paths.get(args[1]);

 // Copy the file.
 Files.copy(source, target, StandardCopyOption.REPLACE_EXISTING);

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 }
 }
}

Use NIO for Stream-Based I/O

Beginning with JDK 7, you can use NIO to open an I/O stream. Once you have a Path,

open a file by calling newInputStream() or newOutputStream(), which are static methods

defined by Files. These methods return a stream connected to the specified file. In either

case, the stream can then be operated on in the way described in Chapter 19, and the same

techniques apply. The advantage of using Path to open a file is that all of the features

defined by NIO are available for your use.

650 PART II The Java Library

To open a file for stream-based input, use Files.newInputStream(). It is shown here:

static InputStream newInputStream(Path path, OpenOption ... how)

 throws IOException

Here, path specifies the file to open and how specifies how the file will be opened. It must

be one or more of the values defined by StandardOpenOption, described earlier. (Of

course, only those options that relate to an input stream will apply.) If no options are

specified, then the file is opened as if StandardOpenOption.READ were passed.

Once opened, you can use any of the methods defined by InputStream. For example,

you can use read() to read bytes from the file.

The following program demonstrates the use of NIO-based stream I/O. It reworks the

ShowFile program from Chapter 13 so that it uses NIO features to open the file and obtain

a stream. As you can see, it is very similar to the original, except for the use of Path and

newInputStream().

/* Display a text file using stream-based, NIO code.
 Requires JDK 7 or later.

 To use this program, specify the name
 of the file that you want to see.
 For example, to see a file called TEST.TXT,
 use the following command line.

 java ShowFile TEST.TXT
*/

import java.io.*;
import java.nio.file.*;

class ShowFile {
 public static void main(String args[])
 {
 int i;

 // First, confirm that a filename has been specified.
 if(args.length != 1) {
 System.out.println("Usage: ShowFile filename");
 return;
 }

 // Open the file and obtain a stream linked to it.
 try (InputStream fin = Files.newInputStream(Paths.get(args[0])))
 {
 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch(IOException e) {
 System.out.println("I/O Error " + e);

 Chapter 20 Exploring NIO 651

P
a

rt
 I

I

 }
 }
}

Because the stream returned by newInputStream() is a normal stream, it can be used

like any other stream. For example, you can wrap the stream inside a buffered stream, such

as a BufferedInputStream, to provide buffering, as shown here:

new BufferedInputStream(Files.newInputStream(Paths.get(args[0])))

Now, all reads will be automatically buffered.

To open a file for output, use Files.newOutputStream(). It is shown here:

static OutputStream newOutputStream(Path path, OpenOption ... how)

 throws IOException

Here, path specifies the file to open and how specifies how the file will be opened. It must be

one or more of the values defined by StandardOpenOption, described earlier. (Of course,

only those options that relate to an output stream will apply.) If no options are specified,

then the file is opened as if StandardOpenOption.WRITE, StandardOpenOption.CREATE,

and StandardOpenOption.TRUNCATE_EXISTING were passed.

The methodology for using newOutputStream() is similar to that shown previously for

newInputStream(). Once opened, you can use any of the methods defined by OutputStream.

For example, you can use write() to write bytes to the file. You can also wrap the stream

inside a BufferedOutputStream to buffer the stream.

The following program shows newOutputStream() in action. It writes the alphabet to a

file called test.txt. Notice the use of buffered I/O.

// Demonstrate NIO-based, stream output. Requires JDK 7 or later.

import java.io.*;
import java.nio.file.*;

class NIOStreamWrite {
 public static void main(String args[])
 {
 // Open the file and obtain a stream linked to it.
 try (OutputStream fout =
 new BufferedOutputStream(
 Files.newOutputStream(Paths.get("test.txt"))))
 {
 // Write some bytes to the stream.
 for(int i=0; i < 26; i++)
 fout.write((byte)('A' + i));

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

652 PART II The Java Library

Use NIO for Path and File System Operations

At the beginning of Chapter 19, the File class in the java.io package was examined. As

explained there, the File class deals with the file system and with the various attributes

associated with a file, such as whether a file is read-only, hidden, and so on. It was also

used to obtain information about a file’s path. With the advent of JDK 7, the interfaces

and classes defined by NIO.2 offer a better way to perform these functions. The benefits

include support for symbolic links, better support for directory tree traversal, and improved

handling of metadata, among others. The following sections show samples of two common

file system operations: obtaining information about a path and file and getting the contents

of a directory.

REMEMBER If you want to update older code that uses java.io.File to the new Path interface, you can
use the toPath() method to obtain a Path instance from a File instance. The toPath() method was
added to File by JDK 7.

Obtain Information About a Path and a File
Information about a path can be obtained by using methods defined by Path. Some

attributes associated with the file described by a Path (such as whether or not the file is

hidden) are obtained by using methods defined by Files. The Path methods used here are

getName(), getParent(), and toAbsolutePath(). Those provided by Files are isExecutable(),
isHidden(), isReadable(), isWritable(), and exists(). These are summarized in Tables 20-3

and 20-4, shown earlier.

CAUTION Methods such as isExecutable(), isReadable(), isWritable(), and exists() must be used
with care because the state of the file system may change after the call, in which case a program
malfunction could occur. Such a situation could have security implications.

Other file attributes are obtained by requesting a list of attributes by calling

Files.readAttributes(). In the program, this method is called to obtain the BasicFileAttributes

associated with a file, but the general approach applies to other types of attributes.

The following program demonstrates several of the Path and Files methods, along with

several methods provided by BasicFileAttributes. This program assumes that a file called

test.txt exists in a directory called examples, which must be a subdirectory of the current

directory.

// Obtain information about a path and a file.
// Requires JDK 7 or later.

import java.io.*;
import java.nio.file.*;
import java.nio.file.attribute.*;

class PathDemo {
 public static void main(String args[]) {
 Path filepath = Paths.get("examples\\test.txt");

 Chapter 20 Exploring NIO 653

P
a

rt
 I

I

 System.out.println("File Name: " + filepath.getName(1));
 System.out.println("Path: " + filepath);
 System.out.println("Absolute Path: " + filepath.toAbsolutePath());
 System.out.println("Parent: " + filepath.getParent());

 if(Files.exists(filepath))
 System.out.println("File exists");
 else
 System.out.println("File does not exist");

 try {
 if(Files.isHidden(filepath))
 System.out.println("File is hidden");
 else
 System.out.println("File is not hidden");
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }

 Files.isWritable(filepath);
 System.out.println("File is writable");

 Files.isReadable(filepath);
 System.out.println("File is readable");

 try {
 BasicFileAttributes attribs =
 Files.readAttributes(filepath, BasicFileAttributes.class);

 if(attribs.isDirectory())
 System.out.println("The file is a directory");
 else
 System.out.println("The file is not a directory");

 if(attribs.isRegularFile())
 System.out.println("The file is a normal file");
 else
 System.out.println("The file is not a normal file");

 if(attribs.isSymbolicLink())
 System.out.println("The file is a symbolic link");
 else
 System.out.println("The file is not a symbolic link");

 System.out.println("File last modified: " + attribs.lastModifiedTime());
 System.out.println("File size: " + attribs.size() + " Bytes");
 } catch(IOException e) {
 System.out.println("Error reading attributes: " + e);
 }
 }
}

654 PART II The Java Library

If you execute this program from a directory called MyDir, which has a subdirectory called

examples, and the examples directory contains the test.txt file, then you will see output

similar to that shown here. (Of course, file size and time will differ.)

File Name: test.txt
Path: examples\test.txt
Absolute Path: C:\MyDir\examples\test.txt
Parent: examples
File exists
File is not hidden
File is writable
File is readable
The file is not a directory
The file is a normal file
The file is not a symbolic link
File last modified: 2010-09-01T18:20:46.380445Z
File size: 18 Bytes

If you are using a computer that supports the FAT file system (i.e., the DOS file system),

then you might want to try using the methods defined by DosFileAttributes. If you are using

a POSIX-compatible system, then try using PosixFileAttributes.

List the Contents of a Directory
If a path describes a directory, then you can read the contents of that directory by using

static methods defined by Files. To do this, you first obtain a directory stream by calling

newDirectoryStream(), passing in a Path that describes the directory. One form of

newDirectoryStream() is shown here:

static DirectoryStream<Path> newDirectoryStream(Path dirPath)

 throws IOException

Here, dirPath encapsulates the path to the directory. The method returns a

DirectoryStream<Path> object that can be used to obtain the contents of the directory.

It will throw an IOException if an I/O error occurs and a NotDirectoryException (which

is a subclass of IOException) if the specified path is not a directory. A SecurityException is

also possible if access to the directory is not permitted.

DirectoryStream<Path> implements AutoCloseable, so it can be managed by a try-with-

resources statement. It also implements Iterable<Path>. This means that you can obtain the

contents of the directory by iterating over the DirectoryStream object. When iterating, each

directory entry is represented by a Path instance. An easy way to iterate over a DirectoryStream

is to use a for-each style for loop. It is important to understand, however, that the iterator

implemented by DirectoryStream<Path> can be obtained only once for each instance.

Thus, the iterator() method can be called only once, and a for-each loop can be executed

only once.

The following program displays the contents of a directory called MyDir:

// Display a directory. Requires JDK 7 or later.

import java.io.*;
import java.nio.file.*;
import java.nio.file.attribute.*;

 Chapter 20 Exploring NIO 655

P
a

rt
 I

I

class DirList {
 public static void main(String args[]) {
 String dirname = "\\MyDir";

 // Obtain and manage a directory stream within a try block.
 try (DirectoryStream<Path> dirstrm =
 Files.newDirectoryStream(Paths.get(dirname)))
 {
 System.out.println("Directory of " + dirname);

 // Because DirectoryStream implements Iterable, we
 // can use a "foreach" loop to display the directory.
 for(Path entry : dirstrm) {
 BasicFileAttributes attribs =
 Files.readAttributes(entry, BasicFileAttributes.class);

 if(attribs.isDirectory())
 System.out.print("<DIR> ");
 else
 System.out.print(" ");

 System.out.println(entry.getName(1));
 }
 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch(NotDirectoryException e) {
 System.out.println(dirname + " is not a directory.");
 } catch (IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Here is sample output from the program:

Directory of \MyDir
 DirList.class
 DirList.java
<DIR> examples
 Test.txt

You can filter the contents of a directory in two ways. The easiest is to use this version of

newDirectoryStream():

static DirectoryStream<Path> newDirectoryStream(Path dirPath, String wildcard)

 throws IOException

In this version, only files that match the wildcard filename specified by wildcard will be

obtained. For wildcard, you can specify either a complete filename or a glob. A glob is a string

that defines a general pattern that will match one or more files using the familiar * and ?

wildcard characters. These match zero or more of any character and any one character,

respectively. The following are also recognized within a glob.

656 PART II The Java Library

** Matches zero or more of any character across directories.

[chars] Matches any one character in chars. A * or ? within chars will be treated as a normal

character, not a wildcard. A range can be specified by use of a hyphen, such as [x-z].

{globlist} Matches any one of the globs specified in a comma-separated list of globs in globlist.

You can specify a * or ? character, using * and \?. To specify a \, use \\. You can experiment

with a glob by substituting this call to newDirectoryStream() into the previous program:

Files.newDirectoryStream(Paths.get(dirname), "{Path,Dir}*.{java,class}")

This obtains a directory stream that contains only those files whose names begin with either

"Path" or "Dir" and use either the "java" or "class" extension. Thus, it would match names

like DirList.java and PathDemo.java, but not MyPathDemo.java, for example.

Another way to filter a directory is to use this version of newDirectoryStream():

static DirectoryStream<Path> newDirectoryStream(Path dirPath,

 DirectoryStream.Filter<? super Path> filefilter)
 throws IOException

Here, DirectoryStream.Filter is an interface that specifies the following method:

boolean accept(T entry) throws IOException

In this case, T will be Path. If you want to include entry in the list, return true. Otherwise,

return false. This form of newDirectoryStream() offers the advantage of being able to filter

a directory based on something other than a filename. For example, you can filter based on

size, creation date, modification date, or attribute, to name a few.

The following program demonstrates the process. It will list only those files that are

writable.

// Display a directory of only those files that are writable.

import java.io.*;
import java.nio.file.*;
import java.nio.file.attribute.*;

class DirList {
 public static void main(String args[]) {
 String dirname = "\\MyDir";

 // Create a filter that returns true only for writable files.
 DirectoryStream.Filter<Path> how = new DirectoryStream.Filter<Path>() {
 public boolean accept(Path filename) throws IOException {
 if(Files.isWritable(filename)) return true;
 return false;
 }
 };

 Chapter 20 Exploring NIO 657

P
a

rt
 I

I

 // Obtain and manage a directory stream of writable files.
 try (DirectoryStream<Path> dirstrm =
 Files.newDirectoryStream(Paths.get(dirname), how))
 {
 System.out.println("Directory of " + dirname);

 for(Path entry : dirstrm) {
 BasicFileAttributes attribs =
 Files.readAttributes(entry, BasicFileAttributes.class);

 if(attribs.isDirectory())
 System.out.print("<DIR> ");
 else
 System.out.print(" ");

 System.out.println(entry.getName(1));
 }
 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch(NotDirectoryException e) {
 System.out.println(dirname + " is not a directory.");
 } catch (IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Use walkFileTree() to List a Directory Tree
The preceding examples have obtained the contents of only a single directory. However,

sometimes you will want to obtain a list of the files in a directory tree. In the past, this was

quite a chore, but NIO.2 makes it easy because now you can use the walkFileTree() method

defined by Files to process a directory tree. It has two forms. The one used in this chapter is

shown here:

static Path walkFileTree(Path root, FileVisitor<? extends Path> fv)

 throws IOException

The path to the starting point of the directory walk is passed in root. An instance of

FileVisitor is passed in fv. The implementation of FileVisitor determines how the directory

tree is traversed, and it gives you access to the directory information. If an I/O error occurs,

an IOException is thrown. A SecurityException is also possible.

FileVisitor is an interface that defines how files are visited when a directory tree is

traversed. It is a generic interface that is declared like this:

interface FileVisitor<T>

For use in walkFileTree(), T will be Path (or any type derived from Path). FileVisitor

defines the following methods.

658 PART II The Java Library

Method Description

FileVisitResult

 postVisitDirectory(T dir, IOException exc)
 throws IOException

Called after a directory has been visited. The

directory is passed in dir, and any IOException

is passed in exc. If exc is null, no exception

occurred. The result is returned.

FileVisitResult

 preVisitDirectory(T dir,
 BasicFileAttributes attribs)
 throws IOException

Called before a directory is visited. The directory

is passed in dir, and the attributes associated

with the directory are passed in attribs. The result

is returned. To examine the directory, return

FileVisitResult.CONTINUE.

FileVisitResult

 visitFile(T file, BasicFileAttributes attribs)
 throws IOException

Called when a file is visited. The file is passed in

file, and the attributes associated with the file are

passed in attribs. The result is returned.

FileVisitResult

 visitFileFailed(T file, IOException exc)
 throws IOException

Called when an attempt to visit a file fails. The file

that failed is passed in file, and the IOException is

passed in exc. The result is returned.

Notice that each method returns a FileVisitResult. This enumeration defines the following

values:

CONTINUE SKIP_SIBLINGS SKIP_SUBTREE TERMINATE

In general, to continue traversing the directory and subdirectories, a method should return

CONTINUE. For preVisitDirectory(), return SKIP_SIBLINGS to bypass the directory and

its siblings and prevent postVisitDirectory() from being called. To bypass just the directory

and subdirectories, return SKIP_SUBTREE. To stop the directory traversal, return

TERMINATE.

Although it is certainly possible to create your own visitor class that implements these

methods defined by FileVisitor, you won’t normally do so because a simple implementation

is provided by SimpleFileVisitor. You can just override the default implementation of the

method or methods in which you are interested. Here is a short example that illustrates the

process. It displays all files in the directory tree that has \MyDir as its root. Notice how short

this program is.

// A simple example that uses walkFileTree() to display a directory tree.
// Requires JDK 7 or later.

import java.io.*;
import java.nio.file.*;
import java.nio.file.attribute.*;

// Create a custom version of SimpleFileVisitor that overrides
// the visitFile() method.
class MyFileVisitor extends SimpleFileVisitor<Path> {
 public FileVisitResult visitFile(Path path, BasicFileAttributes attribs)

 Chapter 20 Exploring NIO 659

P
a

rt
 I

I

 throws IOException
 {
 System.out.println(path);
 return FileVisitResult.CONTINUE;
 }
}

class DirTreeList {
 public static void main(String args[]) {
 String dirname = "\\MyDir";

 System.out.println("Directory tree starting with " + dirname + ":\n");

 try {
 Files.walkFileTree(Paths.get(dirname), new MyFileVisitor());
 } catch (IOException exc) {
 System.out.println("I/O Error");
 }
 }
}

Here is sample output produced by the program when used on the same MyDir
directory shown earlier. In this example, the subdirectory called examples contains one file

called MyProgram.java.

Directory tree starting with \MyDir:

\MyDir\DirList.class
\MyDir\DirList.java
\MyDir\examples\MyProgram.java
\MyDir\Test.txt

In the program, the class MyFileVisitor extends SimpleFileVisitor, overriding only

the visitFile() method. In this example, visitFile() simply displays the files, but more

sophisticated functionality is easy to achieve. For example, you could filter the files or

perform actions on the files, such as copying them to a backup device. For the sake of

clarity, a named class was used to override visitFile(), but you could also use an anonymous

inner class.

One last point: It is possible to watch a directory for changes by using

java.nio.file.WatchService.

Pre-JDK 7 Channel-Based Examples
Before concluding this chapter, one more aspect of NIO needs to be covered. The

preceding sections have used several of the new features added to NIO by JDK 7. However,

there is still much pre-JDK 7 code in existence that will need to be maintained or possibly

converted to use the new features. For this reason, the following sections show how to read

and write files using the pre-JDK 7 NIO system. They do so by reworking some of the

examples shown earlier so that they use the original NIO features, rather than the new

JDK 7 (NIO.2) features. This means that the examples in this section will work with versions

of Java prior to JDK 7.

660 PART II The Java Library

The key difference between pre-JDK 7 NIO code and new NIO code is the Path interface,

which was added by JDK 7. Thus, pre-JDK 7 code does not use Path to describe a file or

open a channel to it. Also, pre-JDK 7 code does not use try-with-resource statements since

automatic resource management was also added by JDK 7.

REMEMBER The examples in this section describe how legacy NIO code works. This section is strictly for
the benefit of those programmers working on pre-JDK 7 code or using pre-JDK 7 compilers. New
code should take advantage of the NIO features added by JDK 7.

Read a File, Pre-JDK 7

This section reworks the two channel-based file input examples shown earlier so they use

only pre-JDK 7 features. The first example reads a file by manually allocating a buffer and

then performing an explicit read operation. The second example uses a mapped file, which

automates the process.

When using a pre-JDK 7 version of Java to read a file using a channel and a manually

allocated buffer, you first open the file for input using FileInputStream, using the same

mechanism explained in Chapter 19. Next, obtain a channel to this file by calling getChannel()
on the FileInputStream object. It has this general form:

FileChannel getChannel()

It returns a FileChannel object, which encapsulates the channel for file operations. Then,

call allocate() to allocate a buffer. Because file channels operate on byte buffers, you will

use the allocate() method defined by ByteBuffer, which works as previously described.

The following program shows how to read and display a file called test.txt through a

channel using explicit input operations for versions of Java prior to JDK 7:

// Use Channels to read a file. Pre-JDK 7 version.
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class ExplicitChannelRead {
 public static void main(String args[]) {
 FileInputStream fIn = null;
 FileChannel fChan = null;
 ByteBuffer mBuf;
 int count;

 try {
 // First, open a file for input.
 fIn = new FileInputStream("test.txt");

 // Next, obtain a channel to that file.
 fChan = fIn.getChannel();

 // Allocate a buffer.
 mBuf = ByteBuffer.allocate(128);

 do {

 Chapter 20 Exploring NIO 661

P
a

rt
 I

I

 // Read a buffer.
 count = fChan.read(mBuf);

 // Stop when end of file is reached.
 if(count != -1) {

 // Rewind the buffer so that it can be read.
 mBuf.rewind();

 // Read bytes from the buffer and show
 // them on the screen.
 for(int i=0; i < count; i++)
 System.out.print((char)mBuf.get());
 }
 } while(count != -1);

 System.out.println();

 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 } finally {
 try {
 if(fChan != null) fChan.close(); // close channel
 } catch(IOException e) {
 System.out.println("Error Closing Channel.");
 }
 try {
 if(fIn != null) fIn.close(); // close file
 } catch(IOException e) {
 System.out.println("Error Closing File.");
 }
 }
 }
}

In this program, notice that the file is opened by using the FileInputStream constructor,

and a reference to that object is assigned to fIn. Next, a channel connected to the file is

obtained by calling getChannel() on fIn. After this point, the program works like the JDK 7

version shown previously. To synopsize: The program then calls the allocate() method of

ByteBuffer to allocate a buffer that will hold the contents of the file when it is read. A byte

buffer is used because FileChannel operates on bytes. A reference to this buffer is stored in

mBuf. The contents of the file are then read, one buffer at a time, into mBuf through a call

to read(). The number of bytes read is stored in count. Next, the buffer is rewound through

a call to rewind(). This call is necessary because the current position is at the end of the

buffer after the call to read(), and it must be reset to the start of the buffer in order for the

bytes in mBuf to be read by calling get(). When the end of the file has been reached, the

value returned by read() will be –1. When this occurs, the program ends, explicitly closing

the channel and the file.

Another way to read a file is to map it to a buffer. As explained earlier, a principal

advantage to this approach is that the buffer automatically contains the contents of the

file. No explicit read operation is necessary. To map and read the contents of a file using

662 PART II The Java Library

pre-JDK 7 NIO, first open the file using FileInputStream. Next, obtain a channel to that file

by calling getChannel() on the file object. Then, map the channel to a buffer by calling

map() on the FileChannel object. The map() method works as described earlier.

The following program reworks the preceding example so that it uses only pre-JDK 7

features to create a mapped file:

// Use a mapped file to read a file. Pre-JDK 7 version.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class MappedChannelRead {
 public static void main(String args[]) {
 FileInputStream fIn = null;
 FileChannel fChan = null;
 long fSize;
 MappedByteBuffer mBuf;

 try {
 // First, open a file for input.
 fIn = new FileInputStream("test.txt");

 // Next, obtain a channel to that file.
 fChan = fIn.getChannel();

 // Get the size of the file.
 fSize = fChan.size();

 // Now, map the file into a buffer.
 mBuf = fChan.map(FileChannel.MapMode.READ_ONLY, 0, fSize);

 // Read and display bytes from buffer.
 for(int i=0; i < fSize; i++)
 System.out.print((char)mBuf.get());

 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 } finally {
 try {
 if(fChan != null) fChan.close(); // close channel
 } catch(IOException e) {
 System.out.println("Error Closing Channel.");
 }
 try {
 if(fIn != null) fIn.close(); // close file
 } catch(IOException e) {
 System.out.println("Error Closing File.");
 }
 }
 }
}

 Chapter 20 Exploring NIO 663

P
a

rt
 I

I

In the program, the file is opened by using the FileInputStream constructor, and a

reference to that object is assigned to fIn. A channel connected to the file is obtained by

calling getChannel() on fIn. Next, the size of the file is obtained. Then, the entire file is

mapped into memory by calling map(), and a reference to the buffer is stored in mBuf.

The bytes in mBuf are read by calling get().

Write to a File, Pre-JDK 7

This section reworks the two channel-based file output examples shown earlier so that they

use only pre-JDK 7 features. The first example writes to a file by manually allocating a buffer

and then performing an explicit output operation. The second example uses a mapped file,

which automates the process. In both cases, neither Path nor try-with-resources is used. This

is because neither were part of Java until JDK 7.

When using a pre-JDK 7 version of Java to write a file using a channel and a manually

allocated buffer, first open the file for output. This is done by creating a FileOutputStream,

as described in Chapter 19. Next, obtain a channel to the file by calling getChannel() and

then allocate a byte buffer by calling allocate(), as described in the previous section. Next,

put the data you want to write into that buffer, and then call write() on the channel. The

following program demonstrates this procedure. It writes the alphabet to a file called test.txt.

// Write to a file using NIO. Pre-JDK 7 Version.
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class ExplicitChannelWrite {
 public static void main(String args[]) {
 FileOutputStream fOut = null;
 FileChannel fChan = null;
 ByteBuffer mBuf;

 try {
 // First, open the output file.
 fOut = new FileOutputStream("test.txt");

 // Next, get a channel to the output file.
 fChan = fOut.getChannel();

 // Create a buffer.
 mBuf = ByteBuffer.allocate(26);

 // Write some bytes to the buffer.
 for(int i=0; i<26; i++)
 mBuf.put((byte)('A' + i));

 // Rewind the buffer so that it can be written.
 mBuf.rewind();

 // Write the buffer to the output file.
 fChan.write(mBuf);

664 PART II The Java Library

 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 } finally {
 try {
 if(fChan != null) fChan.close(); // close channel
 } catch(IOException e) {
 System.out.println("Error Closing Channel.");
 }
 try {
 if(fOut != null) fOut.close(); // close file
 } catch(IOException e) {
 System.out.println("Error Closing File.");
 }
 }
 }
}

The call to rewind() on mBuf is necessary in order to reset the current position to zero

after data has been written to mBuf. Remember, each call to put() advances the current

position. Therefore, it is necessary for the current position to be reset to the start of the

buffer before calling write(). If this is not done, write() will think that there is no data in

the buffer.

When using a pre-JDK 7 version of Java to write to a file using a mapped file, follow

these steps. First, open the file for read/write operations by creating a RandomAccessFile

object. This is necessary to enable the file to be both read from and written to. Next, map

that file to a buffer by calling map() on that object. Then, write to the buffer. Because the

buffer is mapped to the file, any changes to that buffer are automatically reflected in the

file. Thus, no explicit write operations to the channel are necessary.

Here is the preceding program reworked so that a mapped file is used:

// Write to a mapped file. Pre JDK 7 version.
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class MappedChannelWrite {
 public static void main(String args[]) {
 RandomAccessFile fOut = null;
 FileChannel fChan = null;
 ByteBuffer mBuf;

 try {
 fOut = new RandomAccessFile("test.txt", "rw");

 // Next, obtain a channel to that file.
 fChan = fOut.getChannel();

 // Then, map the file into a buffer.
 mBuf = fChan.map(FileChannel.MapMode.READ_WRITE, 0, 26);

 Chapter 20 Exploring NIO 665

P
a

rt
 I

I

 // Write some bytes to the buffer.
 for(int i=0; i<26; i++)
 mBuf.put((byte)('A' + i));

 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 } finally {
 try {
 if(fChan != null) fChan.close(); // close channel
 } catch(IOException e) {
 System.out.println("Error Closing Channel.");
 }
 try {
 if(fOut != null) fOut.close(); // close file
 } catch(IOException e) {
 System.out.println("Error Closing File.");
 }
 }
 }
}

As you can see, there are no explicit write operations to the channel itself. Because mBuf is

mapped to the file, changes to mBuf are automatically reflected in the underlying file.

This page intentionally left blank

21
CHAPTER

 667

Networking

As all readers know, Java is practically a synonym for Internet programming. There are a

number of reasons for this, not the least of which is its ability to generate secure, cross-

platform, portable code. However, one of the most important reasons that Java is the premier

language for network programming are the classes defined in the java.net package. They

provide an easy-to-use means by which programmers of all skill levels can access network

resources.

This chapter explores the java.net package. It is important to emphasize that networking

is a very large and at times complicated topic. It is not possible for this book to discuss all

of the capabilities contained in java.net. Instead, this chapter focuses on several of its core

classes and interfaces.

Networking Basics
Before we begin, it will be useful to review some key networking concepts and terms. At the

core of Java’s networking support is the concept of a socket. A socket identifies an endpoint

in a network. The socket paradigm was part of the 4.2BSD Berkeley UNIX release in the

early 1980s. Because of this, the term Berkeley socket is also used. Sockets are at the foundation

of modern networking because a socket allows a single computer to serve many different

clients at once, as well as to serve many different types of information. This is accomplished

through the use of a port, which is a numbered socket on a particular machine. A server

process is said to "listen" to a port until a client connects to it. A server is allowed to accept

multiple clients connected to the same port number, although each session is unique. To

manage multiple client connections, a server process must be multithreaded or have some

other means of multiplexing the simultaneous I/O.

Socket communication takes place via a protocol. Internet Protocol (IP) is a low-level

routing protocol that breaks data into small packets and sends them to an address across a

network, which does not guarantee to deliver said packets to the destination. Transmission
Control Protocol (TCP) is a higher-level protocol that manages to robustly string together

these packets, sorting and retransmitting them as necessary to reliably transmit data. A

third protocol, User Datagram Protocol (UDP), sits next to TCP and can be used directly to

support fast, connectionless, unreliable transport of packets.

668 PART II The Java Library

Once a connection has been established, a higher-level protocol ensues, which is

dependent on which port you are using. TCP/IP reserves the lower 1,024 ports for specific

protocols. Many of these will seem familiar to you if you have spent any time surfing the

Internet. Port number 21 is for FTP; 23 is for Telnet; 25 is for e-mail; 43 is for whois; 80 is

for HTTP; 119 is for netnews—and the list goes on. It is up to each protocol to determine

how a client should interact with the port.

For example, HTTP is the protocol that web browsers and servers use to transfer

hypertext pages and images. It is a quite simple protocol for a basic page-browsing web

server. Here’s how it works. When a client requests a file from an HTTP server, an action

known as a hit, it simply sends the name of the file in a special format to a predefined port

and reads back the contents of the file. The server also responds with a status code to tell

the client whether or not the request can be fulfilled and why.

A key component of the Internet is the address. Every computer on the Internet has

one. An Internet address is a number that uniquely identifies each computer on the Net.

Originally, all Internet addresses consisted of 32-bit values, organized as four 8-bit values.

This address type was specified by IPv4 (Internet Protocol, version 4). However, a new

addressing scheme, called IPv6 (Internet Protocol, version 6) has come into play. IPv6 uses

a 128-bit value to represent an address, organized into eight 16-bit chunks. Although there

are several reasons for and advantages to IPv6, the main one is that it supports a much

larger address space than does IPv4. Fortunately, when using Java, you won’t normally need

to worry about whether IPv4 or IPv6 addresses are used because Java handles the details

for you.

Just as the numbers of an IP address describe a network hierarchy, the name of an

Internet address, called its domain name, describes a machine’s location in a name space.

For example, www.HerbSchildt.com is in the COM top-level domain (reserved for U.S.

commercial sites); it is called HerbSchildt, and www identifies the server for web requests.

An Internet domain name is mapped to an IP address by the Domain Naming Service (DNS).
This enables users to work with domain names, but the Internet operates on IP addresses.

The Networking Classes and Interfaces
Java supports TCP/IP both by extending the already established stream I/O interface

introduced in Chapter 19 and by adding the features required to build I/O objects across

the network. Java supports both the TCP and UDP protocol families. TCP is used for reliable

stream-based I/O across the network. UDP supports a simpler, hence faster, point-to-point

datagram-oriented model. The classes contained in the java.net package are shown here:

Authenticator Inet6Address ServerSocket

CacheRequest InetAddress Socket

CacheResponse InetSocketAddress SocketAddress

ContentHandler InterfaceAddress SocketImpl

CookieHandler JarURLConnection SocketPermission

CookieManager MulticastSocket StandardSocketOption

(Added by JDK 7.)

DatagramPacket NetPermission URI

www.HerbSchildt.com

 Chapter 21 Networking 669

P
a

rt
 I

I

DatagramSocket NetworkInterface URL

DatagramSocketImpl PasswordAuthentication URLClassLoader

HttpCookie Proxy URLConnection

HttpURLConnection ProxySelector URLDecoder

IDN ResponseCache URLEncoder

Inet4Address SecureCacheResponse URLStreamHandler

The java.net package’s interfaces are listed here:

ContentHandlerFactory FileNameMap SocketOptions

CookiePolicy ProtocolFamily (Added by JDK 7.) URLStreamHandlerFactory

CookieStore SocketImplFactory

DatagramSocketImplFactory SocketOption (Added by JDK 7.)

In the sections that follow, we will examine the main networking classes and show

several examples that apply to them. Once you understand these core networking classes,

you will be able to easily explore the others on your own.

InetAddress
The InetAddress class is used to encapsulate both the numerical IP address and the domain

name for that address. You interact with this class by using the name of an IP host, which is

more convenient and understandable than its IP address. The InetAddress class hides the

number inside. InetAddress can handle both IPv4 and IPv6 addresses.

Factory Methods

The InetAddress class has no visible constructors. To create an InetAddress object, you

have to use one of the available factory methods. Factory methods are merely a convention

whereby static methods in a class return an instance of that class. This is done in lieu of

overloading a constructor with various parameter lists when having unique method names

makes the results much clearer. Three commonly used InetAddress factory methods are

shown here:

static InetAddress getLocalHost()

 throws UnknownHostException

static InetAddress getByName(String hostName)
 throws UnknownHostException

static InetAddress[] getAllByName(String hostName)
 throws UnknownHostException

The getLocalHost() method simply returns the InetAddress object that represents the local

host. The getByName() method returns an InetAddress for a host name passed to it. If these

methods are unable to resolve the host name, they throw an UnknownHostException.

670 PART II The Java Library

On the Internet, it is common for a single name to be used to represent several

machines. In the world of web servers, this is one way to provide some degree of scaling. The

getAllByName() factory method returns an array of InetAddresses that represent all of the

addresses that a particular name resolves to. It will also throw an UnknownHostException if
it can’t resolve the name to at least one address.

InetAddress also includes the factory method getByAddress(), which takes an IP

address and returns an InetAddress object. Either an IPv4 or an IPv6 address can be used.

The following example prints the addresses and names of the local machine and two

Internet web sites:

// Demonstrate InetAddress.
import java.net.*;

class InetAddressTest
{
 public static void main(String args[]) throws UnknownHostException {
 InetAddress Address = InetAddress.getLocalHost();
 System.out.println(Address);

 Address = InetAddress.getByName("www.HerbSchildt.com");
 System.out.println(Address);

 InetAddress SW[] = InetAddress.getAllByName("www.nba.com");
 for (int i=0; i<SW.length; i++)
 System.out.println(SW[i]);
 }
}

Here is the output produced by this program. (Of course, the output you see may be

slightly different.)

 default/166.203.115.212
 www.HerbSchildt.com/216.92.65.4
 www.nba.com/216.66.31.161
 www.nba.com/216.66.31.179

Instance Methods

The InetAddress class has several other methods, which can be used on the objects returned

by the methods just discussed. Here are some of the more commonly used methods:

boolean equals(Object other) Returns true if this object has the same Internet address

as other.

byte[] getAddress() Returns a byte array that represents the object’s IP address

in network byte order.

String getHostAddress() Returns a string that represents the host address

associated with the InetAddress object.

 Chapter 21 Networking 671

P
a

rt
 I

I

String getHostName() Returns a string that represents the host name associated

with the InetAddress object.

boolean isMulticastAddress() Returns true if this address is a multicast address.

Otherwise, it returns false.

String toString() Returns a string that lists the host name and the IP

address for convenience.

Internet addresses are looked up in a series of hierarchically cached servers. That

means that your local computer might know a particular name-to-IP-address mapping

automatically, such as for itself and nearby servers. For other names, it may ask a local DNS

server for IP address information. If that server doesn’t have a particular address, it can go

to a remote site and ask for it. This can continue all the way up to the root server. This

process might take a long time, so it is wise to structure your code so that you cache IP

address information locally rather than look it up repeatedly.

Inet4Address and Inet6Address
Beginning with version 1.4, Java has included support for IPv6 addresses. Because of this,

two subclasses of InetAddress were created: Inet4Address and Inet6Address. Inet4Address
represents a traditional-style IPv4 address. Inet6Address encapsulates a new-style IPv6

address. Because they are subclasses of InetAddress, an InetAddress reference can refer to

either. This is one way that Java was able to add IPv6 functionality without breaking existing

code or adding many more classes. For the most part, you can simply use InetAddress when

working with IP addresses because it can accommodate both styles.

TCP/IP Client Sockets
TCP/IP sockets are used to implement reliable, bidirectional, persistent, point-to-point,

stream-based connections between hosts on the Internet. A socket can be used to connect

Java’s I/O system to other programs that may reside either on the local machine or on any

other machine on the Internet.

NOTE As a general rule, applets may only establish socket connections back to the host from which the
applet was downloaded. This restriction exists because it would be dangerous for applets loaded
through a firewall to have access to any arbitrary machine.

There are two kinds of TCP sockets in Java. One is for servers, and the other is for

clients. The ServerSocket class is designed to be a "listener," which waits for clients to

connect before doing anything. Thus, ServerSocket is for servers. The Socket class is for

clients. It is designed to connect to server sockets and initiate protocol exchanges. Because

client sockets are the most commonly used by Java applications, they are examined here.

672 PART II The Java Library

The creation of a Socket object implicitly establishes a connection between the client

and server. There are no methods or constructors that explicitly expose the details of

establishing that connection. Here are two constructors used to create client sockets:

Socket(String hostName, int port)
 throws UnknownHostException,

 IOException

Creates a socket connected to the named host

and port.

Socket(InetAddress ipAddress, int port)
 throws IOException

Creates a socket using a preexisting InetAddress

object and a port.

Socket defines several instance methods. For example, a Socket can be examined at any

time for the address and port information associated with it, by use of the following methods:

InetAddress getInetAddress() Returns the InetAddress associated with the Socket
object. It returns null if the socket is not connected.

int getPort() Returns the remote port to which the invoking

Socket object is connected. It returns 0 if the socket

is not connected.

int getLocalPort() Returns the local port to which the invoking Socket
object is bound. It returns –1 if the socket is not

bound.

You can gain access to the input and output streams associated with a Socket by use of

the getInputStream() and getOuptutStream() methods, as shown here. Each can throw an

IOException if the socket has been invalidated by a loss of connection. These streams are

used exactly like the I/O streams described in Chapter 19 to send and receive data.

InputStream getInputStream()

 throws IOException

Returns the InputStream associated with the

invoking socket.

OutputStream getOutputStream()

 throws IOException

Returns the OutputStream associated with the

invoking socket.

Several other methods are available, including connect(), which allows you to specify a

new connection; isConnected(), which returns true if the socket is connected to a server;

isBound(), which returns true if the socket is bound to an address; and isClosed(), which

returns true if the socket is closed. To close a socket, call close(). Closing a socket also

closes the I/O streams associated with the socket. Beginning with JDK 7, Socket also

implements AutoCloseable, which means that you can use a try-with-resources block

to manage a socket.

The following program provides a simple Socket example. It opens a connection to a

"whois" port (port 43) on the InterNIC server, sends the command-line argument down the

socket, and then prints the data that is returned. InterNIC will try to look up the argument

as a registered Internet domain name, and then send back the IP address and contact

information for that site.

 Chapter 21 Networking 673

P
a

rt
 I

I

// Demonstrate Sockets.
import java.net.*;
import java.io.*;

class Whois {
 public static void main(String args[]) throws Exception {
 int c;

 // Create a socket connected to internic.net, port 43.
 Socket s = new Socket("whois.internic.net", 43);

 // Obtain input and output streams.
 InputStream in = s.getInputStream();
 OutputStream out = s.getOutputStream();

 // Construct a request string.

 String str = (args.length == 0 ? "MHProfessional.com" : args[0]) + "\n";
 // Convert to bytes.
 byte buf[] = str.getBytes();

 // Send request.
 out.write(buf);

 // Read and display response.
 while ((c = in.read()) != -1) {
 System.out.print((char) c);
 }
 s.close();
 }
}

If, for example, you obtained information about MHProfessional.com, you’d get something

similar to the following:

Whois Server Version 2.0

Domain names in the .com and .net domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

 Domain Name: MHPROFESSIONAL.COM
 Registrar: MELBOURNE IT, LTD. D/B/A INTERNET NAMES WORLDWIDE
 Whois Server: whois.melbourneit.com
 Referral URL: http://www.melbourneit.com
 Name Server: NS1.MHEDU.COM
 Name Server: NS2.MHEDU.COM
.
.
.

674 PART II The Java Library

Here is how the program works. First, a Socket is constructed that specifies the host

name "whois.internic.net" and the port number 43. Internic.net is the InterNIC web site

that handles whois requests. Port 43 is the whois port. Next, both input and output streams

are opened on the socket. Then, a string is constructed that contains the name of the web

site you want to obtain information about. In this case, if no web site is specified on the

command line, then "MHProfessional.com" is used. The string is converted into a byte

array and then sent out of the socket. The response is read by inputting from the socket,

and the results are displayed. Finally, the socket is closed, which also closes the I/O streams.

In the preceding example, the socket was closed manually by calling close(). If you are

using JDK 7 or later, then you can use a try-with-resources block to automatically close the

socket. For example, here is another way to write the main() method of the previous

program:

// Use try-with-resources to close a socket.
public static void main(String args[]) throws Exception {
 int c;

 // Create a socket connected to internic.net, port 43. Manage this
 // socket with a try-with-resources block.
 try (Socket s = new Socket("whois.internic.net", 43)) {

 // Obtain input and output streams.
 InputStream in = s.getInputStream();
 OutputStream out = s.getOutputStream();

 // Construct a request string.
 String str = (args.length == 0 ? "MHProfessional.com" : args[0]) + "\n";
 // Convert to bytes.
 byte buf[] = str.getBytes();

 // Send request.
 out.write(buf);

 // Read and display response.
 while ((c = in.read()) != -1) {
 System.out.print((char) c);
 }
 }
 // The socket is now closed.
}

In this version, the socket is automatically closed when the try block ends.

So the examples will work with versions of Java prior to JDK 7, and to clearly illustrate

when a network resource can be closed, subsequent examples will continue to call close()
explicitly. However, in your own code, you should consider using automatic resource

management since it offers a more streamlined approach. One other point: In this version,

exceptions are still thrown out of main(), but they could be handled by adding catch

clauses to the end of the try-with-resources block.

 Chapter 21 Networking 675

P
a

rt
 I

I

NOTE For simplicity, the examples in this chapter simply throw all exceptions out of main(). This allows
the logic of the network code to be clearly illustrated. However, in real-world code, you will normally
need to handle the exceptions in an appropriate way.

URL
The preceding example was rather obscure because the modern Internet is not about the

older protocols such as whois, finger, and FTP. It is about WWW, the World Wide Web. The

Web is a loose collection of higher-level protocols and file formats, all unified in a web

browser. One of the most important aspects of the Web is that Tim Berners-Lee devised a

scalable way to locate all of the resources of the Net. Once you can reliably name anything

and everything, it becomes a very powerful paradigm. The Uniform Resource Locator

(URL) does exactly that.

The URL provides a reasonably intelligible form to uniquely identify or address

information on the Internet. URLs are ubiquitous; every browser uses them to identify

information on the Web. Within Java’s network class library, the URL class provides a

simple, concise API to access information across the Internet using URLs.

All URLs share the same basic format, although some variation is allowed. Here are two

examples: http://www.MHProfessional.com/ and http://www.MHProfessional.com:80/
index.htm. A URL specification is based on four components. The first is the protocol to

use, separated from the rest of the locator by a colon (:). Common protocols are HTTP,

FTP, gopher, and file, although these days almost everything is being done via HTTP (in

fact, most browsers will proceed correctly if you leave off the "http://" from your URL

specification). The second component is the host name or IP address of the host to use;

this is delimited on the left by double slashes (//) and on the right by a slash (/) or

optionally a colon (:). The third component, the port number, is an optional parameter,

delimited on the left from the host name by a colon (:) and on the right by a slash (/). (It

defaults to port 80, the predefined HTTP port; thus, ":80" is redundant.) The fourth part is

the actual file path. Most HTTP servers will append a file named index.html or index.htm

to URLs that refer directly to a directory resource. Thus, http://www.MHProfessional.com/

is the same as http://www.MHProfessional.com/index.htm.

Java’s URL class has several constructors; each can throw a MalformedURLException.

One commonly used form specifies the URL with a string that is identical to what you see

displayed in a browser:

URL(String urlSpecifier) throws MalformedURLException

The next two forms of the constructor allow you to break up the URL into its

component parts:

URL(String protocolName, String hostName, int port, String path)

 throws MalformedURLException

URL(String protocolName, String hostName, String path)

 throws MalformedURLException

http://www.MHProfessional.com/
http://www.MHProfessional.com:80/index.htm
http://www.MHProfessional.com:80/index.htm
http://www.MHProfessional.com/
http://www.MHProfessional.com/index.htm

676 PART II The Java Library

Another frequently used constructor allows you to use an existing URL as a reference

context and then create a new URL from that context. Although this sounds a little

contorted, it’s really quite easy and useful.

URL(URL urlObj, String urlSpecifier) throws MalformedURLException

The following example creates a URL to HerbSchildt.com’s articles page and then

examines its properties:

// Demonstrate URL.
import java.net.*;
class URLDemo {
 public static void main(String args[]) throws MalformedURLException {
 URL hp = new URL(http://www.HerbSchildt.com/Articles");

 System.out.println("Protocol: " + hp.getProtocol());
 System.out.println("Port: " + hp.getPort());

 System.out.println("Host: " + hp.getHost());
 System.out.println("File: " + hp.getFile());
 System.out.println("Ext:" + hp.toExternalForm());
 }
}

When you run this, you will get the following output:

 Protocol: http
 Port: -1
 Host: www.HerbSchildt.com
 File: /Articles
 Ext:http://www.HerbSchildt.com/Articles

Notice that the port is –1; this means that a port was not explicitly set. Given a URL object,

you can retrieve the data associated with it. To access the actual bits or content information

of a URL, create a URLConnection object from it, using its openConnection() method,

like this:

urlc = url.openConnection()

openConnection() has the following general form:

URLConnection openConnection() throws IOException

It returns a URLConnection object associated with the invoking URL object. Notice that it

may throw an IOException.

URLConnection
URLConnection is a general-purpose class for accessing the attributes of a remote resource.

Once you make a connection to a remote server, you can use URLConnection to inspect

the properties of the remote object before actually transporting it locally. These attributes

 Chapter 21 Networking 677

P
a

rt
 I

I

are exposed by the HTTP protocol specification and, as such, only make sense for URL

objects that are using the HTTP protocol.

URLConnection defines several methods. Here is a sampling:

int getContentLength() Returns the size in bytes of the content

associated with the resource. If the length is

unavailable, –1 is returned.

long getContentLengthLong() Returns the size in bytes of the content

associated with the resource. If the length is

unavailable, –1 is returned. (Added by JDK 7.)

String getContentType() Returns the type of content found in the resource.

This is the value of the content-type header field.

Returns null if the content type is not available.

long getDate() Returns the time and date of the response

represented in terms of milliseconds since

January 1, 1970 GMT.

long getExpiration() Returns the expiration time and date of the

resource represented in terms of milliseconds

since January 1, 1970 GMT. Zero is returned if

the expiration date is unavailable.

String getHeaderField(int idx) Returns the value of the header field at index idx.

(Header field indexes begin at 0.) Returns null if
the value of idx exceeds the number of fields.

String getHeaderField(String fieldName) Returns the value of header field whose name

is specified by fieldName. Returns null if the

specified name is not found.

String getHeaderFieldKey(int idx) Returns the header field key at index idx.

(Header field indexes begin at 0.) Returns null
if the value of idx exceeds the number of fields.

Map<String, List<String>>

 getHeaderFields()

Returns a map that contains all of the header

fields and values.

long getLastModified() Returns the time and date, represented in terms

of milliseconds since January 1, 1970 GMT, of

the last modification of the resource. Zero is

returned if the last-modified date is unavailable.

InputStream getInputStream()

 throws IOException

Returns an InputStream that is linked to the

resource. This stream can be used to obtain the

content of the resource.

Notice that URLConnection defines several methods that handle header information. A

header consists of pairs of keys and values represented as strings. By using getHeaderField(),
you can obtain the value associated with a header key. By calling getHeaderFields(), you can

obtain a map that contains all of the headers. Several standard header fields are available

directly through methods such as getDate() and getContentType().

678 PART II The Java Library

The following example creates a URLConnection using the openConnection() method

of a URL object and then uses it to examine the document’s properties and content:

// Demonstrate URLConnection.
import java.net.*;
import java.io.*;
import java.util.Date;

class UCDemo
{
 public static void main(String args[]) throws Exception {
 int c;
 URL hp = new URL(http://www.internic.net");
 URLConnection hpCon = hp.openConnection();

 // get date
 long d = hpCon.getDate();
 if(d==0)
 System.out.println("No date information.");
 else
 System.out.println("Date: " + new Date(d));

 // get content type
 System.out.println("Content-Type: " + hpCon.getContentType());

 // get expiration date
 d = hpCon.getExpiration();
 if(d==0)
 System.out.println("No expiration information.");
 else
 System.out.println("Expires: " + new Date(d));

 // get last-modified date
 d = hpCon.getLastModified();
 if(d==0)
 System.out.println("No last-modified information.");
 else
 System.out.println("Last-Modified: " + new Date(d));

 // get content length
 long len = hpCon.getContentLengthLong();
 if(len == -1)
 System.out.println("Content length unavailable.");
 else
 System.out.println("Content-Length: " + len);

 if(len != 0) {
 System.out.println("=== Content ===");
 InputStream input = hpCon.getInputStream();
 while (((c = input.read()) != -1)) {
 System.out.print((char) c);
 }
 input.close();

 Chapter 21 Networking 679

P
a

rt
 I

I

 } else {
 System.out.println("No content available.");
 }
 }
}

The program establishes an HTTP connection to www.internic.net over port 80. It then

displays several header values and retrieves the content. Here are the first lines of the

output (the precise output will vary over time).

 Date: Mon Oct 04 15:53:24 CDT 2010
 Content-Type: text/html; charset=UTF-8
 No expiration information.
 Last-Modified: Thu Sep 24 15:22:52 CDT 2009
 Content-Length: 7316
 === Content ===
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
 <html>
 <head>
 <title>InterNIC | The Internet's Network Information Center</title>
 .
 .
 .

HttpURLConnection
Java provides a subclass of URLConnection that provides support for HTTP connections.

This class is called HttpURLConnection. You obtain an HttpURLConnection in the same

way just shown, by calling openConnection() on a URL object, but you must cast the result

to HttpURLConnection. (Of course, you must make sure that you are actually opening an

HTTP connection.) Once you have obtained a reference to an HttpURLConnection object,

you can use any of the methods inherited from URLConnection. You can also use any of

the several methods defined by HttpURLConnection. Here is a sampling:

static boolean getFollowRedirects() Returns true if redirects are automatically followed

and false otherwise. This feature is on by default.

String getRequestMethod() Returns a string representing how URL requests

are made. The default is GET. Other options, such

as POST, are available.

int getResponseCode()

 throws IOException

Returns the HTTP response code. –1 is returned

if no response code can be obtained. An

IOException is thrown if the connection fails.

String getResponseMessage()

 throws IOException

Returns the response message associated with

the response code. Returns null if no message

is available. An IOException is thrown if the

connection fails.

static void setFollowRedirects(boolean how) If how is true, then redirects are automatically

followed. If how is false, redirects are not

automatically followed. By default, redirects

are automatically followed.

www.internic.net

680 PART II The Java Library

void setRequestMethod(String how)

 throws ProtocolException

Sets the method by which HTTP requests are

made to that specified by how. The default method

is GET, but other options, such as POST, are

available. If how is invalid, a ProtocolException

is thrown.

The following program demonstrates HttpURLConnection. It first establishes a

connection to www.google.com. Then it displays the request method, the response code,

and the response message. Finally, it displays the keys and values in the response header.

// Demonstrate HttpURLConnection.
import java.net.*;
import java.io.*;
import java.util.*;

class HttpURLDemo
{

public static void main(String args[]) throws Exception {
 URL hp = new URL(http://www.google.com");

 HttpURLConnection hpCon = (HttpURLConnection) hp.openConnection();

 // Display request method.
 System.out.println("Request method is " +
 hpCon.getRequestMethod());

 // Display response code.
 System.out.println("Response code is " +
 hpCon.getResponseCode());

 // Display response message.
 System.out.println("Response Message is " +
 hpCon.getResponseMessage());

 // Get a list of the header fields and a set
 // of the header keys.
 Map<String, List<String>> hdrMap = hpCon.getHeaderFields();
 Set<String> hdrField = hdrMap.keySet();

 System.out.println("\nHere is the header:");

 // Display all header keys and values.
 for(String k : hdrField) {
 System.out.println("Key: " + k +
 " Value: " + hdrMap.get(k));
 }
 }
}

www.google.com

 Chapter 21 Networking 681

P
a

rt
 I

I

The output produced by the program is shown here. (Of course, the exact response

returned by www.google.com will vary over time.)

 Request method is GET
 Response code is 200
 Response Message is OK
 Here is the header:
 Key: null Value: [HTTP/1.1 200 OK]
 Key: Date Value: [Mon, 04 Oct 2010 21:11:53 GMT]
 Key: Transfer-Encoding Value: [chunked]
 Key: Expires Value: [-1]
 Key: X-XSS-Protection Value: [1; mode=block]
 Key: Set-Cookie Value: [NID=39=uAS1-
 DdTfLelHcxkEiRy7xNtExX3zJaKS9mjdTy8_XejjBkpjWvcqyMXgC4Ha4VT_5IZN2pnxsloo-
 NlGHvcK0AIqXPhFcnCd1R1Ww4WgbiY7KrthNXCQxfXbHJwNgue; expires=Tue, 05-Apr-2011
 21:11:53 GMT; path=/; domain=.google.com; HttpOnly,
 PREF=ID=6644372b1f96120c:TM=1286226713:LM=1286226713:S=iNeZU0xRTrGPxg2K;
 expires=Wed, 03-Oct-2012 21:11:53 GMT; path=/; domain=.google.com]
 Key: Content-Type Value: [text/html; charset=ISO-8859-1]
 Key: Server Value: [gws]
 Key: Cache-Control Value: [private, max-age=0]

Notice how the header keys and values are displayed. First, a map of the header keys and

values is obtained by calling getHeaderFields() (which is inherited from URLConnection).

Next, a set of the header keys is retrieved by calling keySet() on the map. Then the key set

is cycled through by using a for-each style for loop. The value associated with each key is

obtained by calling get() on the map.

The URI Class
The URI class encapsulates a Uniform Resource Identifier (URI). URIs are similar to URLs. In

fact, URLs constitute a subset of URIs. A URI represents a standard way to identify a resource.

A URL also describes how to access the resource.

Cookies
The java.net package includes classes and interfaces that help manage cookies and can be

used to create a stateful (as opposed to stateless) HTTP session. The classes are CookieHandler,
CookieManager, and HttpCookie. The interfaces are CookiePolicy and CookieStore. All

but CookieHandler were added by Java SE 6. (CookieHandler was added by JDK 5.) The

creation of a stateful HTTP session is beyond the scope of this book.

NOTE For information about using cookies with servlets, see Chapter 32.

TCP/IP Server Sockets
As mentioned earlier, Java has a different socket class that must be used for creating server

applications. The ServerSocket class is used to create servers that listen for either local or

remote client programs to connect to them on published ports. ServerSockets are quite

www.google.com

682 PART II The Java Library

different from normal Sockets. When you create a ServerSocket, it will register itself with

the system as having an interest in client connections. The constructors for ServerSocket
reflect the port number that you want to accept connections on and, optionally, how long

you want the queue for said port to be. The queue length tells the system how many client

connections it can leave pending before it should simply refuse connections. The default is

50. The constructors might throw an IOException under adverse conditions. Here are

three of its constructors:

ServerSocket(int port) throws IOException Creates server socket on the specified port

with a queue length of 50.

ServerSocket(int port, int maxQueue)
 throws IOException

Creates a server socket on the specified port

with a maximum queue length of maxQueue.

ServerSocket(int port, int maxQueue,
 InetAddress localAddress)
 throws IOException

Creates a server socket on the specified port

with a maximum queue length of maxQueue.
On a multihomed host, localAddress specifies

the IP address to which this socket binds.

ServerSocket has a method called accept(), which is a blocking call that will wait for a

client to initiate communications and then return with a normal Socket that is then used

for communication with the client.

Datagrams
TCP/IP-style networking is appropriate for most networking needs. It provides a serialized,

predictable, reliable stream of packet data. This is not without its cost, however. TCP

includes many complicated algorithms for dealing with congestion control on crowded

networks, as well as pessimistic expectations about packet loss. This leads to a somewhat

inefficient way to transport data. Datagrams provide an alternative.

Datagrams are bundles of information passed between machines. They are somewhat

like a hard throw from a well-trained but blindfolded catcher to the third baseman. Once

the datagram has been released to its intended target, there is no assurance that it will

arrive or even that someone will be there to catch it. Likewise, when the datagram is received,

there is no assurance that it hasn’t been damaged in transit or that whoever sent it is still

there to receive a response.

Java implements datagrams on top of the UDP protocol by using two classes: the

DatagramPacket object is the data container, while the DatagramSocket is the mechanism

used to send or receive the DatagramPackets. Each is examined here.

DatagramSocket

DatagramSocket defines four public constructors. They are shown here:

DatagramSocket() throws SocketException

DatagramSocket(int port) throws SocketException

DatagramSocket(int port, InetAddress ipAddress) throws SocketException

DatagramSocket(SocketAddress address) throws SocketException

 Chapter 21 Networking 683

P
a

rt
 I

I

The first creates a DatagramSocket bound to any unused port on the local computer. The

second creates a DatagramSocket bound to the port specified by port. The third constructs

a DatagramSocket bound to the specified port and InetAddress. The fourth constructs a

DatagramSocket bound to the specified SocketAddress. SocketAddress is an abstract

class that is implemented by the concrete class InetSocketAddress. InetSocketAddress

encapsulates an IP address with a port number. All can throw a SocketException if an

error occurs while creating the socket.

DatagramSocket defines many methods. Two of the most important are send() and

receive(), which are shown here:

void send(DatagramPacket packet) throws IOException

void receive(DatagramPacket packet) throws IOException

The send() method sends a packet to the port specified by packet. The receive() method

waits for a packet to be received from the port specified by packet and returns the result.

DatagramSocket also defines the close()method, which closes the socket. Beginning

with JDK 7, DatagramSocket implements AutoCloseable, which means that a DatagramSocket
can be managed by a try-with-resources block.

Other methods give you access to various attributes associated with a DatagramSocket.
Here is a sampling:

InetAddress getInetAddress() If the socket is connected, then the address is returned.

Otherwise, null is returned.

int getLocalPort() Returns the number of the local port.

int getPort() Returns the number of the port to which the socket is

connected. It returns –1 if the socket is not connected to

a port.

boolean isBound() Returns true if the socket is bound to an address. Returns

false otherwise.

boolean isConnected() Returns true if the socket is connected to a server. Returns

false otherwise.

void setSoTimeout(int millis)
 throws SocketException

Sets the time-out period to the number of milliseconds

passed in millis.

DatagramPacket

DatagramPacket defines several constructors. Four are shown here:

DatagramPacket(byte data [], int size)
DatagramPacket(byte data [], int offset, int size)
DatagramPacket(byte data [], int size, InetAddress ipAddress, int port)
DatagramPacket(byte data [], int offset, int size, InetAddress ipAddress, int port)

The first constructor specifies a buffer that will receive data and the size of a packet. It

is used for receiving data over a DatagramSocket. The second form allows you to specify an

offset into the buffer at which data will be stored. The third form specifies a target address

and port, which are used by a DatagramSocket to determine where the data in the packet

will be sent. The fourth form transmits packets beginning at the specified offset into the

684 PART II The Java Library

data. Think of the first two forms as building an "in box," and the second two forms as

stuffing and addressing an envelope.

DatagramPacket defines several methods, including those shown here, that give access

to the address and port number of a packet, as well as the raw data and its length. In

general, the get methods are used on packets that are received and the set methods are

used on packets that will be sent.

InetAddress getAddress() Returns the address of the source (for datagrams

being received) or destination (for datagrams

being sent).

byte[] getData() Returns the byte array of data contained in the

datagram. Mostly used to retrieve data from

the datagram after it has been received.

int getLength() Returns the length of the valid data contained

in the byte array that would be returned from

the getData() method. This may not equal the

length of the whole byte array.

int getOffset() Returns the starting index of the data.

int getPort() Returns the port number.

void setAddress(InetAddress ipAddress) Sets the address to which a packet will be sent.

The address is specified by ipAddress.

void setData(byte[] data) Sets the data to data, the offset to zero, and the

length to number of bytes in data.

void setData(byte[] data, int idx, int size) Sets the data to data, the offset to idx, and the

length to size.

void setLength(int size) Sets the length of the packet to size.

void setPort(int port) Sets the port to port.

A Datagram Example

The following example implements a very simple networked communications client and

server. Messages are typed into the window at the server and written across the network to

the client side, where they are displayed.

// Demonstrate datagrams.
import java.net.*;

class WriteServer {
 public static int serverPort = 998;
 public static int clientPort = 999;
 public static int buffer_size = 1024;
 public static DatagramSocket ds;
 public static byte buffer[] = new byte[buffer_size];

 public static void TheServer() throws Exception {
 int pos=0;
 while (true) {

 Chapter 21 Networking 685

P
a

rt
 I

I

 int c = System.in.read();
 switch (c) {
 case -1:
 System.out.println("Server Quits.");
 ds.close();
 return;
 case '\r':
 break;
 case '\n':
 ds.send(new DatagramPacket(buffer,pos,
 InetAddress.getLocalHost(),clientPort));
 pos=0;
 break;
 default:
 buffer[pos++] = (byte) c;
 }
 }
 }

 public static void TheClient() throws Exception {
 while(true) {
 DatagramPacket p = new DatagramPacket(buffer, buffer.length);
 ds.receive(p);
 System.out.println(new String(p.getData(), 0, p.getLength()));
 }
 }

 public static void main(String args[]) throws Exception {
 if(args.length == 1) {
 ds = new DatagramSocket(serverPort);
 TheServer();
 } else {
 ds = new DatagramSocket(clientPort);
 TheClient();
 }
 }
}

This sample program is restricted by the DatagramSocket constructor to running between

two ports on the local machine. To use the program, run

java WriteServer

in one window; this will be the client. Then run

java WriteServer 1

This will be the server. Anything that is typed in the server window will be sent to the client

window after a newline is received.

This page intentionally left blank

22
CHAPTER

 687

This chapter examines the Applet class, which provides the foundation for applets. The

Applet class is contained in the java.applet package. Applet contains several methods that

give you detailed control over the execution of your applet. In addition, java.applet also

defines three interfaces: AppletContext, AudioClip, and AppletStub.

Two Types of Applets
It is important to state at the outset that there are two varieties of applets. The first are

those based directly on the Applet class described in this chapter. These applets use the

Abstract Window Toolkit (AWT) to provide the graphical user interface (or use no GUI at

all). This style of applet has been available since Java was first created.

The second type of applets are those based on the Swing class JApplet. Swing applets

use the Swing classes to provide the GUI. Swing offers a richer and often easier-to-use user

interface than does the AWT. Thus, Swing-based applets are now the most popular. However,

traditional AWT-based applets are still used, especially when only a very simple user

interface is required. Thus, both AWT- and Swing-based applets are valid.

Because JApplet inherits Applet, all the features of Applet are also available in JApplet,
and most of the information in this chapter applies to both types of applets. Therefore, even

if you are interested in only Swing applets, the information in this chapter is still relevant and

necessary. Understand, however, that when creating Swing-based applets, some additional

constraints apply and these are described later in this book, when Swing is covered.

NOTE For information on building applets when using Swing, see Chapter 30.

Applet Basics
Chapter 13 introduced the general form of an applet and the steps necessary to compile

and run one. Let’s begin by reviewing this information.

All applets are subclasses (either directly or indirectly) of Applet. Applets are not

stand-alone programs. Instead, they run within either a web browser or an applet viewer.

The illustrations shown in this chapter were created with the standard applet viewer, called

appletviewer, provided by the JDK. But you can use any applet viewer or browser you like.

The Applet Class

688 PART II The Java Library

Execution of an applet does not begin at main(). Actually, few applets even have main()
methods. Instead, execution of an applet is started and controlled with an entirely different

mechanism, which will be explained shortly. Output to your applet’s window is not performed

by System.out.println(). Rather, in non-Swing applets, output is handled with various AWT

methods, such as drawString(), which outputs a string to a specified X,Y location. Input is

also handled differently than in a console application. (Remember, Swing-based applets use

the Swing classes to handle user interactions, and they are described later in this book.)

Before an applet can be used, a deployment strategy must be chosen. There are two basic

approaches. The first is to use the Java Network Launch Protocol (JNLP). This approach

offers the most flexibility, especially as it relates to rich Internet applications. For real-world

applets that you create, JNLP will often be the best choice. However, a detailed discussion

of JNLP is beyond the scope of this book. (See the JDK documentation for the latest details

on JNLP.) Fortunately, JNLP is not required for the example applets shown here.

The second basic approach to deploying an applet is to specify the applet directly in

an HTML file, without the use of JNLP. This is the original way that applets were launched

when Java was created, and it is still used today—especially for simple applets. Furthermore,

because of its inherent simplicity, it is the appropriate method for the applet examples

described in this book. At the time of this writing, Oracle recommends the APPLET tag for

this purpose. Therefore, the APPLET tag is used in this book. (Be aware that the APPLET

tag is currently deprecated by the HTML specification. The alternative is the OBJECT tag.

You should check the JDK documentation in this regard for the latest recommendations.)

When an APPLET tag is encountered in the HTML file, the specified applet will be

executed by a Java-enabled web browser.

The use of the APPLET tag offers a secondary advantage when developing applets

because it enables you to easily view and test the applet. To do so, simply include a

comment at the head of your Java source code file that contains the APPLET tag. This way,

your code is documented with the necessary HTML statements needed by your applet, and

you can test the compiled applet by starting the applet viewer with your Java source code

file specified as the target. Here is an example of such a comment:

/*
<applet code="MyApplet" width=200 height=60>
</applet>
*/

This comment contains an APPLET tag that will run an applet called MyApplet in a

window that is 200 pixels wide and 60 pixels high. Because the inclusion of an APPLET

command makes testing applets easier, all of the applets shown in this book will contain

the appropriate APPLET tag embedded in a comment.

The Applet Class

The Applet class defines the methods shown in Table 22-1. Applet provides all necessary

support for applet execution, such as starting and stopping. It also provides methods that

load and display images, and methods that load and play audio clips. Applet extends the

AWT class Panel. In turn, Panel extends Container, which extends Component. These

classes provide support for Java’s window-based, graphical interface. Thus, Applet provides

all of the necessary support for window-based activities. (The AWT is described in detail in

following chapters.)

 Chapter 22 The Applet Class 689

P
a

rt
 I

I

Table 22-1 The Methods Defined by Applet

Method Description

void destroy() Called by the browser just before an applet is

terminated. Your applet will override this method

if it needs to perform any cleanup prior to its

destruction.

AccessibleContext

 getAccessibleContext()

Returns the accessibility context for the invoking

object.

AppletContext getAppletContext() Returns the context associated with the applet.

String getAppletInfo() Overrides of this method should return a

string that describes the applet. The default

implementation returns null.

AudioClip getAudioClip(URL url) Returns an AudioClip object that encapsulates the

audio clip found at the location specified by url.

AudioClip getAudioClip(URL url,
 String clipName)

Returns an AudioClip object that encapsulates the

audio clip found at the location specified by url and

having the name specified by clipName.

URL getCodeBase() Returns the URL associated with the invoking applet.

URL getDocumentBase() Returns the URL of the HTML document that

invokes the applet.

Image getImage(URL url) Returns an Image object that encapsulates the

image found at the location specified by url.

Image getImage(URL url,
 String imageName)

Returns an Image object that encapsulates the

image found at the location specified by url and

having the name specified by imageName.

Locale getLocale() Returns a Locale object that is used by various

locale-sensitive classes and methods.

String getParameter(String paramName) Returns the parameter associated with paramName.
null is returned if the specified parameter is not

found.

String[] [] getParameterInfo() Overrides of this method should return a String

table that describes the parameters recognized by

the applet. Each entry in the table must consist

of three strings that contain the name of the

parameter, a description of its type and/or range,

and an explanation of its purpose. The default

implementation returns null.

void init() Called when an applet begins execution. It is the

first method called for any applet.

boolean isActive() Returns true if the applet has been started. It

returns false if the applet has been stopped.

boolean isValidateRoot() Returns true, which indicates that an applet is a

validate root. (Added by JDK 7.)

690 PART II The Java Library

Applet Architecture
As a general rule, an applet is a GUI-based program. As such, its architecture is different

from the console-based programs shown in the first part of this book. If you are already

familiar with GUI programming, you will be right at home writing applets. If not, then

there are a few key concepts you must understand.

First, applets are event driven. Although we won’t examine event handling until the

following chapter, it is important to understand in a general way how the event-driven

architecture impacts the design of an applet. An applet resembles a set of interrupt service

routines. Here is how the process works. An applet waits until an event occurs. The run-

time system notifies the applet about an event by calling an event handler that has been

provided by the applet. Once this happens, the applet must take appropriate action and

Method Description

static final AudioClip

 newAudioClip(URL url)
Returns an AudioClip object that encapsulates the

audio clip found at the location specified by url.
This method is similar to getAudioClip() except

that it is static and can be executed without the

need for an Applet object.

void play(URL url) If an audio clip is found at the location specified by

url, the clip is played.

void play(URL url, String clipName) If an audio clip is found at the location specified by

url with the name specified by clipName, the clip is

played.

void resize(Dimension dim) Resizes the applet according to the dimensions

specified by dim. Dimension is a class stored inside

java.awt. It contains two integer fields: width and

height.

void resize(int width, int height) Resizes the applet according to the dimensions

specified by width and height.

final void setStub(AppletStub stubObj) Makes stubObj the stub for the applet. This method

is used by the run-time system and is not usually

called by your applet. A stub is a small piece of code

that provides the linkage between your applet and

the browser.

void showStatus(String str) Displays str in the status window of the browser or

applet viewer. If the browser does not support a

status window, then no action takes place.

void start() Called by the browser when an applet should start

(or resume) execution. It is automatically called

after init() when an applet first begins.

void stop() Called by the browser to suspend execution of the

applet. Once stopped, an applet is restarted when

the browser calls start().

Table 22-1 The Methods Defined by Applet (continued)

 Chapter 22 The Applet Class 691

P
a

rt
 I

I

then quickly return. This is a crucial point. For the most part, your applet should not enter

a "mode" of operation in which it maintains control for an extended period. Instead, it

must perform specific actions in response to events and then return control to the run-time

system. In those situations in which your applet needs to perform a repetitive task on its

own (for example, displaying a scrolling message across its window), you must start an

additional thread of execution. (You will see an example later in this chapter.)

Second, the user initiates interaction with an applet—not the other way around. As you

know, in a console-based program, when the program needs input, it will prompt the user

and then call some input method, such as readLine(). This is not the way it works in an

applet. Instead, the user interacts with the applet as he or she wants, when he or she wants.

These interactions are sent to the applet as events to which the applet must respond. For

example, when the user clicks the mouse inside the applet’s window, a mouse-clicked event

is generated. If the user presses a key while the applet’s window has input focus, a keypress

event is generated. As you will see in later chapters, applets can contain various controls,

such as push buttons and check boxes. When the user interacts with one of these controls,

an event is generated.

While the architecture of an applet is not as easy to understand as that of a console-

based program, Java makes it as simple as possible. If you have written programs for

Windows (or other GUI-based operating systems), you know how intimidating that

environment can be. Fortunately, Java provides a much cleaner approach that is more

quickly mastered.

An Applet Skeleton
All but the most trivial applets override a set of methods that provides the basic mechanism

by which the browser or applet viewer interfaces to the applet and controls its execution.

Four of these methods, init(), start(), stop(), and destroy(), apply to all applets and are

defined by Applet. Default implementations for all of these methods are provided. Applets

do not need to override those methods they do not use. However, only very simple applets

will not need to define all of them.

AWT-based applets (such as those discussed in this chapter) will also often override the

paint() method, which is defined by the AWT Component class. This method is called when

the applet’s output must be redisplayed. (Swing-based applets use a different mechanism to

accomplish this task.) These five methods can be assembled into the skeleton shown here:

// An Applet skeleton.
import java.awt.*;
import java.applet.*;
/*
<applet code="AppletSkel" width=300 height=100>
</applet>
*/

public class AppletSkel extends Applet {
 // Called first.
 public void init() {
 // initialization
 }

692 PART II The Java Library

 /* Called second, after init(). Also called whenever
 the applet is restarted. */
 public void start() {
 // start or resume execution
 }

 // Called when the applet is stopped.
 public void stop() {
 // suspends execution
 }

 /* Called when applet is terminated. This is the last
 method executed. */
 public void destroy() {
 // perform shutdown activities
 }

 // Called when an applet’s window must be restored.
 public void paint(Graphics g) {
 // redisplay contents of window
 }
}

Although this skeleton does not do anything, it can be compiled and run. When run, it

generates the following window when viewed with an applet viewer:

Applet Initialization and Termination

It is important to understand the order in which the various methods shown in the skeleton

are called. When an applet begins, the following methods are called, in this sequence:

 1. init()

 2. start()

 3. paint()

When an applet is terminated, the following sequence of method calls takes place:

 1. stop()

 2. destroy()

Let’s look more closely at these methods.

 Chapter 22 The Applet Class 693

P
a

rt
 I

I

init()
The init() method is the first method to be called. This is where you should initialize

variables. This method is called only once during the run time of your applet.

start()
The start() method is called after init(). It is also called to restart an applet after it has

been stopped. Whereas init() is called once—the first time an applet is loaded—start() is
called each time an applet’s HTML document is displayed onscreen. So, if a user leaves a

web page and comes back, the applet resumes execution at start().

paint()
The paint() method is called each time your applet’s output must be redrawn. This

situation can occur for several reasons. For example, the window in which the applet is

running may be overwritten by another window and then uncovered. Or the applet window

may be minimized and then restored. paint() is also called when the applet begins execution.

Whatever the cause, whenever the applet must redraw its output, paint() is called. The

paint() method has one parameter of type Graphics. This parameter will contain the

graphics context, which describes the graphics environment in which the applet is running.

This context is used whenever output to the applet is required.

stop()
The stop() method is called when a web browser leaves the HTML document containing

the applet—when it goes to another page, for example. When stop() is called, the applet

is probably running. You should use stop() to suspend threads that don’t need to run when

the applet is not visible. You can restart them when start() is called if the user returns to

the page.

destroy()
The destroy() method is called when the environment determines that your applet needs

to be removed completely from memory. At this point, you should free up any resources

the applet may be using. The stop() method is always called before destroy().

Overriding update()

In some situations, your applet may need to override another method defined by the AWT,

called update(). This method is called when your applet has requested that a portion of its

window be redrawn. The default version of update() simply calls paint(). However, you

can override the update() method so that it performs more subtle repainting. In general,

overriding update() is a specialized technique that is not applicable to all applets, and the

examples in this chapter do not override update().

Simple Applet Display Methods
As we’ve mentioned, applets are displayed in a window, and AWT-based applets use the

AWT to perform input and output. Although we will examine the methods, procedures,

and techniques necessary to fully handle the AWT windowed environment in subsequent

694 PART II The Java Library

chapters, a few are described here, because we will use them to write sample applets.

(Remember, Swing-based applets are described later in this book.)

As described in Chapter 13, to output a string to an applet, use drawString(), which is a

member of the Graphics class. Typically, it is called from within either update() or paint().
It has the following general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window, the upper-left

corner is location 0,0. The drawString() method will not recognize newline characters. If

you want to start a line of text on another line, you must do so manually, specifying the

precise X,Y location where you want the line to begin. (As you will see in later chapters,

there are techniques that make this process easy.)

To set the background color of an applet’s window, use setBackground(). To set the

foreground color (the color in which text is shown, for example), use setForeground().
These methods are defined by Component, and they have the following general forms:

void setBackground(Color newColor)
void setForeground(Color newColor)

Here, newColor specifies the new color. The class Color defines the constants shown here

that can be used to specify colors:

Color.black Color.magenta

Color.blue Color.orange

Color.cyan Color.pink

Color.darkGray Color.red

Color.gray Color.white

Color.green Color.yellow

Color.lightGray

Uppercase versions of the constants are also defined.

The following example sets the background color to green and the text color to red:

setBackground(Color.green);
setForeground(Color.red);

A good place to set the foreground and background colors is in the init() method.

Of course, you can change these colors as often as necessary during the execution of your

applet.

You can obtain the current settings for the background and foreground colors by

calling getBackground() and getForeground(), respectively. They are also defined by

Component and are shown here:

Color getBackground()

Color getForeground()

 Chapter 22 The Applet Class 695

P
a

rt
 I

I

Here is a very simple applet that sets the background color to cyan, the foreground

color to red, and displays a message that illustrates the order in which the init(), start(),
and paint() methods are called when an applet starts up:

/* A simple applet that sets the foreground and
 background colors and outputs a string. */
import java.awt.*;
import java.applet.*;
/*
<applet code="Sample" width=300 height=50>
</applet>
*/

public class Sample extends Applet{
 String msg;

 // set the foreground and background colors.
 public void init() {
 setBackground(Color.cyan);
 setForeground(Color.red);
 msg = "Inside init() --";
 }

 // Initialize the string to be displayed.
 public void start() {
 msg += " Inside start() --";
 }

 // Display msg in applet window.
 public void paint(Graphics g) {
 msg += " Inside paint().";
 g.drawString(msg, 10, 30);
 }
}

This applet generates the window shown here:

The methods stop() and destroy() are not overridden, because they are not needed by

this simple applet.

Requesting Repainting
As a general rule, an applet writes to its window only when its update() or paint() method

is called by the AWT. This raises an interesting question: How can the applet itself cause its

window to be updated when its information changes? For example, if an applet is displaying

696 PART II The Java Library

a moving banner, what mechanism does the applet use to update the window each time this

banner scrolls? Remember, one of the fundamental architectural constraints imposed on an

applet is that it must quickly return control to the run-time system. It cannot create a loop

inside paint() that repeatedly scrolls the banner, for example. This would prevent control

from passing back to the AWT. Given this constraint, it may seem that output to your applet’s

window will be difficult at best. Fortunately, this is not the case. Whenever your applet needs

to update the information displayed in its window, it simply calls repaint().
The repaint() method is defined by the AWT. It causes the AWT run-time system to

execute a call to your applet’s update() method, which, in its default implementation, calls

paint(). Thus, for another part of your applet to output to its window, simply store the

output and then call repaint(). The AWT will then execute a call to paint(), which can

display the stored information. For example, if part of your applet needs to output a string,

it can store this string in a String variable and then call repaint(). Inside paint(), you will

output the string using drawString().
The repaint() method has four forms. Let’s look at each one, in turn. The simplest

version of repaint() is shown here:

void repaint()

This version causes the entire window to be repainted. The following version specifies a

region that will be repainted:

void repaint(int left, int top, int width, int height)

Here, the coordinates of the upper-left corner of the region are specified by left and top,
and the width and height of the region are passed in width and height. These dimensions

are specified in pixels. You save time by specifying a region to repaint. Window updates are

costly in terms of time. If you need to update only a small portion of the window, it is more

efficient to repaint only that region.

Calling repaint() is essentially a request that your applet be repainted sometime soon.

However, if your system is slow or busy, update() might not be called immediately. Multiple

requests for repainting that occur within a short time can be collapsed by the AWT in a

manner such that update() is only called sporadically. This can be a problem in many

situations, including animation, in which a consistent update time is necessary. One

solution to this problem is to use the following forms of repaint():

void repaint(long maxDelay)
void repaint(long maxDelay, int x, int y, int width, int height)

Here, maxDelay specifies the maximum number of milliseconds that can elapse before

update() is called. Beware, though. If the time elapses before update() can be called, it

isn’t called. There’s no return value or exception thrown, so you must be careful.

NOTE It is possible for a method other than paint() or update() to output to an applet’s window. To do
so, it must obtain a graphics context by calling getGraphics() (defined by Component) and then
use this context to output to the window. However, for most applications, it is better and easier to
route window output through paint() and to call repaint() when the contents of the window change.

 Chapter 22 The Applet Class 697

P
a

rt
 I

I

A Simple Banner Applet

To demonstrate repaint(), a simple banner applet is developed. This applet scrolls a

message, from right to left, across the applet’s window. Since the scrolling of the message

is a repetitive task, it is performed by a separate thread, created by the applet when it is

initialized. The banner applet is shown here:

/* A simple banner applet.

 This applet creates a thread that scrolls
 the message contained in msg right to left
 across the applet’s window.
*/
import java.awt.*;
import java.applet.*;
/*
<applet code="SimpleBanner" width=300 height=50>
</applet>
*/

public class SimpleBanner extends Applet implements Runnable {
 String msg = " A Simple Moving Banner.";
 Thread t = null;
 int state;
 volatile boolean stopFlag;

 // Set colors and initialize thread.
 public void init() {
 setBackground(Color.cyan);
 setForeground(Color.red);
 }

 // Start thread
 public void start() {
 t = new Thread(this);
 stopFlag = false;
 t.start();
 }

 // Entry point for the thread that runs the banner.
 public void run() {

 // Redisplay banner
 for(; ;) {
 try {
 repaint();
 Thread.sleep(250);
 if(stopFlag)
 break;
 } catch(InterruptedException e) {}
 }
 }

698 PART II The Java Library

 // Pause the banner.
 public void stop() {
 stopFlag = true;
 t = null;
 }

 // Display the banner.
 public void paint(Graphics g) {
 char ch;

 ch = msg.charAt(0);
 msg = msg.substring(1, msg.length());
 msg += ch;

 g.drawString(msg, 50, 30);
 }
}

Following is sample output:

Let’s take a close look at how this applet operates. First, notice that SimpleBanner
extends Applet, as expected, but it also implements Runnable. This is necessary, since the

applet will be creating a second thread of execution that will be used to scroll the banner.

Inside init(), the foreground and background colors of the applet are set.

After initialization, the run-time system calls start() to start the applet running. Inside

start(), a new thread of execution is created and assigned to the Thread variable t. Then,

the boolean variable stopFlag, which controls the execution of the applet, is set to false.

Next, the thread is started by a call to t.start(). Remember that t.start() calls a method

defined by Thread, which causes run() to begin executing. It does not cause a call to the

version of start() defined by Applet. These are two separate methods.

Inside run(), a call to repaint() is made. This eventually causes the paint() method to

be called, and the rotated contents of msg are displayed. Between each iteration, run()
sleeps for a quarter of a second. The net effect is that the contents of msg are scrolled right

to left in a constantly moving display. The stopFlag variable is checked on each iteration.

When it is true, the run() method terminates.

If a browser is displaying the applet when a new page is viewed, the stop() method is

called, which sets stopFlag to true, causing run() to terminate. This is the mechanism used

to stop the thread when its page is no longer in view. When the applet is brought back into

view, start() is once again called, which starts a new thread to execute the banner.

 Chapter 22 The Applet Class 699

P
a

rt
 I

I

Using the Status Window
In addition to displaying information in its window, an applet can also output a message

to the status window of the browser or applet viewer on which it is running. To do so, call

showStatus() with the string that you want displayed. The status window is a good place to

give the user feedback about what is occurring in the applet, suggest options, or possibly

report some types of errors. The status window also makes an excellent debugging aid,

because it gives you an easy way to output information about your applet.

The following applet demonstrates showStatus():

// Using the Status Window.
import java.awt.*;
import java.applet.*;
/*

<applet code="StatusWindow" width=300 height=50>
</applet>
*/

public class StatusWindow extends Applet {
 public void init() {
 setBackground(Color.cyan);
 }

 // Display msg in applet window.
 public void paint(Graphics g) {
 g.drawString("This is in the applet window.", 10, 20);
 showStatus("This is shown in the status window.");
 }
}

Sample output from this program is shown here:

The HTML APPLET Tag
As mentioned earlier, at the time of this writing, Oracle recommends that the APPLET tag

be used to manually start an applet when JNLP is not used. An applet viewer will execute

each APPLET tag that it finds in a separate window, while web browsers will allow many

applets on a single page. So far, we have been using only a simplified form of the APPLET

tag. Now it is time to take a closer look at it.

700 PART II The Java Library

The syntax for a fuller form of the APPLET tag is shown here. Bracketed items are

optional.

 < APPLET

 [CODEBASE = codebaseURL]

 CODE = appletFile
 [ALT = alternateText]
 [NAME = appletInstanceName]
 WIDTH = pixels HEIGHT = pixels
 [ALIGN = alignment]
 [VSPACE = pixels] [HSPACE = pixels]
 >

 [< PARAM NAME = AttributeName VALUE = AttributeValue>]

 [< PARAM NAME = AttributeName2 VALUE = AttributeValue>]

 . . .

 [HTML Displayed in the absence of Java]

 </APPLET>

Let’s take a look at each part now.

CODEBASE CODEBASE is an optional attribute that specifies the base URL of the

applet code, which is the directory that will be searched for the applet’s executable class

file (specified by the CODE tag). The HTML document’s URL directory is used as the

CODEBASE if this attribute is not specified. The CODEBASE does not have to be on the

host from which the HTML document was read.

CODE CODE is a required attribute that gives the name of the file containing your

applet’s compiled .class file. This file is relative to the code base URL of the applet, which

is the directory that the HTML file was in or the directory indicated by CODEBASE if set.

ALT The ALT tag is an optional attribute used to specify a short text message that should

be displayed if the browser recognizes the APPLET tag but can’t currently run Java applets.

This is distinct from the alternate HTML you provide for browsers that don’t support

applets.

NAME NAME is an optional attribute used to specify a name for the applet instance.

Applets must be named in order for other applets on the same page to find them by name

and communicate with them. To obtain an applet by name, use getApplet(), which is

defined by the AppletContext interface.

WIDTH and HEIGHT WIDTH and HEIGHT are required attributes that give the size (in

pixels) of the applet display area.

ALIGN ALIGN is an optional attribute that specifies the alignment of the applet.

This attribute is treated the same as the HTML IMG tag with these possible values:

LEFT, RIGHT, TOP, BOTTOM, MIDDLE, BASELINE, TEXTTOP, ABSMIDDLE, and

ABSBOTTOM.

 Chapter 22 The Applet Class 701

P
a

rt
 I

I

VSPACE and HSPACE These attributes are optional. VSPACE specifies the space, in

pixels, above and below the applet. HSPACE specifies the space, in pixels, on each side of

the applet. They’re treated the same as the IMG tag’s VSPACE and HSPACE attributes.

PARAM NAME and VALUE The PARAM tag allows you to specify applet-specific

arguments. Applets access their attributes with the getParameter() method.

Other valid APPLET attributes include ARCHIVE, which lets you specify one or more

archive files, and OBJECT, which specifies a saved version of the applet. In general, an

APPLET tag should include only a CODE or an OBJECT attribute, but not both.

Passing Parameters to Applets
As just discussed, the APPLET tag allows you to pass parameters to your applet. To retrieve

a parameter, use the getParameter() method. It returns the value of the specified parameter

in the form of a String object. Thus, for numeric and boolean values, you will need to

convert their string representations into their internal formats. Here is an example that

demonstrates passing parameters:

// Use Parameters
import java.awt.*;
import java.applet.*;
/*
<applet code="ParamDemo" width=300 height=80>
<param name=fontName value=Courier>
<param name=fontSize value=14>
<param name=leading value=2>
<param name=accountEnabled value=true>
</applet>
*/

public class ParamDemo extends Applet {
 String fontName;
 int fontSize;
 float leading;
 boolean active;

 // Initialize the string to be displayed.
 public void start() {
 String param;

 fontName = getParameter("fontName");
 if(fontName == null)
 fontName = "Not Found";

 param = getParameter("fontSize");
 try {
 if(param != null)
 fontSize = Integer.parseInt(param);
 else
 fontSize = 0;

702 PART II The Java Library

 } catch(NumberFormatException e) {
 fontSize = -1;
 }

 param = getParameter("leading");
 try {
 if(param != null)
 leading = Float.valueOf(param).floatValue();
 else
 leading = 0;
 } catch(NumberFormatException e) {
 leading = -1;
 }

 param = getParameter("accountEnabled");
 if(param != null)
 active = Boolean.valueOf(param).booleanValue();
 }

 // Display parameters.
 public void paint(Graphics g) {
 g.drawString("Font name: " + fontName, 0, 10);
 g.drawString("Font size: " + fontSize, 0, 26);
 g.drawString("Leading: " + leading, 0, 42);
 g.drawString("Account Active: " + active, 0, 58);
 }
}

Sample output from this program is shown here:

As the program shows, you should test the return

values from getParameter(). If a parameter isn’t available,

getParameter() will return null. Also, conversions to

numeric types must be attempted in a try statement that

catches NumberFormatException. Uncaught exceptions should never occur within an

applet.

Improving the Banner Applet
It is possible to use a parameter to enhance the banner applet shown earlier. In the previous

version, the message being scrolled was hard-coded into the applet. However, passing the

message as a parameter allows the banner applet to display a different message each time it

is executed. This improved version is shown here. Notice that the APPLET tag at the top of

the file now specifies a parameter called message that is linked to a quoted string.

// A parameterized banner
import java.awt.*;
import java.applet.*;
/*
<applet code="ParamBanner" width=300 height=50>
<param name=message value="Java makes the Web move!">
</applet>
*/

 Chapter 22 The Applet Class 703

P
a

rt
 I

I

public class ParamBanner extends Applet implements Runnable {
 String msg;
 Thread t = null;
 int state;
 volatile boolean stopFlag;

 // Set colors and initialize thread.
 public void init() {
 setBackground(Color.cyan);
 setForeground(Color.red);
 }

 // Start thread
 public void start() {
 msg = getParameter("message");
 if(msg == null) msg = "Message not found.";
 msg = " " + msg;
 t = new Thread(this);
 stopFlag = false;
 t.start();
 }

 // Entry point for the thread that runs the banner.
 public void run() {

 // Redisplay banner
 for(; ;) {
 try {
 repaint();
 Thread.sleep(250);
 if(stopFlag)
 break;
 } catch(InterruptedException e) {}
 }
 }

 // Pause the banner.
 public void stop() {
 stopFlag = true;
 t = null;
 }

 // Display the banner.
 public void paint(Graphics g) {
 char ch;

 ch = msg.charAt(0);
 msg = msg.substring(1, msg.length());
 msg += ch;

 g.drawString(msg, 50, 30);
 }
}

704 PART II The Java Library

getDocumentBase() and getCodeBase()
Often, you will create applets that will need to explicitly load media and text. Java will allow

the applet to load data from the directory holding the HTML file that started the applet

(the document base) and the directory from which the applet’s class file was loaded (the

code base). These directories are returned as URL objects (described in Chapter 20) by

getDocumentBase() and getCodeBase(). They can be concatenated with a string that

names the file you want to load. To actually load another file, you will use the

showDocument() method defined by the AppletContext interface, discussed in

the next section.

The following applet illustrates these methods:

// Display code and document bases.
import java.awt.*;
import java.applet.*;
import java.net.*;
/*
<applet code="Bases" width=300 height=50>
</applet>
*/

public class Bases extends Applet {
 // Display code and document bases.
 public void paint(Graphics g) {
 String msg;

 URL url = getCodeBase(); // get code base
 msg = "Code base: " + url.toString();
 g.drawString(msg, 10, 20);

 url = getDocumentBase(); // get document base
 msg = "Document base: " + url.toString();
 g.drawString(msg, 10, 40);
 }
}

Sample output from this program is shown here:

AppletContext and showDocument()
One application of Java is to use active images and animation to provide a graphical means

of navigating the Web that is more interesting than simple text-based links. To allow your

applet to transfer control to another URL, you must use the showDocument() method

 Chapter 22 The Applet Class 705

P
a

rt
 I

I

defined by the AppletContext interface. AppletContext is an interface that lets you

get information from the applet’s execution environment. The methods defined by

AppletContext are shown in Table 22-2. The context of the currently executing applet

is obtained by a call to the getAppletContext() method defined by Applet.
Within an applet, once you have obtained the applet’s context, you can bring another

document into view by calling showDocument(). This method has no return value and

throws no exception if it fails, so use it carefully. There are two showDocument() methods.

The method showDocument(URL) displays the document at the specified URL. The

method showDocument(URL, String) displays the specified document at the specified

location within the browser window. Valid arguments for where are "_self" (show in current

frame), "_parent" (show in parent frame), "_top" (show in topmost frame), and "_blank"

(show in new browser window). You can also specify a name, which causes the document

to be shown in a new browser window by that name.

Table 22-2 The Methods Defined by the AppletContext Interface

Method Description

Applet getApplet(String appletName) Returns the applet specified by appletName if it is within

the current applet context. Otherwise, null is returned.

Enumeration<Applet> getApplets() Returns an enumeration that contains all of the

applets within the current applet context.

AudioClip getAudioClip(URL url) Returns an AudioClip object that encapsulates the

audio clip found at the location specified by url.

Image getImage(URL url) Returns an Image object that encapsulates the image

found at the location specified by url.

InputStream getStream(String key) Returns the stream linked to key. Keys are linked to

streams by using the setStream() method. A null
reference is returned if no stream is linked to key.

Iterator<String> getStreamKeys() Returns an iterator for the keys associated with the

invoking object. The keys are linked to streams. See

getStream() and setStream().

void setStream(String key,
 InputStream strm)

 throws IOException

Links the stream specified by strm to the key passed in

key. The key is deleted from the invoking object if strm

is null.

void showDocument(URL url) Brings the document at the URL specified by url into

view. This method may not be supported by applet

viewers.

void showDocument(URL url,
 String where)

Brings the document at the URL specified by url into

view. This method may not be supported by applet

viewers. The placement of the document is specified

by where as described in the text.

void showStatus(String str) Displays str in the status window.

706 PART II The Java Library

The following applet demonstrates AppletContext and showDocument(). Upon

execution, it obtains the current applet context and uses that context to transfer control

to a file called Test.html. This file must be in the same directory as the applet. Test.html
can contain any valid hypertext that you like.

/* Using an applet context, getCodeBase(),
 and showDocument() to display an HTML file.
*/

import java.awt.*;
import java.applet.*;
import java.net.*;
/*
<applet code="ACDemo" width=300 height=50>
</applet>
*/

public class ACDemo extends Applet {
 public void start() {
 AppletContext ac = getAppletContext();
 URL url = getCodeBase(); // get url of this applet

 try {
 ac.showDocument(new URL(url+"Test.html"));
 } catch(MalformedURLException e) {
 showStatus("URL not found");
 }
 }
}

The AudioClip Interface
The AudioClip interface defines these methods: play() (play a clip from the beginning),

stop() (stop playing the clip), and loop() (play the loop continuously). After you have

loaded an audio clip using getAudioClip(), you can use these methods to play it.

The AppletStub Interface
The AppletStub interface provides the means by which an applet and the browser (or

applet viewer) communicate. Your code will not typically implement this interface.

Outputting to the Console
Although output to an applet’s window must be accomplished through GUI-based methods,

such as drawString(), it is still possible to use console output in your applet—especially for

debugging purposes. In an applet, when you call a method such as System.out.println(),
the output is not sent to your applet’s window. Instead, it appears either in the console

session in which you launched the applet viewer or in the Java console that is available in

some browsers. Use of console output for purposes other than debugging is discouraged,

since it violates the design principles of the graphical interface most users will expect.

23
CHAPTER

 707

Event Handling

This chapter examines an important aspect of Java: the event. Event handling is fundamental

to Java programming because it is integral to the creation of applets and other types of

GUI-based programs. As explained in Chapter 22, applets are event-driven programs that

use a graphical user interface to interact with the user. Furthermore, any program that uses

a graphical user interface, such as a Java application written for Windows, is event driven.

Thus, you cannot write these types of programs without a solid command of event handling.

Events are supported by a number of packages, including java.util, java.awt, and java.awt.event.
Most events to which your program will respond are generated when the user interacts

with a GUI-based program. These are the types of events examined in this chapter. They are

passed to your program in a variety of ways, with the specific method dependent upon the

actual event. There are several types of events, including those generated by the mouse, the

keyboard, and various GUI controls, such as a push button, scroll bar, or check box.

This chapter begins with an overview of Java’s event handling mechanism. It then

examines the main event classes and interfaces used by the AWT and develops several

examples that demonstrate the fundamentals of event processing. This chapter also

explains how to use adapter classes, inner classes, and anonymous inner classes to

streamline event handling code. The examples provided in the remainder of this book

make frequent use of these techniques.

NOTE This chapter focuses on events related to GUI-based programs. However, events are also
occasionally used for purposes not directly related to GUI-based programs. In all cases, the same
basic event handling techniques apply.

Two Event Handling Mechanisms
Before beginning our discussion of event handling, an important point must be made: The

way in which events are handled changed significantly between the original version of Java

(1.0) and modern versions of Java, beginning with version 1.1. The 1.0 method of event

handling is still supported, but it is not recommended for new programs. Also, many of the

708 PART II The Java Library

methods that support the old 1.0 event model have been deprecated. The modern

approach is the way that events should be handled by all new programs and thus is the

method employed by programs in this book.

The Delegation Event Model
The modern approach to handling events is based on the delegation event model, which

defines standard and consistent mechanisms to generate and process events. Its concept is

quite simple: a source generates an event and sends it to one or more listeners. In this scheme,

the listener simply waits until it receives an event. Once an event is received, the listener

processes the event and then returns. The advantage of this design is that the application

logic that processes events is cleanly separated from the user interface logic that generates

those events. A user interface element is able to “delegate” the processing of an event to a

separate piece of code.

In the delegation event model, listeners must register with a source in order to receive

an event notification. This provides an important benefit: notifications are sent only to

listeners that want to receive them. This is a more efficient way to handle events than the

design used by the old Java 1.0 approach. Previously, an event was propagated up the

containment hierarchy until it was handled by a component. This required components to

receive events that they did not process, and it wasted valuable time. The delegation event

model eliminates this overhead.

NOTE Java also allows you to process events without using the delegation event model. This can be done
by extending an AWT component. This technique is discussed at the end of Chapter 25. However, the
delegation event model is the preferred design for the reasons just cited.

The following sections define events and describe the roles of sources and listeners.

Events

In the delegation model, an event is an object that describes a state change in a source. It

can be generated as a consequence of a person interacting with the elements in a graphical

user interface. Some of the activities that cause events to be generated are pressing a button,

entering a character via the keyboard, selecting an item in a list, and clicking the mouse.

Many other user operations could also be cited as examples.

Events may also occur that are not directly caused by interactions with a user interface.

For example, an event may be generated when a timer expires, a counter exceeds a value,

a software or hardware failure occurs, or an operation is completed. You are free to define

events that are appropriate for your application.

Event Sources

A source is an object that generates an event. This occurs when the internal state of that

object changes in some way. Sources may generate more than one type of event.

A source must register listeners in order for the listeners to receive notifications about

a specific type of event. Each type of event has its own registration method. Here is the

general form:

public void addTypeListener (TypeListener el)

 Chapter 23 Event Handling 709

P
a

rt
 I

I

Here, Type is the name of the event, and el is a reference to the event listener. For example,

the method that registers a keyboard event listener is called addKeyListener(). The method

that registers a mouse motion listener is called addMouseMotionListener(). When an event

occurs, all registered listeners are notified and receive a copy of the event object. This is

known as multicasting the event. In all cases, notifications are sent only to listeners that

register to receive them.

Some sources may allow only one listener to register. The general form of such a

method is this:

public void addTypeListener(TypeListener el)
 throws java.util.TooManyListenersException

Here, Type is the name of the event, and el is a reference to the event listener. When such an

event occurs, the registered listener is notified. This is known as unicasting the event.

A source must also provide a method that allows a listener to unregister an interest in a

specific type of event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For example,

to remove a keyboard listener, you would call removeKeyListener().
The methods that add or remove listeners are provided by the source that generates

events. For example, the Component class provides methods to add and remove keyboard

and mouse event listeners.

Event Listeners

A listener is an object that is notified when an event occurs. It has two major requirements.

First, it must have been registered with one or more sources to receive notifications about

specific types of events. Second, it must implement methods to receive and process these

notifications.

The methods that receive and process events are defined in a set of interfaces found in

java.awt.event. For example, the MouseMotionListener interface defines two methods to

receive notifications when the mouse is dragged or moved. Any object may receive and

process one or both of these events if it provides an implementation of this interface. Many

other listener interfaces are discussed later in this and other chapters.

Event Classes
The classes that represent events are at the core of Java’s event handling mechanism. Thus,

a discussion of event handling must begin with the event classes. It is important to understand,

however, that Java defines several types of events and that not all event classes can be

discussed in this chapter. The most widely used events are those defined by the AWT and

those defined by Swing. This chapter focuses on the AWT events. (Most of these events also

apply to Swing.) Several Swing-specific events are described in Chapter 30, when Swing is

covered.

At the root of the Java event class hierarchy is EventObject, which is in java.util. It is the

superclass for all events. Its one constructor is shown here:

EventObject(Object src)

Here, src is the object that generates this event.

710 PART II The Java Library

EventObject contains two methods: getSource() and toString(). The getSource()
method returns the source of the event. Its general form is shown here:

Object getSource()

As expected, toString() returns the string equivalent of the event.

The class AWTEvent, defined within the java.awt package, is a subclass of EventObject.
It is the superclass (either directly or indirectly) of all AWT-based events used by the

delegation event model. Its getID() method can be used to determine the type of the

event. The signature of this method is shown here:

int getID()

Additional details about AWTEvent are provided at the end of Chapter 25. At this point, it

is important to know only that all of the other classes discussed in this section are subclasses

of AWTEvent.
To summarize:

• EventObject is a superclass of all events.

• AWTEvent is a superclass of all AWT events that are handled by the delegation

event model.

The package java.awt.event defines many types of events that are generated by various

user interface elements. Table 23-1 shows several commonly used event classes and provides

a brief description of when they are generated. Commonly used constructors and methods

in each class are described in the following sections.

Table 23-1 Commonly Used Event Classes in java.awt.event

Event Class Description

ActionEvent Generated when a button is pressed, a list item is double-clicked, or a menu

item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized, or becomes visible.

ContainerEvent Generated when a component is added to or removed from a container.

FocusEvent Generated when a component gains or loses keyboard focus.

InputEvent Abstract superclass for all component input event classes.

ItemEvent Generated when a check box or list item is clicked; also occurs when

a choice selection is made or a checkable menu item is selected or

deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged, moved, clicked, pressed, or released;

also generated when the mouse enters or exits a component.

MouseWheelEvent Generated when the mouse wheel is moved.

TextEvent Generated when the value of a text area or text field is changed.

WindowEvent Generated when a window is activated, closed, deactivated, deiconified,

iconified, opened, or quit.

 Chapter 23 Event Handling 711

P
a

rt
 I

I

The ActionEvent Class

An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a

menu item is selected. The ActionEvent class defines four integer constants that can be

used to identify any modifiers associated with an action event: ALT_MASK, CTRL_MASK,

META_MASK, and SHIFT_MASK. In addition, there is an integer constant,

ACTION_PERFORMED, which can be used to identify action events.

ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)
ActionEvent(Object src, int type, String cmd, long when, int modifiers)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type, and its command string is cmd. The argument modifiers indicates which

modifier keys (alt, ctrl, meta, and/or shift) were pressed when the event was generated.

The when parameter specifies when the event occurred.

You can obtain the command name for the invoking ActionEvent object by using the

getActionCommand() method, shown here:

String getActionCommand()

For example, when a button is pressed, an action event is generated that has a command

name equal to the label on that button.

The getModifiers() method returns a value that indicates which modifier keys

(alt, ctrl, meta, and/or shift) were pressed when the event was generated. Its form

is shown here:

int getModifiers()

The method getWhen() returns the time at which the event took place. This is called the

event’s timestamp. The getWhen() method is shown here:

long getWhen()

The AdjustmentEvent Class

An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment events.

The AdjustmentEvent class defines integer constants that can be used to identify them. The

constants and their meanings are shown here:

BLOCK_DECREMENT The user clicked inside the scroll bar to decrease its value.

BLOCK_INCREMENT The user clicked inside the scroll bar to increase its value.

TRACK The slider was dragged.

UNIT_DECREMENT The button at the end of the scroll bar was clicked to decrease

its value.

UNIT_INCREMENT The button at the end of the scroll bar was clicked to increase

its value.

In addition, there is an integer constant, ADJUSTMENT_VALUE_CHANGED, that

indicates that a change has occurred.

712 PART II The Java Library

Here is one AdjustmentEvent constructor:

AdjustmentEvent(Adjustable src, int id, int type, int data)

Here, src is a reference to the object that generated this event. The id specifies the event.

The type of the adjustment is specified by type, and its associated data is data.
The getAdjustable() method returns the object that generated the event. Its form is

shown here:

Adjustable getAdjustable()

The type of the adjustment event may be obtained by the getAdjustmentType() method. It

returns one of the constants defined by AdjustmentEvent. The general form is shown here:

int getAdjustmentType()

The amount of the adjustment can be obtained from the getValue() method, shown here:

int getValue()

For example, when a scroll bar is manipulated, this method returns the value represented

by that change.

The ComponentEvent Class

A ComponentEvent is generated when the size, position, or visibility of a component is

changed. There are four types of component events. The ComponentEvent class defines

integer constants that can be used to identify them. The constants and their meanings are

shown here:

COMPONENT_HIDDEN The component was hidden.

COMPONENT_MOVED The component was moved.

COMPONENT_RESIZED The component was resized.

COMPONENT_SHOWN The component became visible.

ComponentEvent has this constructor:

ComponentEvent(Component src, int type)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type.
ComponentEvent is the superclass either directly or indirectly of ContainerEvent,

FocusEvent, KeyEvent, MouseEvent, and WindowEvent, among others.

The getComponent() method returns the component that generated the event. It is

shown here:

Component getComponent()

The ContainerEvent Class

A ContainerEvent is generated when a component is added to or removed from a

container. There are two types of container events. The ContainerEvent class defines

int constants that can be used to identify them: COMPONENT_ADDED and

 Chapter 23 Event Handling 713

P
a

rt
 I

I

COMPONENT_REMOVED. They indicate that a component has been added to or

removed from the container.

ContainerEvent is a subclass of ComponentEvent and has this constructor:

ContainerEvent(Component src, int type, Component comp)

Here, src is a reference to the container that generated this event. The type of the event

is specified by type, and the component that has been added to or removed from the

container is comp.
You can obtain a reference to the container that generated this event by using the

getContainer () method, shown here:

Container getContainer()

The getChild() method returns a reference to the component that was added to or

removed from the container. Its general form is shown here:

Component getChild()

The FocusEvent Class

A FocusEvent is generated when a component gains or loses input focus. These events are

identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

FocusEvent is a subclass of ComponentEvent and has these constructors:

FocusEvent(Component src, int type)
FocusEvent(Component src, int type, boolean temporaryFlag)

FocusEvent(Component src, int type, boolean temporaryFlag, Component other)

Here, src is a reference to the component that generated this event. The type of the event

is specified by type. The argument temporaryFlag is set to true if the focus event is temporary.

Otherwise, it is set to false. (A temporary focus event occurs as a result of another user

interface operation. For example, assume that the focus is in a text field. If the user moves

the mouse to adjust a scroll bar, the focus is temporarily lost.)

The other component involved in the focus change, called the opposite component, is
passed in other. Therefore, if a FOCUS_GAINED event occurred, other will refer to the

component that lost focus. Conversely, if a FOCUS_LOST event occurred, other will refer

to the component that gains focus.

You can determine the other component by calling getOppositeComponent(), shown here:

Component getOppositeComponent()

The opposite component is returned.

The isTemporary() method indicates if this focus change is temporary. Its form is

shown here:

boolean isTemporary()

The method returns true if the change is temporary. Otherwise, it returns false.

The InputEvent Class

The abstract class InputEvent is a subclass of ComponentEvent and is the superclass for

component input events. Its subclasses are KeyEvent and MouseEvent.

714 PART II The Java Library

InputEvent defines several integer constants that represent any modifiers, such as the

control key being pressed, that might be associated with the event. Originally, the

InputEvent class defined the following eight values to represent the modifiers:

ALT_MASK BUTTON2_MASK META_MASK

ALT_GRAPH_MASK BUTTON3_MASK SHIFT_MASK

BUTTON1_MASK CTRL_MASK

However, because of possible conflicts between the modifiers used by keyboard events and

mouse events, and other issues, the following extended modifier values were added:

ALT_DOWN_MASK BUTTON2_DOWN_MASK META_DOWN_MASK

ALT_GRAPH_DOWN_MASK BUTTON3_DOWN_MASK SHIFT_DOWN_MASK

BUTTON1_DOWN_MASK CTRL_DOWN_MASK

When writing new code, it is recommended that you use the new, extended modifiers

rather than the original modifiers.

To test if a modifier was pressed at the time an event is generated, use the isAltDown(),
isAltGraphDown(), isControlDown(), isMetaDown(), and isShiftDown() methods. The

forms of these methods are shown here:

boolean isAltDown()

boolean isAltGraphDown()

boolean isControlDown()

boolean isMetaDown()

boolean isShiftDown()

You can obtain a value that contains all of the original modifier flags by calling the

getModifiers() method. It is shown here:

int getModifiers()

You can obtain the extended modifiers by calling getModifiersEx(), which is shown here:

int getModifiersEx()

The ItemEvent Class

An ItemEvent is generated when a check box or a list item is clicked or when a checkable

menu item is selected or deselected. (Check boxes and list boxes are described later in this

book.) There are two types of item events, which are identified by the following integer

constants:

DESELECTED The user deselected an item.

SELECTED The user selected an item.

 Chapter 23 Event Handling 715

P
a

rt
 I

I

In addition, ItemEvent defines one integer constant, ITEM_STATE_CHANGED, that

signifies a change of state.

ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event. For example, this

might be a list or choice element. The type of the event is specified by type. The specific

item that generated the item event is passed in entry. The current state of that item is

in state.
The getItem() method can be used to obtain a reference to the item that generated an

event. Its signature is shown here:

Object getItem()

The getItemSelectable() method can be used to obtain a reference to the ItemSelectable

object that generated an event. Its general form is shown here:

ItemSelectable getItemSelectable()

Lists and choices are examples of user interface elements that implement the

ItemSelectable interface.

The getStateChange() method returns the state change (that is, SELECTED or

DESELECTED) for the event. It is shown here:

int getStateChange()

The KeyEvent Class
A KeyEvent is generated when keyboard input occurs. There are three types of key events,

which are identified by these integer constants: KEY_PRESSED, KEY_RELEASED, and

KEY_TYPED. The first two events are generated when any key is pressed or released. The

last event occurs only when a character is generated. Remember, not all keypresses result in

characters. For example, pressing shift does not generate a character.

There are many other integer constants that are defined by KeyEvent. For example,

VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents of the numbers

and letters. Here are some others:

VK_ALT VK_DOWN VK_LEFT VK_RIGHT

VK_CANCEL VK_ENTER VK_PAGE_DOWN VK_SHIFT

VK_CONTROL VK_ESCAPE VK_PAGE_UP VK_UP

The VK constants specify virtual key codes and are independent of any modifiers, such as

control, shift, or alt.

KeyEvent is a subclass of InputEvent. Here is one of its constructors:

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

716 PART II The Java Library

Here, src is a reference to the component that generated the event. The type of the event is

specified by type. The system time at which the key was pressed is passed in when. The

modifiers argument indicates which modifiers were pressed when this key event occurred.

The virtual key code, such as VK_UP, VK_A, and so forth, is passed in code. The character

equivalent (if one exists) is passed in ch. If no valid character exists, then ch contains

CHAR_UNDEFINED. For KEY_TYPED events, code will contain VK_UNDEFINED.

The KeyEvent class defines several methods, but probably the most commonly used

ones are getKeyChar(), which returns the character that was entered, and getKeyCode(),
which returns the key code. Their general forms are shown here:

char getKeyChar()

int getKeyCode()

If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED. When a

KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

The MouseEvent Class

There are eight types of mouse events. The MouseEvent class defines the following integer

constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved.

MouseEvent is a subclass of InputEvent. Here is one of its constructors:

MouseEvent(Component src, int type, long when, int modifiers,
 int x, int y, int clicks, boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of the event is

specified by type. The system time at which the mouse event occurred is passed in when. The

modifiers argument indicates which modifiers were pressed when a mouse event occurred.

The coordinates of the mouse are passed in x and y. The click count is passed in clicks. The

triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform.

Two commonly used methods in this class are getX() and getY(). These return the X

and Y coordinates of the mouse within the component when the event occurred. Their

forms are shown here:

int getX()

int getY()

Alternatively, you can use the getPoint() method to obtain the coordinates of the

mouse. It is shown here:

Point getPoint()

 Chapter 23 Event Handling 717

P
a

rt
 I

I

It returns a Point object that contains the X,Y coordinates in its integer members: x and y.

The translatePoint() method changes the location of the event. Its form is shown here:

void translatePoint(int x, int y)

Here, the arguments x and y are added to the coordinates of the event.

The getClickCount() method obtains the number of mouse clicks for this event. Its

signature is shown here:

int getClickCount()

The isPopupTrigger() method tests if this event causes a pop-up menu to appear on

this platform. Its form is shown here:

boolean isPopupTrigger()

Also available is the getButton() method, shown here:

int getButton()

It returns a value that represents the button that caused the event. The return value will be

one of these constants defined by MouseEvent:

NOBUTTON BUTTON1 BUTTON2 BUTTON3

The NOBUTTON value indicates that no button was pressed or released.

Also available are three methods that obtain the coordinates of the mouse relative to

the screen rather than the component. They are shown here:

Point getLocationOnScreen()

int getXOnScreen()

int getYOnScreen()

The getLocationOnScreen() method returns a Point object that contains both the X

and Y coordinate. The other two methods return the indicated coordinate.

The MouseWheelEvent Class

The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass of

MouseEvent. Not all mice have wheels. If a mouse has a wheel, it is located between the left

and right buttons. Mouse wheels are used for scrolling. MouseWheelEvent defines these

two integer constants:

WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.

WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred.

Here is one of the constructors defined by MouseWheelEvent:

MouseWheelEvent(Component src, int type, long when, int modifiers,
 int x, int y, int clicks, boolean triggersPopup,

 int scrollHow, int amount, int count)

718 PART II The Java Library

Here, src is a reference to the object that generated the event. The type of the event is

specified by type. The system time at which the mouse event occurred is passed in when.
The modifiers argument indicates which modifiers were pressed when the event occurred. The

coordinates of the mouse are passed in x and y. The number of clicks is passed in clicks. The

triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform.

The scrollHow value must be either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_ SCROLL.

The number of units to scroll is passed in amount. The count parameter indicates the

number of rotational units that the wheel moved.

MouseWheelEvent defines methods that give you access to the wheel event. To obtain

the number of rotational units, call getWheelRotation(), shown here:

int getWheelRotation()

It returns the number of rotational units. If the value is positive, the wheel moved

counterclockwise. If the value is negative, the wheel moved clockwise. JDK 7 adds a method

called getPreciseWheelRotation(), which supports high-resolution wheels. It works like

getWheelRotation(), but returns a double.

To obtain the type of scroll, call getScrollType(), shown next:

int getScrollType()

It returns either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL.

If the scroll type is WHEEL_UNIT_SCROLL, you can obtain the number of units to

scroll by calling getScrollAmount(). It is shown here:

int getScrollAmount()

The TextEvent Class

Instances of this class describe text events. These are generated by text fields and text areas

when characters are entered by a user or program. TextEvent defines the integer constant

TEXT_VALUE_CHANGED.

The one constructor for this class is shown here:

TextEvent(Object src, int type)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type.
The TextEvent object does not include the characters currently in the text component

that generated the event. Instead, your program must use other methods associated with

the text component to retrieve that information. This operation differs from other event

objects discussed in this section. For this reason, no methods are discussed here for the

TextEvent class. Think of a text event notification as a signal to a listener that it should

retrieve information from a specific text component.

The WindowEvent Class

There are ten types of window events. The WindowEvent class defines integer constants that

can be used to identify them. The constants and their meanings are shown here:

 Chapter 23 Event Handling 719

P
a

rt
 I

I

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The user requested that the window be closed.

WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.

WINDOW_ICONIFIED The window was iconified.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

WINDOW_STATE_CHANGED The state of the window changed.

WindowEvent is a subclass of ComponentEvent. It defines several constructors. The first is

WindowEvent(Window src, int type)

Here, src is a reference to the object that generated this event. The type of the event is type.
The next three constructors offer more detailed control:

WindowEvent(Window src, int type, Window other)
WindowEvent(Window src, int type, int fromState, int toState)
WindowEvent(Window src, int type, Window other, int fromState, int toState)

Here, other specifies the opposite window when a focus or activation event occurs. The

fromState specifies the prior state of the window, and toState specifies the new state that the

window will have when a window state change occurs.

A commonly used method in this class is getWindow(). It returns the Window object

that generated the event. Its general form is shown here:

Window getWindow()

WindowEvent also defines methods that return the opposite window (when a focus or

activation event has occurred), the previous window state, and the current window state.

These methods are shown here:

Window getOppositeWindow()

int getOldState()

int getNewState()

Sources of Events
Table 23-2 lists some of the user interface components that can generate the events described

in the previous section. In addition to these graphical user interface elements, any class

derived from Component, such as Applet, can generate events. For example, you can receive

key and mouse events from an applet. (You may also build your own components that

generate events.) In this chapter, we will be handling only mouse and keyboard events, but

the following two chapters will be handling events from the sources shown in Table 23-2.

720 PART II The Java Library

Event Listener Interfaces
As explained, the delegation event model has two parts: sources and listeners. Listeners

are created by implementing one or more of the interfaces defined by the java.awt.event
package. When an event occurs, the event source invokes the appropriate method defined

by the listener and provides an event object as its argument. Table 23-3 lists commonly used

Table 23-2 Event Source Examples

Event Source Description

Button Generates action events when the button is pressed.

Check box Generates item events when the check box is selected or deselected.

Choice Generates item events when the choice is changed.

List Generates action events when an item is double-clicked; generates item

events when an item is selected or deselected.

Menu item Generates action events when a menu item is selected; generates item

events when a checkable menu item is selected or deselected.

Scroll bar Generates adjustment events when the scroll bar is manipulated.

Text components Generates text events when the user enters a character.

Window Generates window events when a window is activated, closed, deactivated,

deiconified, iconified, opened, or quit.

Table 23-3 Commonly Used Event Listener Interfaces

Interface Description

ActionListener Defines one method to receive action events.

AdjustmentListener Defines one method to receive adjustment events.

ComponentListener Defines four methods to recognize when a component is hidden,

moved, resized, or shown.

ContainerListener Defines two methods to recognize when a component is added to or

removed from a container.

FocusListener Defines two methods to recognize when a component gains or loses

keyboard focus.

ItemListener Defines one method to recognize when the state of an item changes.

KeyListener Defines three methods to recognize when a key is pressed, released, or

typed.

MouseListener Defines five methods to recognize when the mouse is clicked, enters a

component, exits a component, is pressed, or is released.

MouseMotionListener Defines two methods to recognize when the mouse is dragged or moved.

MouseWheelListener Defines one method to recognize when the mouse wheel is moved.

TextListener Defines one method to recognize when a text value changes.

WindowFocusListener Defines two methods to recognize when a window gains or loses input

focus.

WindowListener Defines seven methods to recognize when a window is activated, closed,

deactivated, deiconified, iconified, opened, or quit.

 Chapter 23 Event Handling 721

P
a

rt
 I

I

listener interfaces and provides a brief description of the methods that they define. The

following sections examine the specific methods that are contained in each interface.

The ActionListener Interface

This interface defines the actionPerformed() method that is invoked when an action event

occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

The AdjustmentListener Interface

This interface defines the adjustmentValueChanged() method that is invoked when an

adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

The ComponentListener Interface

This interface defines four methods that are invoked when a component is resized, moved,

shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)
void componentMoved(ComponentEvent ce)
void componentShown(ComponentEvent ce)
void componentHidden(ComponentEvent ce)

The ContainerListener Interface

This interface contains two methods. When a component is added to a container,

componentAdded() is invoked. When a component is removed from a container,

componentRemoved() is invoked. Their general forms are shown here:

void componentAdded(ContainerEvent ce)
void componentRemoved(ContainerEvent ce)

The FocusListener Interface

This interface defines two methods. When a component obtains keyboard focus,

focusGained() is invoked. When a component loses keyboard focus, focusLost()
is called. Their general forms are shown here:

void focusGained(FocusEvent fe)
void focusLost(FocusEvent fe)

The ItemListener Interface

This interface defines the itemStateChanged() method that is invoked when the state of an

item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

722 PART II The Java Library

The KeyListener Interface

This interface defines three methods. The keyPressed() and keyReleased() methods are

invoked when a key is pressed and released, respectively. The keyTyped() method is invoked

when a character has been entered.

For example, if a user presses and releases the a key, three events are generated in

sequence: key pressed, typed, and released. If a user presses and releases the home key,

two key events are generated in sequence: key pressed and released.

The general forms of these methods are shown here:

void keyPressed(KeyEvent ke)
void keyReleased(KeyEvent ke)
void keyTyped(KeyEvent ke)

The MouseListener Interface

This interface defines five methods. If the mouse is pressed and released at the same point,

mouseClicked() is invoked. When the mouse enters a component, the mouseEntered()
method is called. When it leaves, mouseExited() is called. The mousePressed() and

mouseReleased() methods are invoked when the mouse is pressed and released,

respectively.

The general forms of these methods are shown here:

void mouseClicked(MouseEvent me)
void mouseEntered(MouseEvent me)
void mouseExited(MouseEvent me)
void mousePressed(MouseEvent me)
void mouseReleased(MouseEvent me)

The MouseMotionListener Interface

This interface defines two methods. The mouseDragged() method is called multiple times

as the mouse is dragged. The mouseMoved() method is called multiple times as the mouse

is moved. Their general forms are shown here:

void mouseDragged(MouseEvent me)
void mouseMoved(MouseEvent me)

The MouseWheelListener Interface

This interface defines the mouseWheelMoved() method that is invoked when the mouse

wheel is moved. Its general form is shown here:

void mouseWheelMoved(MouseWheelEvent mwe)

The TextListener Interface

This interface defines the textChanged() method that is invoked when a change occurs in

a text area or text field. Its general form is shown here:

void textChanged(TextEvent te)

 Chapter 23 Event Handling 723

P
a

rt
 I

I

The WindowFocusListener Interface

This interface defines two methods: windowGainedFocus() and windowLostFocus(). These

are called when a window gains or loses input focus. Their general forms are shown here:

void windowGainedFocus(WindowEvent we)
void windowLostFocus(WindowEvent we)

The WindowListener Interface

This interface defines seven methods. The windowActivated() and windowDeactivated()
methods are invoked when a window is activated or deactivated, respectively. If a window

is iconified, the windowIconified() method is called. When a window is deiconified,

the windowDeiconified() method is called. When a window is opened or closed, the

windowOpened() or windowClosed() methods are called, respectively. The windowClosing()
method is called when a window is being closed. The general forms of these methods are

void windowActivated(WindowEvent we)
void windowClosed(WindowEvent we)
void windowClosing(WindowEvent we)
void windowDeactivated(WindowEvent we)
void windowDeiconified(WindowEvent we)
void windowIconified(WindowEvent we)
void windowOpened(WindowEvent we)

Using the Delegation Event Model
Now that you have learned the theory behind the delegation event model and have had

an overview of its various components, it is time to see it in practice. Using the delegation

event model is actually quite easy. Just follow these two steps:

 1. Implement the appropriate interface in the listener so that it will receive the type

of event desired.

 2. Implement code to register and unregister (if necessary) the listener as a recipient

for the event notifications.

Remember that a source may generate several types of events. Each event must be

registered separately. Also, an object may register to receive several types of events, but

it must implement all of the interfaces that are required to receive these events.

To see how the delegation model works in practice, we will look at examples that

handle two commonly used event generators: the mouse and keyboard.

Handling Mouse Events

To handle mouse events, you must implement the MouseListener and the

MouseMotionListener interfaces. (You may also want to implement MouseWheelListener,

but we won’t be doing so, here.) The following applet demonstrates the process. It displays

724 PART II The Java Library

the current coordinates of the mouse in the applet’s status window. Each time a button is

pressed, the word "Down" is displayed at the location of the mouse pointer. Each time the

button is released, the word "Up" is shown. If a button is clicked, the message "Mouse

clicked" is displayed in the upper-left corner of the applet display area.

As the mouse enters or exits the applet window, a message is displayed in the upper-left

corner of the applet display area. When dragging the mouse, a * is shown, which tracks with

the mouse pointer as it is dragged. Notice that the two variables, mouseX and mouseY, store

the location of the mouse when a mouse pressed, released, or dragged event occurs. These

coordinates are then used by paint() to display output at the point of these occurrences.

// Demonstrate the mouse event handlers.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="MouseEvents" width=300 height=100>
 </applet>
*/

public class MouseEvents extends Applet
 implements MouseListener, MouseMotionListener {

 String msg = "";
 int mouseX = 0, mouseY = 0; // coordinates of mouse

 public void init() {
 addMouseListener(this);
 addMouseMotionListener(this);
 }

 // Handle mouse clicked.
 public void mouseClicked(MouseEvent me) {
 // save coordinates
 mouseX = 0;
 mouseY = 10;
 msg = "Mouse clicked.";
 repaint();
 }

 // Handle mouse entered.
 public void mouseEntered(MouseEvent me) {
 // save coordinates
 mouseX = 0;
 mouseY = 10;
 msg = "Mouse entered.";
 repaint();
 }

 Chapter 23 Event Handling 725

P
a

rt
 I

I

 // Handle mouse exited.
 public void mouseExited(MouseEvent me) {
 // save coordinates
 mouseX = 0;
 mouseY = 10;
 msg = "Mouse exited.";
 repaint();
 }

 // Handle button pressed.
 public void mousePressed(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Down";
 repaint();
 }

 // Handle button released.
 public void mouseReleased(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Up";
 repaint();
 }

 // Handle mouse dragged.
 public void mouseDragged(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "*";
 showStatus("Dragging mouse at " + mouseX + ", " + mouseY);
 repaint();
 }

 // Handle mouse moved.
 public void mouseMoved(MouseEvent me) {
 // show status
 showStatus("Moving mouse at " + me.getX() + ", " + me.getY());
 }

 // Display msg in applet window at current X,Y location.
 public void paint(Graphics g) {
 g.drawString(msg, mouseX, mouseY);
 }
}

726 PART II The Java Library

Sample output from this program is shown here:

Let's look closely at this example. The MouseEvents class extends Applet and implements

both the MouseListener and MouseMotionListener interfaces. These two interfaces contain

methods that receive and process the various types of mouse events. Notice that the applet

is both the source and the listener for these events. This works because Component, which

supplies the addMouseListener() and addMouseMotionListener() methods, is a superclass

of Applet. Being both the source and the listener for events is a common situation for applets.

Inside init(), the applet registers itself as a listener for mouse events. This is done by

using addMouseListener() and addMouseMotionListener(), which, as mentioned, are

members of Component. They are shown here:

void addMouseListener(MouseListener ml)
void addMouseMotionListener(MouseMotionListener mml)

Here, ml is a reference to the object receiving mouse events, and mml is a reference to the

object receiving mouse motion events. In this program, the same object is used for both.

The applet then implements all of the methods defined by the MouseListener and

MouseMotionListener interfaces. These are the event handlers for the various mouse

events. Each method handles its event and then returns.

Handling Keyboard Events

To handle keyboard events, you use the same general architecture as that shown in the

mouse event example in the preceding section. The difference, of course, is that you will

be implementing the KeyListener interface.

Before looking at an example, it is useful to review how key events are generated. When a

key is pressed, a KEY_PRESSED event is generated. This results in a call to the keyPressed()
event handler. When the key is released, a KEY_RELEASED event is generated and the

keyReleased() handler is executed. If a character is generated by the keystroke, then a

KEY_TYPED event is sent and the keyTyped() handler is invoked. Thus, each time the user

presses a key, at least two and often three events are generated. If all you care about are

actual characters, then you can ignore the information passed by the key press and release

events. However, if your program needs to handle special keys, such as the arrow or function

keys, then it must watch for them through the keyPressed() handler.

The following program demonstrates keyboard input. It echoes keystrokes to the applet

window and shows the pressed/released status of each key in the status window.

 Chapter 23 Event Handling 727

P
a

rt
 I

I

// Demonstrate the key event handlers.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="SimpleKey" width=300 height=100>
 </applet>
*/

public class SimpleKey extends Applet
 implements KeyListener {

 String msg = "";
 int X = 10, Y = 20; // output coordinates

 public void init() {
 addKeyListener(this);
 }

 public void keyPressed(KeyEvent ke) {
 showStatus("Key Down");
 }

 public void keyReleased(KeyEvent ke) {
 showStatus("Key Up");
 }

 public void keyTyped(KeyEvent ke) {
 msg += ke.getKeyChar();
 repaint();
 }

 // Display keystrokes.
 public void paint(Graphics g) {
 g.drawString(msg, X, Y);
 }
}

Sample output is shown here:

If you want to handle the special keys, such as the arrow or function keys, you need to

respond to them within the keyPressed() handler. They are not available through keyTyped().

728 PART II The Java Library

To identify the keys, you use their virtual key codes. For example, the next applet outputs the

name of a few of the special keys:

// Demonstrate some virtual key codes.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="KeyEvents" width=300 height=100>
 </applet>
*/

public class KeyEvents extends Applet
 implements KeyListener {

 String msg = "";
 int X = 10, Y = 20; // output coordinates

 public void init() {
 addKeyListener(this);
 }

 public void keyPressed(KeyEvent ke) {
 showStatus("Key Down");

 int key = ke.getKeyCode();
 switch(key) {
 case KeyEvent.VK_F1:
 msg += "<F1>";
 break;
 case KeyEvent.VK_F2:
 msg += "<F2>";
 break;
 case KeyEvent.VK_F3:
 msg += "<F3>";
 break;
 case KeyEvent.VK_PAGE_DOWN:
 msg += "<PgDn>";
 break;
 case KeyEvent.VK_PAGE_UP:
 msg += "<PgUp>";
 break;
 case KeyEvent.VK_LEFT:
 msg += "<Left Arrow>";
 break;
 case KeyEvent.VK_RIGHT:
 msg += "<Right Arrow>";
 break;
 }

 repaint();
 }

 Chapter 23 Event Handling 729

P
a

rt
 I

I

 public void keyReleased(KeyEvent ke) {
 showStatus("Key Up");
 }

 public void keyTyped(KeyEvent ke) {
 msg += ke.getKeyChar();
 repaint();
 }

 // Display keystrokes.
 public void paint(Graphics g) {
 g.drawString(msg, X, Y);
 }
}

Sample output is shown here:

The procedures shown in the preceding keyboard and mouse event examples can be

generalized to any type of event handling, including those events generated by controls. In

later chapters, you will see many examples that handle other types of events, but they will

all follow the same basic structure as the programs just described.

Adapter Classes
Java provides a special feature, called an adapter class, that can simplify the creation of event

handlers in certain situations. An adapter class provides an empty implementation of all

methods in an event listener interface. Adapter classes are useful when you want to receive

and process only some of the events that are handled by a particular event listener interface.

You can define a new class to act as an event listener by extending one of the adapter classes

and implementing only those events in which you are interested.

For example, the MouseMotionAdapter class has two methods, mouseDragged() and

mouseMoved(), which are the methods defined by the MouseMotionListener interface. If you

were interested in only mouse drag events, then you could simply extend MouseMotionAdapter

and override mouseDragged(). The empty implementation of mouseMoved() would handle

the mouse motion events for you.

Table 23-4 lists the commonly used adapter classes in java.awt.event and notes the

interface that each implements.

730 PART II The Java Library

The following example demonstrates an adapter. It displays a message in the status bar

of an applet viewer or browser when the mouse is clicked or dragged. However, all other

mouse events are silently ignored. The program has three classes. AdapterDemo extends

Applet. Its init() method creates an instance of MyMouseAdapter and registers that object to

receive notifications of mouse events. It also creates an instance of MyMouseMotionAdapter

and registers that object to receive notifications of mouse motion events. Both of the

constructors take a reference to the applet as an argument.

MyMouseAdapter extends MouseAdapter and overrides the mouseClicked() method.

The other mouse events are silently ignored by code inherited from the MouseAdapter

class. MyMouseMotionAdapter extends MouseMotionAdapter and overrides the

mouseDragged() method. The other mouse motion event is silently ignored by code

inherited from the MouseMotionAdapter class.

Note that both of the event listener classes save a reference to the applet. This

information is provided as an argument to their constructors and is used later to invoke

the showStatus() method.

// Demonstrate an adapter.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="AdapterDemo" width=300 height=100>
 </applet>
*/

public class AdapterDemo extends Applet {
 public void init() {
 addMouseListener(new MyMouseAdapter(this));
 addMouseMotionListener(new MyMouseMotionAdapter(this));
 }
}

class MyMouseAdapter extends MouseAdapter {

 AdapterDemo adapterDemo;
 public MyMouseAdapter(AdapterDemo adapterDemo) {
 this.adapterDemo = adapterDemo;
 }

Table 23-4 Commonly Used Listener Interfaces Implemented by Adapter Classes

Adapter Class Listener Interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener

 Chapter 23 Event Handling 731

P
a

rt
 I

I

 // Handle mouse clicked.
 public void mouseClicked(MouseEvent me) {
 adapterDemo.showStatus("Mouse clicked");
 }
}

class MyMouseMotionAdapter extends MouseMotionAdapter {
 AdapterDemo adapterDemo;
 public MyMouseMotionAdapter(AdapterDemo adapterDemo) {
 this.adapterDemo = adapterDemo;
 }

 // Handle mouse dragged.
 public void mouseDragged(MouseEvent me) {
 adapterDemo.showStatus("Mouse dragged");
 }
}

As you can see by looking at the program, not having to implement all of the methods

defined by the MouseMotionListener and MouseListener interfaces saves you a considerable

amount of effort and prevents your code from becoming cluttered with empty methods. As

an exercise, you might want to try rewriting one of the keyboard input examples shown

earlier so that it uses a KeyAdapter.

Inner Classes
In Chapter 7, the basics of inner classes were explained. Here you will see why they are

important. Recall that an inner class is a class defined within another class, or even within an

expression. This section illustrates how inner classes can be used to simplify the code when

using event adapter classes.

To understand the benefit provided by inner classes, consider the applet shown in the

following listing. It does not use an inner class. Its goal is to display the string "Mouse Pressed"

in the status bar of the applet viewer or browser when the mouse is pressed. There are two

top-level classes in this program. MousePressedDemo extends Applet, and MyMouseAdapter

extends MouseAdapter. The init() method of MousePressedDemo instantiates

MyMouseAdapter and provides this object as an argument to the addMouseListener()
method.

Notice that a reference to the applet is supplied as an argument to the MyMouseAdapter

constructor. This reference is stored in an instance variable for later use by the mousePressed()
method. When the mouse is pressed, it invokes the showStatus() method of the applet

through the stored applet reference. In other words, showStatus() is invoked relative to

the applet reference stored by MyMouseAdapter.

// This applet does NOT use an inner class.
import java.applet.*;
import java.awt.event.*;
/*
 <applet code="MousePressedDemo" width=200 height=100>
 </applet>
*/

732 PART II The Java Library

public class MousePressedDemo extends Applet {
 public void init() {
 addMouseListener(new MyMouseAdapter(this));
 }
}

class MyMouseAdapter extends MouseAdapter {
 MousePressedDemo mousePressedDemo;
 public MyMouseAdapter(MousePressedDemo mousePressedDemo) {
 this.mousePressedDemo = mousePressedDemo;
 }
 public void mousePressed(MouseEvent me) {
 mousePressedDemo.showStatus("Mouse Pressed.");
 }
}

The following listing shows how the preceding program can be improved by using an

inner class. Here, InnerClassDemo is a top-level class that extends Applet. MyMouseAdapter

is an inner class that extends MouseAdapter. Because MyMouseAdapter is defined within

the scope of InnerClassDemo, it has access to all of the variables and methods within the

scope of that class. Therefore, the mousePressed() method can call the showStatus()
method directly. It no longer needs to do this via a stored reference to the applet. Thus, it

is no longer necessary to pass MyMouseAdapter() a reference to the invoking object.

// Inner class demo.
import java.applet.*;
import java.awt.event.*;
/*
 <applet code="InnerClassDemo" width=200 height=100>
 </applet>
*/

public class InnerClassDemo extends Applet {
 public void init() {
 addMouseListener(new MyMouseAdapter());
 }
 class MyMouseAdapter extends MouseAdapter {
 public void mousePressed(MouseEvent me) {
 showStatus("Mouse Pressed");
 }
 }
}

Anonymous Inner Classes

An anonymous inner class is one that is not assigned a name. This section illustrates how

an anonymous inner class can facilitate the writing of event handlers. Consider the applet

shown in the following listing. As before, its goal is to display the string "Mouse Pressed" in

the status bar of the applet viewer or browser when the mouse is pressed.

 Chapter 23 Event Handling 733

P
a

rt
 I

I

// Anonymous inner class demo.
import java.applet.*;
import java.awt.event.*;
/*
 <applet code="AnonymousInnerClassDemo" width=200 height=100>
 </applet>
*/

public class AnonymousInnerClassDemo extends Applet {
 public void init() {
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent me) {
 showStatus("Mouse Pressed");
 }
 });
 }
}

There is one top-level class in this program: AnonymousInnerClassDemo. The init()
method calls the addMouseListener() method. Its argument is an expression that defines

and instantiates an anonymous inner class. Let’s analyze this expression carefully.

The syntax new MouseAdapter(){...} indicates to the compiler that the code between

the braces defines an anonymous inner class. Furthermore, that class extends MouseAdapter.

This new class is not named, but it is automatically instantiated when this expression is

executed.

Because this anonymous inner class is defined within the scope of

AnonymousInnerClassDemo, it has access to all of the variables and methods within

the scope of that class. Therefore, it can call the showStatus() method directly.

As just illustrated, both named and anonymous inner classes solve some annoying

problems in a simple yet effective way. They also allow you to create more efficient code.

This page intentionally left blank

24
CHAPTER

 735

Introducing the AWT:
Working with Windows,
Graphics, and Text

The Abstract Window Toolkit (AWT) was introduced in Chapter 22, where it was used in

several example applets. This chapter begins its in-depth examination. The AWT contains

numerous classes and methods that allow you to create and manage windows. It is also the

foundation upon which Swing is built. The AWT is quite large and a full description would

easily fill an entire book. Therefore, it is not possible to describe in detail every AWT class,

method, or instance variable. However, this and the following two chapters explain the

basic techniques needed to use the AWT effectively when creating your own applets or

stand-alone GUI-based applications. From there, you will be able to explore other parts

of the AWT on your own. You will also be ready to move on to Swing.

In this chapter, you will learn how to create and manage windows, manage fonts, output

text, and utilize graphics. Chapter 25 describes the various controls, such as scroll bars and

push buttons, supported by the AWT. It also explains further aspects of Java’s event handling

mechanism. Chapter 26 examines the AWT’s imaging subsystem and animation.

Although a common use of the AWT is in applets, it is also used to create stand-alone

windows that run in a GUI environment, such as Windows. For the sake of convenience,

most of the examples in this chapter are contained in applets. To run them, you need to

use an applet viewer or a Java-compatible web browser. A few examples will demonstrate

the creation of stand-alone, windowed programs.

One other point before beginning. Today, most Java programs employ user interfaces

based on Swing. Because Swing provides richer implementations than does the AWT of

some common GUI controls, such as buttons, lists, and check boxes, it is easy to jump to

the conclusion that the AWT is no longer important, that it has been superseded by Swing.

This assumption is, however, quite wrong. As mentioned, Swing is built on top of the AWT.

Thus, many aspects of the AWT are also aspects of Swing. Furthermore, many AWT classes

are used either directly or indirectly by Swing. Finally, for some types of small programs

(especially small applets) that make only minimal use of a GUI, using the AWT rather than

Swing still makes sense. Therefore, even though most interfaces today will be based on

Swing, a solid knowledge of the AWT is still required. Simply put, you can’t be a great Java

programmer without knowing the AWT.

736 PART II The Java Library

NOTE If you have not yet read Chapter 23, please do so now. It provides an overview of event handling,
which is used by many of the examples in this chapter.

AWT Classes
The AWT classes are contained in the java.awt package. It is one of Java’s largest packages.

Fortunately, because it is logically organized in a top-down, hierarchical fashion, it is easier

to understand and use than you might at first believe. Table 24-1 lists some of the many

AWT classes.

Table 24-1 A Sampling of AWT Classes

Class Description

AWTEvent Encapsulates AWT events.

AWTEventMulticaster Dispatches events to multiple listeners.

BorderLayout The border layout manager. Border layouts use five components:

North, South, East, West, and Center.

Button Creates a push button control.

Canvas A blank, semantics-free window.

CardLayout The card layout manager. Card layouts emulate index cards. Only the

one on top is showing.

Checkbox Creates a check box control.

CheckboxGroup Creates a group of check box controls.

CheckboxMenuItem Creates an on/off menu item.

Choice Creates a pop-up list.

Color Manages colors in a portable, platform-independent fashion.

Component An abstract superclass for various AWT components.

Container A subclass of Component that can hold other components.

Cursor Encapsulates a bitmapped cursor.

Dialog Creates a dialog window.

Dimension Specifies the dimensions of an object. The width is stored in width,

and the height is stored in height.

EventQueue Queues events.

FileDialog Creates a window from which a file can be selected.

FlowLayout The flow layout manager. Flow layout positions components left to

right, top to bottom.

Font Encapsulates a type font.

FontMetrics Encapsulates various information related to a font. This information

helps you display text in a window.

Frame Creates a standard window that has a title bar, resize corners, and a

menu bar.

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 737

P
a

rt
 I

I

Class Description

Graphics Encapsulates the graphics context. This context is used by the various

output methods to display output in a window.

GraphicsDevice Describes a graphics device such as a screen or printer.

GraphicsEnvironment Describes the collection of available Font and GraphicsDevice objects.

GridBagConstraints Defines various constraints relating to the GridBagLayout class.

GridBagLayout The grid bag layout manager. Grid bag layout displays components

subject to the constraints specified by GridBagConstraints.

GridLayout The grid layout manager. Grid layout displays components in a two-

dimensional grid.

Image Encapsulates graphical images.

Insets Encapsulates the borders of a container.

Label Creates a label that displays a string.

List Creates a list from which the user can choose. Similar to the standard

Windows list box.

MediaTracker Manages media objects.

Menu Creates a pull-down menu.

MenuBar Creates a menu bar.

MenuComponent An abstract class implemented by various menu classes.

MenuItem Creates a menu item.

MenuShortcut Encapsulates a keyboard shortcut for a menu item.

Panel The simplest concrete subclass of Container.

Point Encapsulates a Cartesian coordinate pair, stored in x and y.

Polygon Encapsulates a polygon.

PopupMenu Encapsulates a pop-up menu.

PrintJob An abstract class that represents a print job.

Rectangle Encapsulates a rectangle.

Robot Supports automated testing of AWT-based applications.

Scrollbar Creates a scroll bar control.

ScrollPane A container that provides horizontal and/or vertical scroll bars for

another component.

SystemColor Contains the colors of GUI widgets such as windows, scroll bars, text,

and others.

TextArea Creates a multiline edit control.

TextComponent A superclass for TextArea and TextField.

TextField Creates a single-line edit control.

Toolkit Abstract class implemented by the AWT.

Window Creates a window with no frame, no menu bar, and no title.

Table 24-1 A Sampling of AWT Classes (continued)

738 PART II The Java Library

Although the basic structure of the AWT has been the same since Java 1.0, some of the

original methods were deprecated and replaced by new ones. For backward-compatibility,

Java still supports all the original 1.0 methods. However, because these methods are not for

use with new code, this book does not describe them.

Window Fundamentals
The AWT defines windows according to a class hierarchy that adds functionality and

specificity with each level. The two most common windows are those derived from Panel,
which is used by applets, and those derived from Frame, which creates a standard

application window. Much of the functionality of these windows is derived from their

parent classes. Thus, a description of the class hierarchies relating to these two classes is

fundamental to their understanding. Figure 24-1 shows the class hierarchy for Panel and

Frame. Let’s look at each of these classes now.

Component

At the top of the AWT hierarchy is the Component class. Component is an abstract class

that encapsulates all of the attributes of a visual component. Except for menus, all user

interface elements that are displayed on the screen and that interact with the user are

subclasses of Component. It defines over a hundred public methods that are responsible

for managing events, such as mouse and keyboard input, positioning and sizing the window,

and repainting. (You already used many of these methods when you created applets in

Chapters 22 and 23.) A Component object is responsible for remembering the current

foreground and background colors and the currently selected text font.

Figure 24-1 The class hierarchy for Panel and Frame

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 739

P
a

rt
 I

I

Container

The Container class is a subclass of Component. It has additional methods that allow other

Component objects to be nested within it. Other Container objects can be stored inside of a

Container (since they are themselves instances of Component). This makes for a multileveled

containment system. A container is responsible for laying out (that is, positioning) any

components that it contains. It does this through the use of various layout managers, which

you will learn about in Chapter 25.

Panel

The Panel class is a concrete subclass of Container. A Panel may be thought of as a

recursively nestable, concrete screen component. Panel is the superclass for Applet. When

screen output is directed to an applet, it is drawn on the surface of a Panel object. In

essence, a Panel is a window that does not contain a title bar, menu bar, or border. This is

why you don’t see these items when an applet is run inside a browser. When you run an

applet using an applet viewer, the applet viewer provides the title and border.

Other components can be added to a Panel object by its add() method (inherited from

Container). Once these components have been added, you can position and resize them

manually using the setLocation(), setSize(), setPreferredSize(), or setBounds() methods

defined by Component.

Window

The Window class creates a top-level window. A top-level window is not contained within any

other object; it sits directly on the desktop. Generally, you won’t create Window objects

directly. Instead, you will use a subclass of Window called Frame, described next.

Frame

Frame encapsulates what is commonly thought of as a “window.” It is a subclass of Window

and has a title bar, menu bar, borders, and resizing corners.

Canvas

Although it is not part of the hierarchy for applet or frame windows, there is one other type

of window that you will find valuable: Canvas. Canvas encapsulates a blank window upon

which you can draw. You will see an example of Canvas later in this book.

Working with Frame Windows
After the applet, the type of window you will most often create is derived from Frame. You

will use it to create child windows within applets, and top-level or child windows for stand-

alone applications. As mentioned, it creates a standard-style window.

Here are two of Frame’s constructors:

Frame() throws HeadlessException

Frame(String title) throws HeadlessException

740 PART II The Java Library

The first form creates a standard window that does not contain a title. The second form

creates a window with the title specified by title. Notice that you cannot specify the

dimensions of the window. Instead, you must set the size of the window after it has been

created. A HeadlessException is thrown if an attempt is made to create a Frame instance

in an environment that does not support user interaction.

There are several key methods you will use when working with Frame windows. They

are examined here.

Setting the Window’s Dimensions

The setSize() method is used to set the dimensions of the window. Its signature is shown

here:

void setSize(int newWidth, int newHeight)
void setSize(Dimension newSize)

The new size of the window is specified by newWidth and newHeight, or by the width and

height fields of the Dimension object passed in newSize. The dimensions are specified in

terms of pixels.

The getSize() method is used to obtain the current size of a window. One of its forms is

shown here:

Dimension getSize()

This method returns the current size of the window contained within the width and height
fields of a Dimension object.

Hiding and Showing a Window

After a frame window has been created, it will not be visible until you call setVisible(). Its
signature is shown here:

void setVisible(boolean visibleFlag)

The component is visible if the argument to this method is true. Otherwise, it is hidden.

Setting a Window’s Title

You can change the title in a frame window using setTitle(), which has this general form:

void setTitle(String newTitle)

Here, newTitle is the new title for the window.

Closing a Frame Window

When using a frame window, your program must remove that window from the screen

when it is closed, by calling setVisible(false). To intercept a window-close event, you must

implement the windowClosing() method of the WindowListener interface. Inside

windowClosing(), you must remove the window from the screen. The example in the

next section illustrates this technique.

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 741

P
a

rt
 I

I

Creating a Frame Window in an Applet
While it is possible to simply create a window by creating an instance of Frame, you will

seldom do so, because you will not be able to do much with it. For example, you will not be

able to receive or process events that occur within it or easily output information to it. Most

of the time, you will create a subclass of Frame. Doing so lets you override Frame’s methods

and provide event handling.

Creating a new frame window from within an applet is actually quite easy. First, create a

subclass of Frame. Next, override any of the standard applet methods, such as init(), start(),
and stop(), to show or hide the frame as needed. Finally, implement the windowClosing()
method of the WindowListener interface, calling setVisible(false) when the window is

closed.

Once you have defined a Frame subclass, you can create an object of that class. This

causes a frame window to come into existence, but it will not be initially visible. You make it

visible by calling setVisible(). When created, the window is given a default height and width.

You can set the size of the window explicitly by calling the setSize() method.

The following applet creates a subclass of Frame called SampleFrame. A window of this

subclass is instantiated within the init() method of AppletFrame. Notice that SampleFrame

calls Frame’s constructor. This causes a standard frame window to be created with the title

passed in title. This example overrides the applet’s start() and stop() methods so that

they show and hide the child window, respectively. This causes the window to be removed

automatically when you terminate the applet, when you close the window, or, if using a

browser, when you move to another page. It also causes the child window to be shown

when the browser returns to the applet.

// Create a child frame window from within an applet.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="AppletFrame" width=300 height=50>
 </applet>
*/

// Create a subclass of Frame.
class SampleFrame extends Frame {
 SampleFrame(String title) {
 super(title);

 // create an object to handle window events
 MyWindowAdapter adapter = new MyWindowAdapter(this);

 // register it to receive those events
 addWindowListener(adapter);
 }
 public void paint(Graphics g) {
 g.drawString("This is in frame window", 10, 40);
 }
}

742 PART II The Java Library

class MyWindowAdapter extends WindowAdapter {
 SampleFrame sampleFrame;

 public MyWindowAdapter(SampleFrame sampleFrame) {
 this.sampleFrame = sampleFrame;
 }

 public void windowClosing(WindowEvent we) {
 sampleFrame.setVisible(false);
 }
}

// Create frame window.
public class AppletFrame extends Applet {
 Frame f;
 public void init() {
 f = new SampleFrame("A Frame Window");

 f.setSize(250, 250);
 f.setVisible(true);
 }

 public void start() {
 f.setVisible(true);
 }

 public void stop() {
 f.setVisible(false);
 }

 public void paint(Graphics g) {
 g.drawString("This is in applet window", 10, 20);
 }
}

Sample output from this program is shown here:

Handling Events in a Frame Window

Since Frame is a subclass of Component, it inherits all the capabilities defined by Component.
This means that you can use and manage a frame window just like you manage an applet’s

main window. For example, you can override paint() to display output, call repaint() when

you need to restore the window, and add event handlers. Whenever an event occurs in a

window, the event handlers defined by that window will be called. Each window handles its

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 743

P
a

rt
 I

I

own events. For example, the following program creates a window that responds to mouse

events. The main applet window also responds to mouse events. When you experiment with

this program, you will see that mouse events are sent to the window in which the event occurs.

// Handle mouse events in both child and applet windows.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="WindowEvents" width=300 height=50>
 </applet>
*/

// Create a subclass of Frame.
class SampleFrame extends Frame
 implements MouseListener, MouseMotionListener {

 String msg = "";
 int mouseX=10, mouseY=40;
 int movX=0, movY=0;

 SampleFrame(String title) {
 super(title);
 // register this object to receive its own mouse events
 addMouseListener(this);
 addMouseMotionListener(this);
 // create an object to handle window events
 MyWindowAdapter adapter = new MyWindowAdapter(this);
 // register it to receive those events
 addWindowListener(adapter);
 }

 // Handle mouse clicked.
 public void mouseClicked(MouseEvent me) {
 }

 // Handle mouse entered.
 public void mouseEntered(MouseEvent evtObj) {
 // save coordinates
 mouseX = 10;
 mouseY = 54;
 msg = "Mouse just entered child.";
 repaint();
 }

 // Handle mouse exited.
 public void mouseExited(MouseEvent evtObj) {
 // save coordinates
 mouseX = 10;
 mouseY = 54;
 msg = "Mouse just left child window.";
 repaint();
 }

744 PART II The Java Library

 // Handle mouse pressed.
 public void mousePressed(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Down";
 repaint();
 }

 // Handle mouse released.
 public void mouseReleased(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Up";
 repaint();
 }

 // Handle mouse dragged.
 public void mouseDragged(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 movX = me.getX();
 movY = me.getY();
 msg = "*";
 repaint();
 }

 // Handle mouse moved.
 public void mouseMoved(MouseEvent me) {
 // save coordinates
 movX = me.getX();
 movY = me.getY();
 repaint(0, 0, 100, 60);
 }

 public void paint(Graphics g) {
 g.drawString(msg, mouseX, mouseY);
 g.drawString("Mouse at " + movX + ", " + movY, 10, 40);
 }
}

class MyWindowAdapter extends WindowAdapter {
 SampleFrame sampleFrame;

 public MyWindowAdapter(SampleFrame sampleFrame) {
 this.sampleFrame = sampleFrame;
 }

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 745

P
a

rt
 I

I

 public void windowClosing(WindowEvent we) {
 sampleFrame.setVisible(false);
 }
}

// Applet window.
public class WindowEvents extends Applet
 implements MouseListener, MouseMotionListener {

 SampleFrame f;
 String msg = "";
 int mouseX=0, mouseY=10;
 int movX=0, movY=0;

 // Create a frame window.
 public void init() {
 f = new SampleFrame("Handle Mouse Events");
 f.setSize(300, 200);
 f.setVisible(true);

 // register this object to receive its own mouse events
 addMouseListener(this);
 addMouseMotionListener(this);
 }

 // Remove frame window when stopping applet.
 public void stop() {
 f.setVisible(false);
 }

 // Show frame window when starting applet.
 public void start() {
 f.setVisible(true);
 }

 // Handle mouse clicked.
 public void mouseClicked(MouseEvent me) {
 }

 // Handle mouse entered.
 public void mouseEntered(MouseEvent me) {
 // save coordinates
 mouseX = 0;
 mouseY = 24;
 msg = "Mouse just entered applet window.";
 repaint();
 }

746 PART II The Java Library

 // Handle mouse exited.
 public void mouseExited(MouseEvent me) {
 // save coordinates
 mouseX = 0;
 mouseY = 24;
 msg = "Mouse just left applet window.";
 repaint();
 }

 // Handle button pressed.
 public void mousePressed(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Down";
 repaint();
 }

 // Handle button released.
 public void mouseReleased(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Up";
 repaint();
 }

 // Handle mouse dragged.
 public void mouseDragged(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 movX = me.getX();
 movY = me.getY();
 msg = "*";
 repaint();
 }

 // Handle mouse moved.
 public void mouseMoved(MouseEvent me) {
 // save coordinates
 movX = me.getX();
 movY = me.getY();
 repaint(0, 0, 100, 20);
 }

 // Display msg in applet window.
 public void paint(Graphics g) {
 g.drawString(msg, mouseX, mouseY);
 g.drawString("Mouse at " + movX + ", " + movY, 0, 10);
 }
}

Sample output from this program is shown here:

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 747

P
a

rt
 I

I

Creating a Windowed Program
Although creating applets is a common use for Java’s AWT, it is also possible to create stand-

alone AWT-based applications. To do this, simply create an instance of the window or

windows you need inside main(). For example, the following program creates a frame

window that responds to mouse clicks and keystrokes:

// Create an AWT-based application.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

// Create a frame window.
public class AppWindow extends Frame {
 String keymsg = "This is a test.";
 String mousemsg = "";
 int mouseX=30, mouseY=30;

 public AppWindow() {
 addKeyListener(new MyKeyAdapter(this));
 addMouseListener(new MyMouseAdapter(this));
 addWindowListener(new MyWindowAdapter());
 }

 public void paint(Graphics g) {
 g.drawString(keymsg, 10, 40);
 g.drawString(mousemsg, mouseX, mouseY);
 }

 // Create the window.
 public static void main(String args[]) {
 AppWindow appwin = new AppWindow();

 appwin.setSize(new Dimension(300, 200));
 appwin.setTitle("An AWT-Based Application");
 appwin.setVisible(true);
 }
}

748 PART II The Java Library

class MyKeyAdapter extends KeyAdapter {
 AppWindow appWindow;

 public MyKeyAdapter(AppWindow appWindow) {
 this.appWindow = appWindow;
 }

 public void keyTyped(KeyEvent ke) {
 appWindow.keymsg += ke.getKeyChar();
 appWindow.repaint();
 };
}

class MyMouseAdapter extends MouseAdapter {
 AppWindow appWindow;

 public MyMouseAdapter(AppWindow appWindow) {
 this.appWindow = appWindow;
 }

 public void mousePressed(MouseEvent me) {
 appWindow.mouseX = me.getX();
 appWindow.mouseY = me.getY();
 appWindow.mousemsg = "Mouse Down at " + appWindow.mouseX +
 ", " + appWindow.mouseY;
 appWindow.repaint();
 }
}

class MyWindowAdapter extends WindowAdapter {
 public void windowClosing(WindowEvent we) {
 System.exit(0);
 }
}

Sample output from this program is shown here:

Once created, a frame window takes on a life of its own. Notice that main() ends with

the call to appwin.setVisible(true). However, the program keeps running until you close the

window. In essence, when creating a windowed application, you will use main() to launch

its top-level window. After that, your program will function as a GUI-based application, not

like the console-based programs used earlier.

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 749

P
a

rt
 I

I

Displaying Information Within a Window
In the most general sense, a window is a container for information. Although we have

already output small amounts of text to a window in the preceding examples, we have not

begun to take advantage of a window’s ability to present high-quality text and graphics.

Indeed, much of the power of the AWT comes from its support for these items. For this

reason, the remainder of this chapter discusses Java’s text-, graphics-, and font-handling

capabilities. As you will see, they are both powerful and flexible.

Working with Graphics
The AWT supports a rich assortment of graphics methods. All graphics are drawn relative to

a window. This can be the main window of an applet, a child window of an applet, or a stand-

alone application window. The origin of each window is at the top-left corner and is 0,0.

Coordinates are specified in pixels. All output to a window takes place through a graphics

context. A graphics context is encapsulated by the Graphics class and is obtained in two ways:

• It is passed to a method, such as paint() or update(), as an argument.

• It is returned by the getGraphics() method of Component.

For the sake of convenience the remainder of the examples in this chapter will

demonstrate graphics in a main applet window. However, the same techniques will apply

to any other window.

The Graphics class defines a number of drawing functions. Each shape can be drawn

edge-only or filled. Objects are drawn and filled in the currently selected graphics color,

which is black by default. When a graphics object is drawn that exceeds the dimensions

of the window, output is automatically clipped. Let’s take a look at several of the drawing

methods.

Drawing Lines

Lines are drawn by means of the drawLine() method, shown here:

void drawLine(int startX, int startY, int endX, int endY)

drawLine() displays a line in the current drawing color that begins at startX, startY and ends

at endX, endY.

The following applet draws several lines:

// Draw lines
import java.awt.*;
import java.applet.*;
/*
<applet code="Lines" width=300 height=200>
</applet>
*/
public class Lines extends Applet {
 public void paint(Graphics g) {
 g.drawLine(0, 0, 100, 100);

750 PART II The Java Library

 g.drawLine(0, 100, 100, 0);
 g.drawLine(40, 25, 250, 180);
 g.drawLine(75, 90, 400, 400);
 g.drawLine(20, 150, 400, 40);
 g.drawLine(5, 290, 80, 19);
 }
}

Sample output from this program is shown here:

Drawing Rectangles

The drawRect() and fillRect() methods display an outlined and filled rectangle,

respectively. They are shown here:

void drawRect(int top, int left, int width, int height)
void fillRect(int top, int left, int width, int height)

The upper-left corner of the rectangle is at top, left. The dimensions of the rectangle are

specified by width and height.
To draw a rounded rectangle, use drawRoundRect() or fillRoundRect(), both shown

here:

void drawRoundRect(int top, int left, int width, int height,
 int xDiam, int yDiam)

void fillRoundRect(int top, int left, int width, int height,
 int xDiam, int yDiam)

A rounded rectangle has rounded corners. The upper-left corner of the rectangle is at top,

left. The dimensions of the rectangle are specified by width and height. The diameter of the

rounding arc along the X axis is specified by xDiam. The diameter of the rounding arc

along the Y axis is specified by yDiam.

The following applet draws several rectangles:

// Draw rectangles
import java.awt.*;
import java.applet.*;
/*
<applet code="Rectangles" width=300 height=200>
</applet>
*/

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 751

P
a

rt
 I

I

public class Rectangles extends Applet {
 public void paint(Graphics g) {
 g.drawRect(10, 10, 60, 50);
 g.fillRect(100, 10, 60, 50);
 g.drawRoundRect(190, 10, 60, 50, 15, 15);
 g.fillRoundRect(70, 90, 140, 100, 30, 40);
 }
}

Sample output from this program is shown here:

Drawing Ellipses and Circles

To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval(). These methods are

shown here:

void drawOval(int top, int left, int width, int height)
void fillOval(int top, int left, int width, int height)

The ellipse is drawn within a bounding rectangle whose upper-left corner is specified by top,

left and whose width and height are specified by width and height. To draw a circle, specify a

square as the bounding rectangle.

The following program draws several ellipses:

// Draw Ellipses
import java.awt.*;
import java.applet.*;
/*
<applet code="Ellipses" width=300 height=200>
</applet>
*/

public class Ellipses extends Applet {
 public void paint(Graphics g) {
 g.drawOval(10, 10, 50, 50);
 g.fillOval(100, 10, 75, 50);
 g.drawOval(190, 10, 90, 30);
 g.fillOval(70, 90, 140, 100);
 }
}

752 PART II The Java Library

Sample output from this program is shown here:

Drawing Arcs

Arcs can be drawn with drawArc() and fillArc(), shown here:

void drawArc(int top, int left, int width, int height, int startAngle,
 int sweepAngle)

void fillArc(int top, int left, int width, int height, int startAngle,
 int sweepAngle)

The arc is bounded by the rectangle whose upper-left corner is specified by top, left and

whose width and height are specified by width and height. The arc is drawn from startAngle
through the angular distance specified by sweepAngle. Angles are specified in degrees. Zero

degrees is on the horizontal, at the three o’clock position. The arc is drawn counterclockwise

if sweepAngle is positive, and clockwise if sweepAngle is negative. Therefore, to draw an arc

from twelve o’clock to six o’clock, the start angle would be 90 and the sweep angle 180.

The following applet draws several arcs:

// Draw Arcs
import java.awt.*;
import java.applet.*;
/*
<applet code="Arcs" width=300 height=200>
</applet>
*/

public class Arcs extends Applet {
 public void paint(Graphics g) {
 g.drawArc(10, 40, 70, 70, 0, 75);
 g.fillArc(100, 40, 70, 70, 0, 75);
 g.drawArc(10, 100, 70, 80, 0, 175);
 g.fillArc(100, 100, 70, 90, 0, 270);
 g.drawArc(200, 80, 80, 80, 0, 180);
 }
}

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 753

P
a

rt
 I

I

Sample output from this program is shown here:

Drawing Polygons

It is possible to draw arbitrarily shaped figures using drawPolygon() and fillPolygon(),
shown here:

void drawPolygon(int x[], int y[], int numPoints)
void fillPolygon(int x[], int y[], int numPoints)

The polygon’s endpoints are specified by the coordinate pairs contained within the x and

y arrays. The number of points defined by x and y is specified by numPoints. There are

alternative forms of these methods in which the polygon is specified by a Polygon object.

The following applet draws an hourglass shape:

// Draw Polygon
import java.awt.*;
import java.applet.*;
/*
<applet code="HourGlass" width=230 height=210>
</applet>
*/

public class HourGlass extends Applet {
 public void paint(Graphics g) {
 int xpoints[] = {30, 200, 30, 200, 30};
 int ypoints[] = {30, 30, 200, 200, 30};
 int num = 5;

 g.drawPolygon(xpoints, ypoints, num);
 }
}

754 PART II The Java Library

Sample output from this program is shown here:

Sizing Graphics

Often, you will want to size a graphics object to fit the current size of the window in which

it is drawn. To do so, first obtain the current dimensions of the window by calling getSize()
on the window object. It returns the dimensions of the window encapsulated within a

Dimension object. Once you have the current size of the window, you can scale your

graphical output accordingly.

To demonstrate this technique, here is an applet that will start as a 200x200-pixel

square and grow by 25 pixels in width and height with each mouse click until the applet

gets larger than 500x500. At that point, the next click will return it to 200x200, and the

process starts over.

Within the window, a rectangle is drawn around the inner border of the window; within

that rectangle, an X is drawn so that it fills the window. This applet works in appletviewer,

but it may not work in a browser window.

// Resizing output to fit the current size of a window.
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
/*
 <applet code="ResizeMe" width=200 height=200>
 </applet>
*/

public class ResizeMe extends Applet {
 final int inc = 25;
 int max = 500;
 int min = 200;
 Dimension d;

 public ResizeMe() {
 addMouseListener(new MouseAdapter() {
 public void mouseReleased(MouseEvent me) {
 int w = (d.width + inc) > max?min :(d.width + inc);
 int h = (d.height + inc) > max?min :(d.height + inc);
 setSize(new Dimension(w, h));

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 755

P
a

rt
 I

I

 }
 });
 }

 public void paint(Graphics g) {
 d = getSize();

 g.drawLine(0, 0, d.width-1, d.height-1);
 g.drawLine(0, d.height-1, d.width-1, 0);
 g.drawRect(0, 0, d.width-1, d.height-1);
 }
}

Working with Color
Java supports color in a portable, device-independent fashion. The AWT color system allows

you to specify any color you want. It then finds the best match for that color, given the limits

of the display hardware currently executing your program or applet. Thus, your code does

not need to be concerned with the differences in the way color is supported by various

hardware devices. Color is encapsulated by the Color class.

As you saw in Chapter 22, Color defines several constants (for example, Color.black) to

specify a number of common colors. You can also create your own colors, using one of the

color constructors. Three commonly used forms are shown here:

Color(int red, int green, int blue)
Color(int rgbValue)
Color(float red, float green, float blue)

The first constructor takes three integers that specify the color as a mix of red, green, and

blue. These values must be between 0 and 255, as in this example:

new Color(255, 100, 100); // light red

The second color constructor takes a single integer that contains the mix of red, green, and

blue packed into an integer. The integer is organized with red in bits 16 to 23, green in bits

8 to 15, and blue in bits 0 to 7. Here is an example of this constructor:

int newRed = (0xff000000 | (0xc0 << 16) | (0x00 << 8) | 0x00);
Color darkRed = new Color(newRed);

The final constructor, Color(float, float, float), takes three float values (between 0.0 and

1.0) that specify the relative mix of red, green, and blue.

Once you have created a color, you can use it to set the foreground and/or background

color by using the setForeground() and setBackground() methods described in Chapter 22.

You can also select it as the current drawing color.

Color Methods

The Color class defines several methods that help manipulate colors. Several are

examined here.

756 PART II The Java Library

Using Hue, Saturation, and Brightness
The hue-saturation-brightness (HSB) color model is an alternative to red-green-blue (RGB) for

specifying particular colors. Figuratively, hue is a wheel of color. The hue can be specified

with a number between 0.0 and 1.0, which is used to obtain an angle into the color wheel.

(The principal colors are approximately red, orange, yellow, green, blue, indigo, and

violet.) Saturation is another scale ranging from 0.0 to 1.0, representing light pastels to

intense hues. Brightness values also range from 0.0 to 1.0, where 1 is bright white and 0 is

black. Color supplies two methods that let you convert between RGB and HSB. They are

shown here:

static int HSBtoRGB(float hue, float saturation, float brightness)
static float[] RGBtoHSB(int red, int green, int blue, float values[])

HSBtoRGB() returns a packed RGB value compatible with the Color(int) constructor.

RGBtoHSB() returns a float array of HSB values corresponding to RGB integers. If values
is not null, then this array is given the HSB values and returned. Otherwise, a new array is

created and the HSB values are returned in it. In either case, the array contains the hue at

index 0, saturation at index 1, and brightness at index 2.

getRed(), getGreen(), getBlue()
You can obtain the red, green, and blue components of a color independently using

getRed(), getGreen(), and getBlue(), shown here:

int getRed()

int getGreen()

int getBlue()

Each of these methods returns the RGB color component found in the invoking Color

object in the lower 8 bits of an integer.

getRGB()
To obtain a packed, RGB representation of a color, use getRGB(), shown here:

int getRGB()

The return value is organized as described earlier.

Setting the Current Graphics Color

By default, graphics objects are drawn in the current foreground color. You can change this

color by calling the Graphics method setColor() :

void setColor(Color newColor)

Here, newColor specifies the new drawing color.

You can obtain the current color by calling getColor(), shown here:

Color getColor()

A Color Demonstration Applet

The following applet constructs several colors and draws various objects using these colors:

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 757

P
a

rt
 I

I

// Demonstrate color.
import java.awt.*;
import java.applet.*;
/*
<applet code="ColorDemo" width=300 height=200>
</applet>
*/

public class ColorDemo extends Applet {
 // draw lines
 public void paint(Graphics g) {
 Color c1 = new Color(255, 100, 100);
 Color c2 = new Color(100, 255, 100);
 Color c3 = new Color(100, 100, 255);

 g.setColor(c1);
 g.drawLine(0, 0, 100, 100);
 g.drawLine(0, 100, 100, 0);

 g.setColor(c2);
 g.drawLine(40, 25, 250, 180);
 g.drawLine(75, 90, 400, 400);

 g.setColor(c3);
 g.drawLine(20, 150, 400, 40);
 g.drawLine(5, 290, 80, 19);

 g.setColor(Color.red);
 g.drawOval(10, 10, 50, 50);
 g.fillOval(70, 90, 140, 100);

 g.setColor(Color.blue);
 g.drawOval(190, 10, 90, 30);
 g.drawRect(10, 10, 60, 50);

 g.setColor(Color.cyan);
 g.fillRect(100, 10, 60, 50);
 g.drawRoundRect(190, 10, 60, 50, 15, 15);
 }
}

Setting the Paint Mode
The paint mode determines how objects are drawn in a window. By default, new output to

a window overwrites any preexisting contents. However, it is possible to have new objects

XORed onto the window by using setXORMode(), as follows:

void setXORMode(Color xorColor)

Here, xorColor specifies the color that will be XORed to the window when an object is drawn.

The advantage of XOR mode is that the new object is always guaranteed to be visible no

matter what color the object is drawn over.

758 PART II The Java Library

To return to overwrite mode, call setPaintMode(), shown here:

void setPaintMode()

In general, you will want to use overwrite mode for normal output, and XOR mode for

special purposes. For example, the following program displays cross hairs that track the

mouse pointer. The cross hairs are XORed onto the window and are always visible, no

matter what the underlying color is.

// Demonstrate XOR mode.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="XOR" width=400 height=200>
 </applet>
*/

public class XOR extends Applet {
 int chsX=100, chsY=100;

 public XOR() {
 addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseMoved(MouseEvent me) {
 int x = me.getX();
 int y = me.getY();
 chsX = x-10;
 chsY = y-10;
 repaint();
 }
 });
 }

 public void paint(Graphics g) {
 g.drawLine(0, 0, 100, 100);
 g.drawLine(0, 100, 100, 0);
 g.setColor(Color.blue);
 g.drawLine(40, 25, 250, 180);
 g.drawLine(75, 90, 400, 400);
 g.setColor(Color.green);
 g.drawRect(10, 10, 60, 50);
 g.fillRect(100, 10, 60, 50);
 g.setColor(Color.red);
 g.drawRoundRect(190, 10, 60, 50, 15, 15);

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 759

P
a

rt
 I

I

 g.fillRoundRect(70, 90, 140, 100, 30, 40);
 g.setColor(Color.cyan);
 g.drawLine(20, 150, 400, 40);
 g.drawLine(5, 290, 80, 19);

 // xor cross hairs
 g.setXORMode(Color.black);
 g.drawLine(chsX-10, chsY, chsX+10, chsY);
 g.drawLine(chsX, chsY-10, chsX, chsY+10);
 g.setPaintMode();
 }
}

Sample output from this program is shown here:

Working with Fonts
The AWT supports multiple type fonts. Years ago, fonts emerged from the domain of

traditional typesetting to become an important part of computer-generated documents

and displays. The AWT provides flexibility by abstracting font-manipulation operations and

allowing for dynamic selection of fonts.

Fonts have a family name, a logical font name, and a face name. The family name is the

general name of the font, such as Courier. The logical name specifies a category of font, such

as Monospaced. The face name specifies a specific font, such as Courier Italic.

Fonts are encapsulated by the Font class. Several of the methods defined by Font are

listed in Table 24-2.

760 PART II The Java Library

The Font class defines these variables:

Variable Meaning

String name Name of the font

float pointSize Size of the font in points

int size Size of the font in points

int style Font style

Determining the Available Fonts

When working with fonts, often you need to know which fonts are available on your

machine. To obtain this information, you can use the getAvailableFontFamilyNames()
method defined by the GraphicsEnvironment class. It is shown here:

String[] getAvailableFontFamilyNames()

Table 24-2 A Sampling of Methods Defined by Font

Method Description

static Font decode(String str) Returns a font given its name.

boolean equals(Object FontObj) Returns true if the invoking object contains the

same font as that specified by FontObj. Otherwise, it

returns false.

String getFamily() Returns the name of the font family to which the

invoking font belongs.

static Font getFont(String property) Returns the font associated with the system property

specified by property. null is returned if property does

not exist.

static Font getFont(String property,
 Font defaultFont)

Returns the font associated with the system property

specified by property. The font specified by defaultFont
is returned if property does not exist.

String getFontName() Returns the face name of the invoking font.

String getName() Returns the logical name of the invoking font.

int getSize() Returns the size, in points, of the invoking font.

int getStyle() Returns the style values of the invoking font.

int hashCode() Returns the hash code associated with the invoking

object.

boolean isBold() Returns true if the font includes the BOLD style

value. Otherwise, false is returned.

boolean isItalic() Returns true if the font includes the ITALIC style

value. Otherwise, false is returned.

boolean isPlain() Returns true if the font includes the PLAIN style

value. Otherwise, false is returned.

String toString() Returns the string equivalent of the invoking font.

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 761

P
a

rt
 I

I

This method returns an array of strings that contains the names of the available font

families.

In addition, the getAllFonts() method is defined by the GraphicsEnvironment class.

It is shown here:

Font[] getAllFonts()

This method returns an array of Font objects for all of the available fonts.

Since these methods are members of GraphicsEnvironment, you need a

GraphicsEnvironment reference to call them. You can obtain this reference by

using the getLocalGraphicsEnvironment() static method, which is defined by

GraphicsEnvironment. It is shown here:

static GraphicsEnvironment getLocalGraphicsEnvironment()

Here is an applet that shows how to obtain the names of the available font families:

// Display Fonts
/*
<applet code="ShowFonts" width=550 height=60>
</applet>
*/
import java.applet.*;
import java.awt.*;

public class ShowFonts extends Applet {
 public void paint(Graphics g) {
 String msg = "";
 String FontList[];

 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 FontList = ge.getAvailableFontFamilyNames();
 for(int i = 0; i < FontList.length; i++)
 msg += FontList[i] + " ";

 g.drawString(msg, 4, 16);
 }
}

Sample output from this program is shown next. However, when you run this program, you

may see a different list of fonts than the one shown in this illustration.

762 PART II The Java Library

Creating and Selecting a Font

To select a new font, you must first construct a Font object that describes that font. One

Font constructor has this general form:

Font(String fontName, int fontStyle, int pointSize)

Here, fontName specifies the name of the desired font. The name can be specified using

either the logical or face name. All Java environments will support the following fonts:

Dialog, DialogInput, Sans Serif, Serif, and Monospaced. Dialog is the font used by your

system’s dialog boxes. Dialog is also the default if you don’t explicitly set a font. You can

also use any other fonts supported by your particular environment, but be careful—these

other fonts may not be universally available.

The style of the font is specified by fontStyle. It may consist of one or more of these three

constants: Font.PLAIN, Font.BOLD, and Font.ITALIC. To combine styles, OR them

together. For example, Font.BOLD | Font.ITALIC specifies a bold, italics style.

The size, in points, of the font is specified by pointSize.
To use a font that you have created, you must select it using setFont(), which is defined

by Component. It has this general form:

void setFont(Font fontObj)

Here, fontObj is the object that contains the desired font.

The following program outputs a sample of each standard font. Each time you click the

mouse within its window, a new font is selected and its name is displayed.

// Show fonts.
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
/*
 <applet code="SampleFonts" width=200 height=100>
 </applet>
*/

public class SampleFonts extends Applet {
 int next = 0;
 Font f;
 String msg;

 public void init() {
 f = new Font("Dialog", Font.PLAIN, 12);
 msg = "Dialog";
 setFont(f);
 addMouseListener(new MyMouseAdapter(this));
 }

 public void paint(Graphics g) {
 g.drawString(msg, 4, 20);
 }
}

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 763

P
a

rt
 I

I

class MyMouseAdapter extends MouseAdapter {
 SampleFonts sampleFonts;

 public MyMouseAdapter(SampleFonts sampleFonts) {
 this.sampleFonts = sampleFonts;
 }

 public void mousePressed(MouseEvent me) {
 // Switch fonts with each mouse click.
 sampleFonts.next++;
 switch(sampleFonts.next) {
 case 0:
 sampleFonts.f = new Font("Dialog", Font.PLAIN, 12);
 sampleFonts.msg = "Dialog";
 break;
 case 1:
 sampleFonts.f = new Font("DialogInput", Font.PLAIN, 12);
 sampleFonts.msg = "DialogInput";
 break;
 case 2:
 sampleFonts.f = new Font("SansSerif", Font.PLAIN, 12);
 sampleFonts.msg = "SansSerif";
 break;
 case 3:
 sampleFonts.f = new Font("Serif", Font.PLAIN, 12);
 sampleFonts.msg = "Serif";
 break;
 case 4:
 sampleFonts.f = new Font("Monospaced", Font.PLAIN, 12);
 sampleFonts.msg = "Monospaced";
 break;
 }

 if(sampleFonts.next == 4) sampleFonts.next = -1;

 sampleFonts.setFont(sampleFonts.f);
 sampleFonts.repaint();
 }
}

Sample output from this program is shown here:

764 PART II The Java Library

Obtaining Font Information

Suppose you want to obtain information about the currently selected font. To do this, you

must first get the current font by calling getFont(). This method is defined by the Graphics

class, as shown here:

Font getFont()

Once you have obtained the currently selected font, you can retrieve information about it

using various methods defined by Font. For example, this applet displays the name, family,

size, and style of the currently selected font:

// Display font info.
import java.applet.*;
import java.awt.*;
/*
<applet code="FontInfo" width=350 height=60>
</applet>
*/

public class FontInfo extends Applet {
 public void paint(Graphics g) {
 Font f = g.getFont();
 String fontName = f.getName();
 String fontFamily = f.getFamily();
 int fontSize = f.getSize();
 int fontStyle = f.getStyle();

 String msg = "Family: " + fontName;
 msg += ", Font: " + fontFamily;
 msg += ", Size: " + fontSize + ", Style: ";
 if((fontStyle & Font.BOLD) == Font.BOLD)
 msg += "Bold ";
 if((fontStyle & Font.ITALIC) == Font.ITALIC)
 msg += "Italic ";
 if((fontStyle & Font.PLAIN) == Font.PLAIN)
 msg += "Plain ";

 g.drawString(msg, 4, 16);
 }
}

Managing Text Output Using FontMetrics
As just explained, Java supports a number of fonts. For most fonts, characters are not all the

same dimension—most fonts are proportional. Also, the height of each character, the length

of descenders (the hanging parts of letters, such as y), and the amount of space between

horizontal lines vary from font to font. Further, the point size of a font can be changed. That

these (and other) attributes are variable would not be of too much consequence except that

Java demands that you, the programmer, manually manage virtually all text output.

Given that the size of each font may differ and that fonts may be changed while your

program is executing, there must be some way to determine the dimensions and various

other attributes of the currently selected font. For example, to write one line of text after

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 765

P
a

rt
 I

I

another implies that you have some way of knowing how tall the font is and how many

pixels are needed between lines. To fill this need, the AWT includes the FontMetrics class,

which encapsulates various information about a font. Let’s begin by defining the common

terminology used when describing fonts:

Height The top-to-bottom size of a line of text

Baseline The line that the bottoms of characters are aligned to (not counting

descent)

Ascent The distance from the baseline to the top of a character

Descent The distance from the baseline to the bottom of a character

Leading The distance between the bottom of one line of text and the top of

the next

As you know, we have used the drawString() method in many of the previous examples.

It paints a string in the current font and color, beginning at a specified location. However,

this location is at the left edge of the baseline of the characters, not at the upper-left corner

as is usual with other drawing methods. It is a common error to draw a string at the same

coordinate that you would draw a box. For example, if you were to draw a rectangle at

coordinate 0,0, you would see a full rectangle. If you were to draw the string “Typesetting”

at 0,0, you would only see the tails (or descenders) of the y, p, and g. As you will see, by

using font metrics, you can determine the proper placement of each string that you display.

FontMetrics defines several methods that help you manage text output. Several

commonly used ones are listed in Table 24-3. These methods help you properly display

text in a window. Let’s look at some examples.

Method Description

int bytesWidth(byte b[], int start,
 int numBytes)

Returns the width of numBytes characters held in array

b, beginning at start.

int charWidth(char c[], int start,
 int numChars)

Returns the width of numChars characters held in array

c, beginning at start.

int charWidth(char c) Returns the width of c.

int charWidth(int c) Returns the width of c.

int getAscent() Returns the ascent of the font.

int getDescent() Returns the descent of the font.

Font getFont() Returns the font.

int getHeight() Returns the height of a line of text. This value can be

used to output multiple lines of text in a window.

int getLeading() Returns the space between lines of text.

int getMaxAdvance() Returns the width of the widest character. –1 is

returned if this value is not available.

Table 24-3 A Sampling of Methods Defined by FontMetrics

766 PART II The Java Library

Displaying Multiple Lines of Text

Perhaps the most common use of FontMetrics is to determine the spacing between lines of

text. The second most common use is to determine the length of a string that is being

displayed. Here, you will see how to accomplish these tasks.

In general, to display multiple lines of text, your program must manually keep track of

the current output position. Each time a newline is desired, the Y coordinate must be

advanced to the beginning of the next line. Each time a string is displayed, the X

coordinate must be set to the point at which the string ends. This allows the next string to

be written so that it begins at the end of the preceding one.

To determine the spacing between lines, you can use the value returned by getLeading().
To determine the total height of the font, add the value returned by getAscent() to the

value returned by getDescent(). You can then use these values to position each line of text

you output. However, in many cases, you will not need to use these individual values. Often,

all that you will need to know is the total height of a line, which is the sum of the leading

space and the font’s ascent and descent values. The easiest way to obtain this value is to call

getHeight(). Simply increment the Y coordinate by this value each time you want to advance

to the next line when outputting text.

To start output at the end of previous output on the same line, you must know the

length, in pixels, of each string that you display. To obtain this value, call stringWidth().
You can use this value to advance the X coordinate each time you display a line.

The following applet shows how to output multiple lines of text in a window. It also

displays multiple sentences on the same line. Notice the variables curX and curY. They

keep track of the current text output position.

// Demonstrate multiline output.
import java.applet.*;
import java.awt.*;
/*
<applet code="MultiLine" width=300 height=100>
</applet>
*/

public class MultiLine extends Applet {
 int curX=0, curY=0; // current position

 public void init() {
 Font f = new Font("SansSerif", Font.PLAIN, 12);
 setFont(f);
 }

Method Description

int getMaxAscent() Returns the maximum ascent.

int getMaxDescent() Returns the maximum descent.

int[] getWidths() Returns the widths of the first 256 characters.

int stringWidth(String str) Returns the width of the string specified by str.

String toString() Returns the string equivalent of the invoking object.

Table 24-3 A Sampling of Methods Defined by FontMetrics (continued)

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 767

P
a

rt
 I

I

 public void paint(Graphics g) {
 FontMetrics fm = g.getFontMetrics();

 nextLine("This is on line one.", g);
 nextLine("This is on line two.", g);
 sameLine(" This is on same line.", g);
 sameLine(" This, too.", g);
 nextLine("This is on line three.", g);
 curX = curY = 0; // Reset coordinates for each repaint.
 }

 // Advance to next line.
 void nextLine(String s, Graphics g) {
 FontMetrics fm = g.getFontMetrics();

 curY += fm.getHeight(); // advance to next line
 curX = 0;
 g.drawString(s, curX, curY);
 curX = fm.stringWidth(s); // advance to end of line
 }

 // Display on same line.
 void sameLine(String s, Graphics g) {
 FontMetrics fm = g.getFontMetrics();

 g.drawString(s, curX, curY);
 curX += fm.stringWidth(s); // advance to end of line
 }
}

Sample output from this program is shown here:

Centering Text

Here is an example that centers text, left to right, top to bottom, in a window. It obtains the

ascent, descent, and width of the string and computes the position at which it must be

displayed to be centered.

// Center text.
import java.applet.*;
import java.awt.*;
/*
 <applet code="CenterText" width=200 height=100>
 </applet>
*/

768 PART II The Java Library

public class CenterText extends Applet {
 final Font f = new Font("SansSerif", Font.BOLD, 18);

 public void paint(Graphics g) {
 Dimension d = this.getSize();

 g.setColor(Color.white);
 g.fillRect(0, 0, d.width,d.height);
 g.setColor(Color.black);
 g.setFont(f);
 drawCenteredString("This is centered.", d.width, d.height, g);
 g.drawRect(0, 0, d.width-1, d.height-1);
 }

 public void drawCenteredString(String s, int w, int h,
 Graphics g) {
 FontMetrics fm = g.getFontMetrics();
 int x = (w - fm.stringWidth(s)) / 2;
 int y = (fm.getAscent() + (h - (fm.getAscent()
 + fm.getDescent()))/2);
 g.drawString(s, x, y);
 }
}

Following is a sample output from this program:

Multiline Text Alignment

When using a word processor, it is common for text to be aligned so that one or more of

the edges of the text make a straight line. For example, most word processors can left-justify

and/or right-justify text. Most can also center text. In the following program, you will see

how to accomplish these actions.

In the program, the string to be justified is broken into individual words. For each

word, the program keeps track of its length in the current font and automatically advances

to the next line if the word will not fit on the current line. Each completed line is displayed

in the window in the currently selected alignment style. Each time you click the mouse in

the applet’s window, the alignment style is changed. Sample output from this program is

shown here:

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 769

P
a

rt
 I

I

// Demonstrate text alignment.
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
/* <title>Text Layout</title>
 <applet code="TextLayout" width=200 height=200>
 <param name="text" value="Output to a Java window is actually
 quite easy.
 As you have seen, the AWT provides support for
 fonts, colors, text, and graphics. <P> Of course,
 you must effectively utilize these items
 if you are to achieve professional results.">
 <param name="fontname" value="Serif">
 <param name="fontSize" value="14">
 </applet>
*/

public class TextLayout extends Applet {
 final int LEFT = 0;
 final int RIGHT = 1;
 final int CENTER = 2;
 final int LEFTRIGHT =3;
 int align;
 Dimension d;
 Font f;
 FontMetrics fm;
 int fontSize;
 int fh, bl;
 int space;
 String text;

 public void init() {
 setBackground(Color.white);
 text = getParameter("text");
 try {

770 PART II The Java Library

 fontSize = Integer.parseInt(getParameter("fontSize"));}
 catch (NumberFormatException e) {
 fontSize=14;
 }
 align = LEFT;
 addMouseListener(new MyMouseAdapter(this));
 }

 public void paint(Graphics g) {
 update(g);
 }

 public void update(Graphics g) {
 d = getSize();
 g.setColor(getBackground());
 g.fillRect(0,0,d.width, d.height);
 if(f==null) f = new Font(getParameter("fontname"),
 Font.PLAIN, fontSize);
 g.setFont(f);
 if(fm == null) {
 fm = g.getFontMetrics();
 bl = fm.getAscent();
 fh = bl + fm.getDescent();
 space = fm.stringWidth(" ");
 }

 g.setColor(Color.black);
 StringTokenizer st = new StringTokenizer(text);
 int x = 0;
 int nextx;
 int y = 0;
 String word, sp;
 int wordCount = 0;
 String line = "";
 while (st.hasMoreTokens()) {
 word = st.nextToken();
 if(word.equals("<P>")) {
 drawString(g, line, wordCount,
 fm.stringWidth(line), y+bl);
 line = "";
 wordCount = 0;
 x = 0;
 y = y + (fh * 2);
 }
 else {
 int w = fm.stringWidth(word);
 if((nextx = (x+space+w)) > d.width) {
 drawString(g, line, wordCount,
 fm.stringWidth(line), y+bl);
 line = "";
 wordCount = 0;
 x = 0;
 y = y + fh;
 }
 if(x!=0) {sp = " ";} else {sp = "";}

 Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text 771

P
a

rt
 I

I

 line = line + sp + word;
 x = x + space + w;
 wordCount++;
 }
 }
 drawString(g, line, wordCount, fm.stringWidth(line), y+bl);
 }

 public void drawString(Graphics g, String line,
 int wc, int lineW, int y) {
 switch(align) {
 case LEFT: g.drawString(line, 0, y);
 break;
 case RIGHT: g.drawString(line, d.width-lineW,y);
 break;
 case CENTER: g.drawString(line, (d.width-lineW)/2, y);
 break;
 case LEFTRIGHT:
 if(lineW < (int)(d.width*.75)) {
 g.drawString(line, 0, y);
 }
 else {
 int toFill = (d.width - lineW)/wc;
 int nudge = d.width - lineW - (toFill*wc);
 int s = fm.stringWidth(" ");
 StringTokenizer st = new StringTokenizer(line);
 int x = 0;
 while(st.hasMoreTokens()) {
 String word = st.nextToken();
 g.drawString(word, x, y);
 if(nudge>0) {
 x = x + fm.stringWidth(word) + space + toFill + 1;
 nudge--;
 } else {
 x = x + fm.stringWidth(word) + space + toFill;
 }
 }
 }
 break;
 }
 }
}

class MyMouseAdapter extends MouseAdapter {
 TextLayout tl;

 public MyMouseAdapter(TextLayout tl) {
 this.tl = tl;
 }

 public void mouseClicked(MouseEvent me) {
 tl.align = (tl.align + 1) % 4;
 tl.repaint();
 }
}

772 PART II The Java Library

Let’s take a closer look at how this applet works. The applet first creates several

constants that will be used to determine the alignment style, and then declares several

variables. The init() method obtains the text that will be displayed. It then initializes the

font size in a try-catch block, which will set the font size to 14 if the fontSize parameter is

missing from the HTML. The text parameter is a long string of text, with the HTML tag

<P> as a paragraph separator.

The update() method is the engine for this example. It sets the font and gets the

baseline and font height from a font metrics object. Next, it creates a StringTokenizer

and uses it to retrieve the next token (a string separated by whitespace) from the string

specified by text. If the next token is <P>, it advances the vertical spacing. Otherwise,

update() checks to see if the length of this token in the current font will go beyond the

width of the column. If the line is full of text or if there are no more tokens, the line is

output by a custom version of drawString().
The first three cases in drawString() are simple. Each aligns the string that is passed in

line to the left or right edge or to the center of the column, depending upon the alignment

style. The LEFTRIGHT case aligns both the left and right sides of the string. This means

that we need to calculate the remaining whitespace (the difference between the width of

the string and the width of the column) and distribute that space between each of the

words. The last method in this class advances the alignment style each time you click the

mouse on the applet’s window.

25
CHAPTER

 773

Using AWT Controls, Layout
Managers, and Menus

This chapter continues our exploration of the Abstract Window Toolkit (AWT). It begins

with an examination of the standard controls and layout managers. It then discusses menus

and the menu bar. The chapter also includes a discussion of two high-level components: the

dialog box and the file dialog box. It concludes with another look at event handling.

Controls are components that allow a user to interact with your application in various

ways—for example, a commonly used control is the push button. A layout manager
automatically positions components within a container. Thus, the appearance of a window

is determined by a combination of the controls that it contains and the layout manager

used to position them.

In addition to the controls, a frame window can also include a standard-style menu bar.
Each entry in a menu bar activates a drop-down menu of options from which the user can

choose. A menu bar is always positioned at the top of a window. Although different in

appearance, menu bars are handled in much the same way as are the other controls.

While it is possible to manually position components within a window, doing so is quite

tedious. The layout manager automates this task. For the first part of this chapter, which

introduces the various controls, the default layout manager will be used. This displays

components in a container using left-to-right, top-to-bottom organization. Once the

controls have been covered, the layout managers will be examined. There you will see

how to better manage the positioning of your controls.

Control Fundamentals
The AWT supports the following types of controls:

• Labels

• Push buttons

• Check boxes

• Choice lists

774 PART II The Java Library

• Lists

• Scroll bars

• Text Editing

These controls are subclasses of Component.

Adding and Removing Controls

To include a control in a window, you must add it to the window. To do this, you must first

create an instance of the desired control and then add it to a window by calling add(),
which is defined by Container. The add() method has several forms. The following form

is the one that is used for the first part of this chapter:

Component add(Component compObj)

Here, compObj is an instance of the control that you want to add. A reference to compObj is
returned. Once a control has been added, it will automatically be visible whenever its parent

window is displayed.

Sometimes you will want to remove a control from a window when the control is no

longer needed. To do this, call remove(). This method is also defined by Container. Here

is one of its forms:

void remove(Component obj)

Here, obj is a reference to the control you want to remove. You can remove all controls by

calling removeAll().

Responding to Controls

Except for labels, which are passive, all controls generate events when they are accessed by

the user. For example, when the user clicks on a push button, an event is sent that identifies

the push button. In general, your program simply implements the appropriate interface

and then registers an event listener for each control that you need to monitor. As explained

in Chapter 23, once a listener has been installed, events are automatically sent to it. In the

sections that follow, the appropriate interface for each control is specified.

The HeadlessException

Most of the AWT controls described in this chapter have constructors that can throw a

HeadlessException when an attempt is made to instantiate a GUI component in a non-

interactive environment (such as one in which no display, mouse, or keyboard is present).

The HeadlessException was added by Java 1.4. You can use this exception to write code that

can adapt to non-interactive environments. (Of course, this is not always possible.) This

exception is not handled by the programs in this chapter because an interactive environment

is required to demonstrate the AWT controls.

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 775

P
a

rt
 I

I

Labels
The easiest control to use is a label. A label is an object of type Label, and it contains a

string, which it displays. Labels are passive controls that do not support any interaction

with the user. Label defines the following constructors:

Label() throws HeadlessException

Label(String str) throws HeadlessException

Label(String str, int how) throws HeadlessException

The first version creates a blank label. The second version creates a label that contains

the string specified by str. This string is left-justified. The third version creates a label that

contains the string specified by str using the alignment specified by how. The value of how

must be one of these three constants: Label.LEFT, Label.RIGHT, or Label.CENTER.

You can set or change the text in a label by using the setText() method. You can obtain

the current label by calling getText(). These methods are shown here:

void setText(String str)
String getText()

For setText(), str specifies the new label. For getText(), the current label is returned.

You can set the alignment of the string within the label by calling setAlignment(). To

obtain the current alignment, call getAlignment(). The methods are as follows:

void setAlignment(int how)

int getAlignment()

Here, how must be one of the alignment constants shown earlier.

The following example creates three labels and adds them to an applet window:

// Demonstrate Labels
import java.awt.*;
import java.applet.*;
/*
<applet code="LabelDemo" width=300 height=200>
</applet>
*/

public class LabelDemo extends Applet {
 public void init() {
 Label one = new Label("One");
 Label two = new Label("Two");
 Label three = new Label("Three");

 // add labels to applet window
 add(one);
 add(two);
 add(three);
 }
}

776 PART II The Java Library

Using Buttons
Perhaps the most widely used control is the push button. A push button is a component that

contains a label and that generates an event when it is pressed. Push buttons are objects of

type Button. Button defines these two constructors:

Button() throws HeadlessException

Button(String str) throws HeadlessException

The first version creates an empty button. The second creates a button that contains str as

a label.

After a button has been created, you can set its label by calling setLabel(). You can

retrieve its label by calling getLabel(). These methods are as follows:

void setLabel(String str)
String getLabel()

Here, str becomes the new label for the button.

Handling Buttons

Each time a button is pressed, an action event is generated. This is sent to any listeners that

previously registered an interest in receiving action event notifications from that component.

Each listener implements the ActionListener interface. That interface defines the

actionPerformed() method, which is called when an event occurs. An ActionEvent object

is supplied as the argument to this method. It contains both a reference to the button that

generated the event and a reference to the action command string associated with the button.

By default, the action command string is the label of the button. Usually, either the

button reference or the action command string can be used to identify the button. (You

will soon see examples of each approach.)

Here is an example that creates three buttons labeled "Yes", "No", and "Undecided".

Each time one is pressed, a message is displayed that reports which button has been

pressed. In this version, the action command of the button (which, by default, is its label)

Here is the window created by the LabelDemo applet. Notice that the labels are organized

in the window by the default layout manager. Later, you will see how to control more

precisely the placement of the labels.

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 777

P
a

rt
 I

I

is used to determine which button has been pressed. The label is obtained by calling the

getActionCommand() method on the ActionEvent object passed to actionPerformed().

// Demonstrate Buttons
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="ButtonDemo" width=250 height=150>
 </applet>
*/

public class ButtonDemo extends Applet implements ActionListener {
 String msg = "";
 Button yes, no, maybe;

 public void init() {
 yes = new Button("Yes");
 no = new Button("No");
 maybe = new Button("Undecided");

 add(yes);
 add(no);
 add(maybe);

 yes.addActionListener(this);
 no.addActionListener(this);
 maybe.addActionListener(this);
 }

 public void actionPerformed(ActionEvent ae) {
 String str = ae.getActionCommand();

 if(str.equals("Yes")) {
 msg = "You pressed Yes.";
 }
 else if(str.equals("No")) {
 msg = "You pressed No.";
 }
 else {
 msg = "You pressed Undecided.";
 }

 repaint();
 }

 public void paint(Graphics g) {
 g.drawString(msg, 6, 100);
 }
}

778 PART II The Java Library

Sample output from the ButtonDemo program is shown in Figure 25-1.

As mentioned, in addition to comparing button action command strings, you can also

determine which button has been pressed by comparing the object obtained from the

getSource() method to the button objects that you added to the window. To do this, you

must keep a list of the objects when they are added. The following applet shows this

approach:

// Recognize Button objects.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="ButtonList" width=250 height=150>
 </applet>
*/

public class ButtonList extends Applet implements ActionListener {
 String msg = "";
 Button bList[] = new Button[3];

 public void init() {
 Button yes = new Button("Yes");
 Button no = new Button("No");
 Button maybe = new Button("Undecided");

 // store references to buttons as added
 bList[0] = (Button) add(yes);
 bList[1] = (Button) add(no);
 bList[2] = (Button) add(maybe);

 // register to receive action events
 for(int i = 0; i < 3; i++) {
 bList[i].addActionListener(this);
 }
 }

 public void actionPerformed(ActionEvent ae) {

Figure 25-1 Sample output from the ButtonDemo applet

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 779

P
a

rt
 I

I

 for(int i = 0; i < 3; i++) {
 if(ae.getSource() == bList[i]) {
 msg = "You pressed " + bList[i].getLabel();
 }
 }
 repaint();
 }

 public void paint(Graphics g) {
 g.drawString(msg, 6, 100);
 }
}

In this version, the program stores each button reference in an array when the buttons

are added to the applet window. (Recall that the add() method returns a reference to the

button when it is added.) Inside actionPerformed(), this array is then used to determine

which button has been pressed.

For simple programs, it is usually easier to recognize buttons by their labels. However,

in situations in which you will be changing the label inside a button during the execution

of your program, or using buttons that have the same label, it may be easier to determine

which button has been pushed by using its object reference. It is also possible to set the

action command string associated with a button to something other than its label by calling

setActionCommand(). This method changes the action command string, but does not

affect the string used to label the button. Thus, setting the action command enables the

action command and the label of a button to differ.

Applying Check Boxes
A check box is a control that is used to turn an option on or off. It consists of a small box that

can either contain a check mark or not. There is a label associated with each check box that

describes what option the box represents. You change the state of a check box by clicking

on it. Check boxes can be used individually or as part of a group. Check boxes are objects

of the Checkbox class.

Checkbox supports these constructors:

Checkbox() throws HeadlessException

Checkbox(String str) throws HeadlessException

Checkbox(String str, boolean on) throws HeadlessException

Checkbox(String str, boolean on, CheckboxGroup cbGroup) throws HeadlessException

Checkbox(String str, CheckboxGroup cbGroup, boolean on) throws HeadlessException

The first form creates a check box whose label is initially blank. The state of the check box

is unchecked. The second form creates a check box whose label is specified by str. The state

of the check box is unchecked. The third form allows you to set the initial state of the check

box. If on is true, the check box is initially checked; otherwise, it is cleared. The fourth and

fifth forms create a check box whose label is specified by str and whose group is specified by

cbGroup. If this check box is not part of a group, then cbGroup must be null. (Check box

groups are described in the next section.) The value of on determines the initial state of the

check box.

780 PART II The Java Library

To retrieve the current state of a check box, call getState(). To set its state, call setState().
You can obtain the current label associated with a check box by calling getLabel(). To set

the label, call setLabel(). These methods are as follows:

boolean getState()

void setState(boolean on)

String getLabel()

void setLabel(String str)

Here, if on is true, the box is checked. If it is false, the box is cleared. The string passed in

str becomes the new label associated with the invoking check box.

Handling Check Boxes

Each time a check box is selected or deselected, an item event is generated. This is sent to

any listeners that previously registered an interest in receiving item event notifications from

that component. Each listener implements the ItemListener interface. That interface defines

the itemStateChanged() method. An ItemEvent object is supplied as the argument to this

method. It contains information about the event (for example, whether it was a selection or

deselection).

The following program creates four check boxes. The initial state of the first box is

checked. The status of each check box is displayed. Each time you change the state of a

check box, the status display is updated.

// Demonstrate check boxes.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="CheckboxDemo" width=240 height=200>
 </applet>
*/

public class CheckboxDemo extends Applet implements ItemListener {
 String msg = "";
 Checkbox winXP, win7, solaris, mac;

 public void init() {
 winXP = new Checkbox("Windows XP", null, true);
 win7 = new Checkbox("Windows 7");
 solaris = new Checkbox("Solaris");
 mac = new Checkbox("Mac OS");

 add(winXP);
 add(win7);
 add(solaris);
 add(mac);

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 781

P
a

rt
 I

I

 winXP.addItemListener(this);
 win7.addItemListener(this);
 solaris.addItemListener(this);
 mac.addItemListener(this);
 }

 public void itemStateChanged(ItemEvent ie) {
 repaint();
 }

 // Display current state of the check boxes.
 public void paint(Graphics g) {
 msg = "Current state: ";
 g.drawString(msg, 6, 80);
 msg = " Windows XP: " + winXP.getState();
 g.drawString(msg, 6, 100);
 msg = " Windows 7: " + win7.getState();
 g.drawString(msg, 6, 120);
 msg = " Solaris: " + solaris.getState();
 g.drawString(msg, 6, 140);
 msg = " Mac OS: " + mac.getState();
 g.drawString(msg, 6, 160);
 }
}

Sample output is shown in Figure 25-2.

Figure 25-2 Sample output from the CheckboxDemo applet

782 PART II The Java Library

CheckboxGroup
It is possible to create a set of mutually exclusive check boxes in which one and only one

check box in the group can be checked at any one time. These check boxes are often called

radio buttons, because they act like the station selector on a car radio—only one station can

be selected at any one time. To create a set of mutually exclusive check boxes, you must first

define the group to which they will belong and then specify that group when you construct

the check boxes. Check box groups are objects of type CheckboxGroup. Only the default

constructor is defined, which creates an empty group.

You can determine which check box in a group is currently selected by calling

getSelectedCheckbox(). You can set a check box by calling setSelectedCheckbox().
These methods are as follows:

Checkbox getSelectedCheckbox()

void setSelectedCheckbox(Checkbox which)

Here, which is the check box that you want to be selected. The previously selected check

box will be turned off.

Here is a program that uses check boxes that are part of a group:

// Demonstrate check box group.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="CBGroup" width=240 height=200>
 </applet>
*/

public class CBGroup extends Applet implements ItemListener {
 String msg = "";
 Checkbox winXP, win7, solaris, mac;
 CheckboxGroup cbg;

 public void init() {
 cbg = new CheckboxGroup();
 winXP = new Checkbox("Windows XP", cbg, true);
 win7 = new Checkbox("Windows 7", cbg, false);
 solaris = new Checkbox("Solaris", cbg, false);
 mac = new Checkbox("Mac OS", cbg, false);

 add(winXP);
 add(win7);
 add(solaris);
 add(mac);

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 783

P
a

rt
 I

I

 winXP.addItemListener(this);
 win7.addItemListener(this);
 solaris.addItemListener(this);
 mac.addItemListener(this);
 }

 public void itemStateChanged(ItemEvent ie) {
 repaint();
 }

 // Display current state of the check boxes.
 public void paint(Graphics g) {
 msg = "Current selection: ";
 msg += cbg.getSelectedCheckbox().getLabel();
 g.drawString(msg, 6, 100);
 }
}

Output generated by the CBGroup applet is shown in Figure 25-3. Notice that the

check boxes are now circular in shape.

Choice Controls
The Choice class is used to create a pop-up list of items from which the user may choose.

Thus, a Choice control is a form of menu. When inactive, a Choice component takes up

only enough space to show the currently selected item. When the user clicks on it, the

Figure 25-3 Sample output from the CBGroup applet

784 PART II The Java Library

whole list of choices pops up, and a new selection can be made. Each item in the list is

a string that appears as a left-justified label in the order it is added to the Choice object.

Choice defines only the default constructor, which creates an empty list.

To add a selection to the list, call add(). It has this general form:

void add(String name)

Here, name is the name of the item being added. Items are added to the list in the order in

which calls to add() occur.

To determine which item is currently selected, you may call either getSelectedItem() or

getSelectedIndex(). These methods are shown here:

String getSelectedItem()

int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item.

getSelectedIndex() returns the index of the item. The first item is at index 0. By default,

the first item added to the list is selected.

To obtain the number of items in the list, call getItemCount(). You can set the

currently selected item using the select() method with either a zero-based integer index or

a string that will match a name in the list. These methods are shown here:

int getItemCount()

void select(int index)

void select(String name)

Given an index, you can obtain the name associated with the item at that index by

calling getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

Handling Choice Lists

Each time a choice is selected, an item event is generated. This is sent to any listeners

that previously registered an interest in receiving item event notifications from that

component. Each listener implements the ItemListener interface. That interface defines

the itemStateChanged() method. An ItemEvent object is supplied as the argument to this

method.

Here is an example that creates two Choice menus. One selects the operating system.

The other selects the browser.

// Demonstrate Choice lists.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 785

P
a

rt
 I

I

 <applet code="ChoiceDemo" width=300 height=180>
 </applet>
*/

public class ChoiceDemo extends Applet implements ItemListener {
 Choice os, browser;
 String msg = "";

 public void init() {
 os = new Choice();
 browser = new Choice();

 // add items to os list
 os.add("Windows XP");
 os.add("Windows 7");
 os.add("Solaris");
 os.add("Mac OS");

 // add items to browser list
 browser.add("Internet Explorer");
 browser.add("Firefox");
 browser.add("Opera");

 // add choice lists to window
 add(os);
 add(browser);

 // register to receive item events
 os.addItemListener(this);
 browser.addItemListener(this);
 }

 public void itemStateChanged(ItemEvent ie) {
 repaint();
 }

 // Display current selections.
 public void paint(Graphics g) {
 msg = "Current OS: ";
 msg += os.getSelectedItem();
 g.drawString(msg, 6, 120);
 msg = "Current Browser: ";
 msg += browser.getSelectedItem();
 g.drawString(msg, 6, 140);
 }
}

Sample output is shown in Figure 25-4.

786 PART II The Java Library

Using Lists
The List class provides a compact, multiple-choice, scrolling selection list. Unlike the

Choice object, which shows only the single selected item in the menu, a List object can be

constructed to show any number of choices in the visible window. It can also be created to

allow multiple selections. List provides these constructors:

List() throws HeadlessException

List(int numRows) throws HeadlessException

List(int numRows, boolean multipleSelect) throws HeadlessException

The first version creates a List control that allows only one item to be selected at any one

time. In the second form, the value of numRows specifies the number of entries in the list

that will always be visible (others can be scrolled into view as needed). In the third form, if

multipleSelect is true, then the user may select two or more items at a time. If it is false, then

only one item may be selected.

To add a selection to the list, call add(). It has the following two forms:

void add(String name)
void add(String name, int index)

Here, name is the name of the item added to the list. The first form adds items to the end of

the list. The second form adds the item at the index specified by index. Indexing begins at

zero. You can specify –1 to add the item to the end of the list.

For lists that allow only single selection, you can determine which item is currently

selected by calling either getSelectedItem() or getSelectedIndex(). These methods are

shown here:

String getSelectedItem()

int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item. If more than

one item is selected, or if no selection has yet been made, null is returned. getSelectedIndex()
returns the index of the item. The first item is at index 0. If more than one item is selected, or

if no selection has yet been made, –1 is returned.

Figure 25-4 Sample output from the ChoiceDemo applet

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 787

P
a

rt
 I

I

For lists that allow multiple selection, you must use either getSelectedItems() or

getSelectedIndexes(), shown here, to determine the current selections:

String[] getSelectedItems()

int[] getSelectedIndexes()

getSelectedItems() returns an array containing the names of the currently selected

items. getSelectedIndexes() returns an array containing the indexes of the currently

selected items.

To obtain the number of items in the list, call getItemCount(). You can set the

currently selected item by using the select() method with a zero-based integer index.

These methods are shown here:

int getItemCount()

void select(int index)

Given an index, you can obtain the name associated with the item at that index by

calling getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

Handling Lists

To process list events, you will need to implement the ActionListener interface. Each time

a List item is double-clicked, an ActionEvent object is generated. Its getActionCommand()
method can be used to retrieve the name of the newly selected item. Also, each time an

item is selected or deselected with a single click, an ItemEvent object is generated. Its

getStateChange() method can be used to determine whether a selection or deselection

triggered this event. getItemSelectable() returns a reference to the object that triggered

this event.

Here is an example that converts the Choice controls in the preceding section into List
components, one multiple choice and the other single choice:

// Demonstrate Lists.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="ListDemo" width=300 height=180>
 </applet>
*/

public class ListDemo extends Applet implements ActionListener {
 List os, browser;
 String msg = "";

 public void init() {
 os = new List(4, true);
 browser = new List(4, false);

788 PART II The Java Library

 // add items to os list
 os.add("Windows XP");
 os.add("Windows 7");
 os.add("Solaris");
 os.add("Mac OS");

 // add items to browser list
 browser.add("Internet Explorer");
 browser.add("Firefox");
 browser.add("Opera");

 browser.select(1);

 // add lists to window
 add(os);
 add(browser);

 // register to receive action events
 os.addActionListener(this);
 browser.addActionListener(this);
 }

 public void actionPerformed(ActionEvent ae) {
 repaint();
 }

 // Display current selections.
 public void paint(Graphics g) {
 int idx[];

 msg = "Current OS: ";
 idx = os.getSelectedIndexes();
 for(int i=0; i<idx.length; i++)
 msg += os.getItem(idx[i]) + " ";
 g.drawString(msg, 6, 120);
 msg = "Current Browser: ";
 msg += browser.getSelectedItem();
 g.drawString(msg, 6, 140);
 }
}

Sample output generated by the ListDemo applet is shown in Figure 25-5.

Managing Scroll Bars
Scroll bars are used to select continuous values between a specified minimum and maximum.

Scroll bars may be oriented horizontally or vertically. A scroll bar is actually a composite of

several individual parts. Each end has an arrow that you can click to move the current value

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 789

P
a

rt
 I

I

of the scroll bar one unit in the direction of the arrow. The current value of the scroll bar

relative to its minimum and maximum values is indicated by the slider box (or thumb) for the

scroll bar. The slider box can be dragged by the user to a new position. The scroll bar will

then reflect this value. In the background space on either side of the thumb, the user can

click to cause the thumb to jump in that direction by some increment larger than 1.

Typically, this action translates into some form of page up and page down. Scroll bars

are encapsulated by the Scrollbar class.

Scrollbar defines the following constructors:

Scrollbar() throws HeadlessException

Scrollbar(int style) throws HeadlessException

Scrollbar(int style, int initialValue, int thumbSize, int min, int max)

 throws HeadlessException

The first form creates a vertical scroll bar. The second and third forms allow you to specify

the orientation of the scroll bar. If style is Scrollbar.VERTICAL, a vertical scroll bar is created.

If style is Scrollbar.HORIZONTAL, the scroll bar is horizontal. In the third form of the

constructor, the initial value of the scroll bar is passed in initialValue. The number of units

represented by the height of the thumb is passed in thumbSize. The minimum and maximum

values for the scroll bar are specified by min and max.

If you construct a scroll bar by using one of the first two constructors, then you need to

set its parameters by using setValues(), shown here, before it can be used:

void setValues(int initialValue, int thumbSize, int min, int max)

The parameters have the same meaning as they have in the third constructor just described.

To obtain the current value of the scroll bar, call getValue(). It returns the current

setting. To set the current value, call setValue(). These methods are as follows:

int getValue()

void setValue(int newValue)

Here, newValue specifies the new value for the scroll bar. When you set a value, the slider

box inside the scroll bar will be positioned to reflect the new value.

Figure 25-5 Sample output from the ListDemo applet

790 PART II The Java Library

You can also retrieve the minimum and maximum values via getMinimum() and

getMaximum(), shown here:

int getMinimum()

int getMaximum()

They return the requested quantity.

By default, 1 is the increment added to or subtracted from the scroll bar each time it is

scrolled up or down one line. You can change this increment by calling setUnitIncrement().
By default, page-up and page-down increments are 10. You can change this value by calling

setBlockIncrement(). These methods are shown here:

void setUnitIncrement(int newIncr)
void setBlockIncrement(int newIncr)

Handling Scroll Bars

To process scroll bar events, you need to implement the AdjustmentListener interface.

Each time a user interacts with a scroll bar, an AdjustmentEvent object is generated. Its

getAdjustmentType() method can be used to determine the type of the adjustment. The

types of adjustment events are as follows:

BLOCK_DECREMENT A page-down event has been generated.

BLOCK_INCREMENT A page-up event has been generated.

TRACK An absolute tracking event has been generated.

UNIT_DECREMENT The line-down button in a scroll bar has been pressed.

UNIT_INCREMENT The line-up button in a scroll bar has been pressed.

The following example creates both a vertical and a horizontal scroll bar. The current

settings of the scroll bars are displayed. If you drag the mouse while inside the window, the

coordinates of each drag event are used to update the scroll bars. An asterisk is displayed

at the current drag position. Notice the use of setPreferredSize() to set the size of the

scrollbars.

// Demonstrate scroll bars.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="SBDemo" width=300 height=200>
 </applet>
*/

public class SBDemo extends Applet
 implements AdjustmentListener, MouseMotionListener {
 String msg = "";
 Scrollbar vertSB, horzSB;

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 791

P
a

rt
 I

I

 public void init() {
 int width = Integer.parseInt(getParameter("width"));
 int height = Integer.parseInt(getParameter("height"));

 vertSB = new Scrollbar(Scrollbar.VERTICAL,
 0, 1, 0, height);
 vertSB.setPreferredSize(new Dimension(20, 100));

 horzSB = new Scrollbar(Scrollbar.HORIZONTAL,
 0, 1, 0, width);
 horzSB.setPreferredSize(new Dimension(100, 20));

 add(vertSB);
 add(horzSB);

 // register to receive adjustment events
 vertSB.addAdjustmentListener(this);
 horzSB.addAdjustmentListener(this);

 addMouseMotionListener(this);
 }

 public void adjustmentValueChanged(AdjustmentEvent ae) {
 repaint();
 }

 // Update scroll bars to reflect mouse dragging.
 public void mouseDragged(MouseEvent me) {
 int x = me.getX();
 int y = me.getY();
 vertSB.setValue(y);
 horzSB.setValue(x);
 repaint();
 }

 // Necessary for MouseMotionListener
 public void mouseMoved(MouseEvent me) {
 }

 // Display current value of scroll bars.
 public void paint(Graphics g) {
 msg = "Vertical: " + vertSB.getValue();
 msg += ", Horizontal: " + horzSB.getValue();
 g.drawString(msg, 6, 160);

 // show current mouse drag position
 g.drawString("*", horzSB.getValue(),
 vertSB.getValue());
 }
}

Sample output from the SBDemo applet is shown in Figure 25-6.

792 PART II The Java Library

Using a TextField
The TextField class implements a single-line text-entry area, usually called an edit control.
Text fields allow the user to enter strings and to edit the text using the arrow keys, cut and

paste keys, and mouse selections. TextField is a subclass of TextComponent. TextField
defines the following constructors:

TextField() throws HeadlessException

TextField(int numChars) throws HeadlessException

TextField(String str) throws HeadlessException

TextField(String str, int numChars) throws HeadlessException

The first version creates a default text field. The second form creates a text field that is

numChars characters wide. The third form initializes the text field with the string contained

in str. The fourth form initializes a text field and sets its width.

TextField (and its superclass TextComponent) provides several methods that allow you

to utilize a text field. To obtain the string currently contained in the text field, call getText().
To set the text, call setText(). These methods are as follows:

String getText()

void setText(String str)

Here, str is the new string.

The user can select a portion of the text in a text field. Also, you can select a portion

of text under program control by using select(). Your program can obtain the currently

selected text by calling getSelectedText(). These methods are shown here:

String getSelectedText()

void select(int startIndex, int endIndex)

getSelectedText() returns the selected text. The select() method selects the characters

beginning at startIndex and ending at endIndex –1.

Figure 25-6 Sample output from the SBDemo applet

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 793

P
a

rt
 I

I

You can control whether the contents of a text field may be modified by the user by

calling setEditable(). You can determine editability by calling isEditable(). These methods

are shown here:

boolean isEditable()

void setEditable(boolean canEdit)

isEditable() returns true if the text may be changed and false if not. In setEditable(),
if canEdit is true, the text may be changed. If it is false, the text cannot be altered.

There may be times when you will want the user to enter text that is not displayed, such

as a password. You can disable the echoing of the characters as they are typed by calling

setEchoChar(). This method specifies a single character that the TextField will display

when characters are entered (thus, the actual characters typed will not be shown). You

can check a text field to see if it is in this mode with the echoCharIsSet() method. You can

retrieve the echo character by calling the getEchoChar() method. These methods are as

follows:

void setEchoChar(char ch)

boolean echoCharIsSet()

char getEchoChar()

Here, ch specifies the character to be echoed. If ch is zero, then normal echoing is restored.

Handling a TextField

Since text fields perform their own editing functions, your program generally will not

respond to individual key events that occur within a text field. However, you may want to

respond when the user presses enter. When this occurs, an action event is generated.

Here is an example that creates the classic user name and password screen:

// Demonstrate text field.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="TextFieldDemo" width=380 height=150>
 </applet>
*/

public class TextFieldDemo extends Applet
 implements ActionListener {

 TextField name, pass;

 public void init() {
 Label namep = new Label("Name: ", Label.RIGHT);
 Label passp = new Label("Password: ", Label.RIGHT);
 name = new TextField(12);
 pass = new TextField(8);
 pass.setEchoChar('?');

794 PART II The Java Library

 add(namep);
 add(name);
 add(passp);
 add(pass);

 // register to receive action events
 name.addActionListener(this);
 pass.addActionListener(this);
 }

 // User pressed Enter.
 public void actionPerformed(ActionEvent ae) {
 repaint();
 }

 public void paint(Graphics g) {
 g.drawString("Name: " + name.getText(), 6, 60);
 g.drawString("Selected text in name: "
 + name.getSelectedText(), 6, 80);
 g.drawString("Password: " + pass.getText(), 6, 100);
 }
}

Sample output from the TextFieldDemo applet is shown in Figure 25-7.

Using a TextArea
Sometimes a single line of text input is not enough for a given task. To handle these

situations, the AWT includes a simple multiline editor called TextArea. Following are

the constructors for TextArea:

TextArea() throws HeadlessException

TextArea(int numLines, int numChars) throws HeadlessException

TextArea(String str) throws HeadlessException

TextArea(String str, int numLines, int numChars) throws HeadlessException

TextArea(String str, int numLines, int numChars, int sBars) throws HeadlessException

Figure 25-7 Sample output from the TextFieldDemo applet

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 795

P
a

rt
 I

I

Here, numLines specifies the height, in lines, of the text area, and numChars specifies its

width, in characters. Initial text can be specified by str. In the fifth form, you can specify

the scroll bars that you want the control to have. sBars must be one of these values:

SCROLLBARS_BOTH SCROLLBARS_NONE

SCROLLBARS_HORIZONTAL_ONLY SCROLLBARS_VERTICAL_ONLY

TextArea is a subclass of TextComponent. Therefore, it supports the getText(), setText(),
getSelectedText(), select(), isEditable(), and setEditable() methods described in the

preceding section.

TextArea adds the following methods:

void append(String str)
void insert(String str, int index)

void replaceRange(String str, int startIndex, int endIndex)

The append() method appends the string specified by str to the end of the current

text. insert() inserts the string passed in str at the specified index. To replace text, call

replaceRange(). It replaces the characters from startIndex to endIndex–1, with the

replacement text passed in str.
Text areas are almost self-contained controls. Your program incurs virtually no

management overhead. Normally, your program simply obtains the current text when

it is needed. You can, however, listen for TextEvents, if you choose.

The following program creates a TextArea control:

// Demonstrate TextArea.
import java.awt.*;
import java.applet.*;
/*
<applet code="TextAreaDemo" width=300 height=250>
</applet>
*/

public class TextAreaDemo extends Applet {
 public void init() {
 String val =
 "Java 7 is the latest version of the most\n" +
 "widely-used computer language for Internet programming.\n" +
 "Building on a rich heritage, Java has advanced both\n" +
 "the art and science of computer language design.\n\n" +
 "One of the reasons for Java's ongoing success is its\n" +
 "constant, steady rate of evolution. Java has never stood\n" +
 "still. Instead, Java has consistently adapted to the\n" +
 "rapidly changing landscape of the networked world.\n" +
 "Moreover, Java has often led the way, charting the\n" +
 "course for others to follow.";

 TextArea text = new TextArea(val, 10, 30);
 add(text);
 }
}

796 PART II The Java Library

Understanding Layout Managers
All of the components that we have shown so far have been positioned by the default layout

manager. As we mentioned at the beginning of this chapter, a layout manager automatically

arranges your controls within a window by using some type of algorithm. If you have

programmed for other GUI environments, such as Windows, then you may have laid out

your controls by hand. While it is possible to lay out Java controls by hand, too, you generally

won’t want to, for two main reasons. First, it is very tedious to manually lay out a large

number of components. Second, sometimes the width and height information is not yet

available when you need to arrange some control, because the native toolkit components

haven’t been realized. This is a chicken-and-egg situation; it is pretty confusing to figure

out when it is okay to use the size of a given component to position it relative to another.

Each Container object has a layout manager associated with it. A layout manager is an

instance of any class that implements the LayoutManager interface. The layout manager is

set by the setLayout() method. If no call to setLayout() is made, then the default layout

manager is used. Whenever a container is resized (or sized for the first time), the layout

manager is used to position each of the components within it.

The setLayout() method has the following general form:

void setLayout(LayoutManager layoutObj)

Here, layoutObj is a reference to the desired layout manager. If you wish to disable the

layout manager and position components manually, pass null for layoutObj. If you do this,

you will need to determine the shape and position of each component manually, using

the setBounds() method defined by Component. Normally, you will want to use a layout

manager.

Each layout manager keeps track of a list of components that are stored by their names.

The layout manager is notified each time you add a component to a container. Whenever the

container needs to be resized, the layout manager is consulted via its minimumLayoutSize()
and preferredLayoutSize() methods. Each component that is being managed by a layout

manager contains the getPreferredSize() and getMinimumSize() methods. These return the

preferred and minimum size required to display each component. The layout manager will

Here is sample output from the TextAreaDemo applet:

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 797

P
a

rt
 I

I

honor these requests if at all possible, while maintaining the integrity of the layout policy.

You may override these methods for controls that you subclass. Default values are provided

otherwise.

Java has several predefined LayoutManager classes, several of which are described next.

You can use the layout manager that best fits your application.

FlowLayout

FlowLayout is the default layout manager. This is the layout manager that the preceding

examples have used. FlowLayout implements a simple layout style, which is similar to how

words flow in a text editor. The direction of the layout is governed by the container’s

component orientation property, which, by default, is left to right, top to bottom.

Therefore, by default, components are laid out line-by-line beginning at the upper-left

corner. In all cases, when a line is filled, layout advances to the next line. A small space

is left between each component, above and below, as well as left and right. Here are the

constructors for FlowLayout:

FlowLayout()

FlowLayout(int how)

FlowLayout(int how, int horz, int vert)

The first form creates the default layout, which centers components and leaves five pixels of

space between each component. The second form lets you specify how each line is aligned.

Valid values for how are as follows:

FlowLayout.LEFT

FlowLayout.CENTER

FlowLayout.RIGHT

FlowLayout.LEADING

FlowLayout.TRAILING

These values specify left, center, right, leading edge, and trailing edge alignment,

respectively. The third constructor allows you to specify the horizontal and vertical space

left between components in horz and vert, respectively.

Here is a version of the CheckboxDemo applet shown earlier in this chapter, modified

so that it uses left-aligned flow layout:

// Use left-aligned flow layout.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="FlowLayoutDemo" width=240 height=200>
 </applet>
*/

public class FlowLayoutDemo extends Applet
 implements ItemListener {

 String msg = "";
 Checkbox winXP, win7, solaris, mac;

798 PART II The Java Library

 public void init() {
 // set left-aligned flow layout
 setLayout(new FlowLayout(FlowLayout.LEFT));

 winXP = new Checkbox("Windows XP", null, true);
 win7 = new Checkbox("Windows 7");
 solaris = new Checkbox("Solaris");
 mac = new Checkbox("Mac OS");

 add(winXP);
 add(win7);
 add(solaris);
 add(mac);

 // register to receive item events
 winXP.addItemListener(this);
 win7.addItemListener(this);
 solaris.addItemListener(this);
 mac.addItemListener(this);
 }

 // Repaint when status of a check box changes.
 public void itemStateChanged(ItemEvent ie) {
 repaint();
 }

 // Display current state of the check boxes.
 public void paint(Graphics g) {

 msg = "Current state: ";
 g.drawString(msg, 6, 80);
 msg = " Windows XP: " + winXP.getState();
 g.drawString(msg, 6, 100);
 msg = " Windows 7: " + win7.getState();
 g.drawString(msg, 6, 120);
 msg = " Solaris: " + solaris.getState();
 g.drawString(msg, 6, 140);
 msg = " Mac: " + mac.getState();
 g.drawString(msg, 6, 160);
 }
}

Here is sample output generated by the FlowLayoutDemo
applet. Compare this with the output from the

CheckboxDemo applet, shown earlier in Figure 25-2.

BorderLayout

The BorderLayout class implements a common layout style

for top-level windows. It has four narrow, fixed-width

components at the edges and one large area in the center. The four sides are referred to as

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 799

P
a

rt
 I

I

north, south, east, and west. The middle area is called the center. Here are the constructors

defined by BorderLayout:

BorderLayout()

BorderLayout(int horz, int vert)

The first form creates a default border layout. The second allows you to specify the

horizontal and vertical space left between components in horz and vert, respectively.

BorderLayout defines the following constants that specify the regions:

BorderLayout.CENTER BorderLayout.SOUTH

BorderLayout.EAST BorderLayout.WEST

BorderLayout.NORTH

When adding components, you will use these constants with the following form of add(),
which is defined by Container:

void add(Component compObj, Object region)

Here, compObj is the component to be added, and region specifies where the component will

be added.

Here is an example of a BorderLayout with a component in each layout area:

// Demonstrate BorderLayout.
import java.awt.*;
import java.applet.*;
import java.util.*;
/*
<applet code="BorderLayoutDemo" width=400 height=200>
</applet>
*/

public class BorderLayoutDemo extends Applet {
 public void init() {
 setLayout(new BorderLayout());

 add(new Button("This is across the top."),
 BorderLayout.NORTH);
 add(new Label("The footer message might go here."),
 BorderLayout.SOUTH);
 add(new Button("Right"), BorderLayout.EAST);
 add(new Button("Left"), BorderLayout.WEST);

 String msg = "The reasonable man adapts " +
 "himself to the world;\n" +
 "the unreasonable one persists in " +
 "trying to adapt the world to himself.\n" +
 "Therefore all progress depends " +
 "on the unreasonable man.\n\n" +
 " - George Bernard Shaw\n\n";

 add(new TextArea(msg), BorderLayout.CENTER);
 }
}

800 PART II The Java Library

Using Insets

Sometimes you will want to leave a small amount of space between the container that holds

your components and the window that contains it. To do this, override the getInsets()
method that is defined by Container. This method returns an Insets object that contains

the top, bottom, left, and right inset to be used when the container is displayed. These

values are used by the layout manager to inset the components when it lays out the window.

The constructor for Insets is shown here:

Insets(int top, int left, int bottom, int right)

The values passed in top, left, bottom, and right specify the amount of space between the

container and its enclosing window.

The getInsets() method has this general form:

Insets getInsets()

When overriding this method, you must return a new Insets object that contains the inset

spacing you desire.

Here is the preceding BorderLayout example modified so that it insets its components

ten pixels from each border. The background color has been set to cyan to help make the

insets more visible.

// Demonstrate BorderLayout with insets.
import java.awt.*;
import java.applet.*;
import java.util.*;
/*
<applet code="InsetsDemo" width=400 height=200>
</applet>
*/

public class InsetsDemo extends Applet {
 public void init() {
 // set background color so insets can be easily seen
 setBackground(Color.cyan);

 setLayout(new BorderLayout());

Sample output from the BorderLayoutDemo applet is shown here:

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 801

P
a

rt
 I

I
GridLayout

GridLayout lays out components in a two-dimensional grid. When you instantiate a

GridLayout, you define the number of rows and columns. The constructors supported by

GridLayout are shown here:

GridLayout()

GridLayout(int numRows, int numColumns)
GridLayout(int numRows, int numColumns, int horz, int vert)

The first form creates a single-column grid layout. The second form creates a grid layout

with the specified number of rows and columns. The third form allows you to specify the

horizontal and vertical space left between components in horz and vert, respectively. Either

numRows or numColumns can be zero. Specifying numRows as zero allows for unlimited-

length columns. Specifying numColumns as zero allows for unlimited-length rows.

 add(new Button("This is across the top."),
 BorderLayout.NORTH);
 add(new Label("The footer message might go here."),
 BorderLayout.SOUTH);
 add(new Button("Right"), BorderLayout.EAST);
 add(new Button("Left"), BorderLayout.WEST);

 String msg = "The reasonable man adapts " +
 "himself to the world;\n" +
 "the unreasonable one persists in " +
 "trying to adapt the world to himself.\n" +
 "Therefore all progress depends " +
 "on the unreasonable man.\n\n" +
 " - George Bernard Shaw\n\n";

 add(new TextArea(msg), BorderLayout.CENTER);
 }

 // add insets
 public Insets getInsets() {
 return new Insets(10, 10, 10, 10);
 }
}

Output from the InsetsDemo applet is shown here:

802 PART II The Java Library

TIP You might try using this example as the starting point for a 15-square puzzle.

CardLayout

The CardLayout class is unique among the other layout managers in that it stores several

different layouts. Each layout can be thought of as being on a separate index card in a deck

that can be shuffled so that any card is on top at a given time. This can be useful for user

interfaces with optional components that can be dynamically enabled and disabled upon

Here is a sample program that creates a 4×4 grid and fills it in with 15 buttons, each

labeled with its index:

// Demonstrate GridLayout
import java.awt.*;
import java.applet.*;
/*
<applet code="GridLayoutDemo" width=300 height=200>
</applet>
*/

public class GridLayoutDemo extends Applet {
 static final int n = 4;
 public void init() {
 setLayout(new GridLayout(n, n));

 setFont(new Font("SansSerif", Font.BOLD, 24));

 for(int i = 0; i < n; i++) {
 for(int j = 0; j < n; j++) {
 int k = i * n + j;
 if(k > 0)
 add(new Button("" + k));
 }
 }
 }
}

Following is the output generated by the GridLayoutDemo applet:

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 803

P
a

rt
 I

I

user input. You can prepare the other layouts and have them hidden, ready to be activated

when needed.

CardLayout provides these two constructors:

CardLayout()

CardLayout(int horz, int vert)

The first form creates a default card layout. The second form allows you to specify the

horizontal and vertical space left between components in horz and vert, respectively.

Use of a card layout requires a bit more work than the other layouts. The cards are

typically held in an object of type Panel. This panel must have CardLayout selected as its

layout manager. The cards that form the deck are also typically objects of type Panel. Thus,

you must create a panel that contains the deck and a panel for each card in the deck. Next,

you add to the appropriate panel the components that form each card. You then add these

panels to the panel for which CardLayout is the layout manager. Finally, you add this panel

to the window. Once these steps are complete, you must provide some way for the user to

select between cards. One common approach is to include one push button for each card

in the deck.

When card panels are added to a panel, they are usually given a name. Thus, most of

the time, you will use this form of add() when adding cards to a panel:

void add(Component panelObj, Object name)

Here, name is a string that specifies the name of the card whose panel is specified by

panelObj.
After you have created a deck, your program activates a card by calling one of the

following methods defined by CardLayout:

void first(Container deck)

void last(Container deck)

void next(Container deck)

void previous(Container deck)

void show(Container deck, String cardName)

Here, deck is a reference to the container (usually a panel) that holds the cards, and

cardName is the name of a card. Calling first() causes the first card in the deck to be shown.

To show the last card, call last(). To show the next card, call next(). To show the previous

card, call previous(). Both next() and previous() automatically cycle back to the top or

bottom of the deck, respectively. The show() method displays the card whose name is

passed in cardName.
The following example creates a two-level card deck that allows the user to select an

operating system. Windows-based operating systems are displayed in one card. Mac OS and

Solaris are displayed in the other card.

// Demonstrate CardLayout.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="CardLayoutDemo" width=300 height=100>
 </applet>
*/

804 PART II The Java Library

public class CardLayoutDemo extends Applet
 implements ActionListener, MouseListener {

 Checkbox winXP, win7, solaris, mac;
 Panel osCards;
 CardLayout cardLO;
 Button Win, Other;

 public void init() {
 Win = new Button("Windows");
 Other = new Button("Other");
 add(Win);
 add(Other);

 cardLO = new CardLayout();
 osCards = new Panel();
 osCards.setLayout(cardLO); // set panel layout to card layout

 winXP = new Checkbox("Windows XP", null, true);
 win7 = new Checkbox("Windows 7");
 solaris = new Checkbox("Solaris");
 mac = new Checkbox("Mac OS");

 // add Windows check boxes to a panel
 Panel winPan = new Panel();
 winPan.add(winXP);
 winPan.add(win7);

 // add other OS check boxes to a panel
 Panel otherPan = new Panel();
 otherPan.add(solaris);
 otherPan.add(mac);

 // add panels to card deck panel
 osCards.add(winPan, "Windows");
 osCards.add(otherPan, "Other");

 // add cards to main applet panel
 add(osCards);

 // register to receive action events
 Win.addActionListener(this);
 Other.addActionListener(this);

 // register mouse events
 addMouseListener(this);
 }

 // Cycle through panels.
 public void mousePressed(MouseEvent me) {
 cardLO.next(osCards);
 }

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 805

P
a

rt
 I

I

 // Provide empty implementations for the other MouseListener methods.
 public void mouseClicked(MouseEvent me) {
 }
 public void mouseEntered(MouseEvent me) {
 }
 public void mouseExited(MouseEvent me) {
 }
 public void mouseReleased(MouseEvent me) {
 }

 public void actionPerformed(ActionEvent ae) {
 if(ae.getSource() == Win) {

 cardLO.show(osCards, "Windows");
 }
 else {
 cardLO.show(osCards, "Other");
 }
 }
}

Here is the output generated by the CardLayoutDemo applet. Each card is activated by

pushing its button. You can also cycle through the cards by clicking the mouse.

GridBagLayout

Although the preceding layouts are perfectly acceptable for many uses, some situations will

require that you take a bit more control over how the components are arranged. A good

way to do this is to use a grid bag layout, which is specified by the GridBagLayout class.

What makes the grid bag useful is that you can specify the relative placement of components

by specifying their positions within cells inside a grid. The key to the grid bag is that each

component can be a different size, and each row in the grid can have a different number

of columns. This is why the layout is called a grid bag. It’s a collection of small grids joined

together.

806 PART II The Java Library

The location and size of each component in a grid bag are determined by a set of

constraints linked to it. The constraints are contained in an object of type GridBagConstraints.
Constraints include the height and width of a cell, and the placement of a component, its

alignment, and its anchor point within the cell.

The general procedure for using a grid bag is to first create a new GridBagLayout
object and to make it the current layout manager. Then, set the constraints that apply to

each component that will be added to the grid bag. Finally, add the components to the

layout manager. Although GridBagLayout is a bit more complicated than the other layout

managers, it is still quite easy to use once you understand how it works.

GridBagLayout defines only one constructor, which is shown here:

GridBagLayout()

GridBagLayout defines several methods, of which many are protected and not for general

use. There is one method, however, that you must use: setConstraints(). It is shown here:

void setConstraints(Component comp, GridBagConstraints cons)

Here, comp is the component for which the constraints specified by cons apply. This method

sets the constraints that apply to each component in the grid bag.

The key to successfully using GridBagLayout is the proper setting of the constraints,

which are stored in a GridBagConstraints object. GridBagConstraints defines several fields

that you can set to govern the size, placement, and spacing of a component. These are

shown in Table 25-1. Several are described in greater detail in the following discussion.

GridBagConstraints also defines several static fields that contain standard constraint

values, such as GridBagConstraints.CENTER and GridBagConstraints.VERTICAL.

Table 25-1 Constraint Fields Defined by GridBagConstraints

Field Purpose

int anchor Specifies the location of a component within a cell. The default is

GridBagConstraints.CENTER.

int fill Specifies how a component is resized if the component is smaller than

its cell. Valid values are GridBagConstraints.NONE (the default),

GridBagConstraints.HORIZONTAL, GridBagConstraints.VERTICAL,

GridBagConstraints.BOTH.

int gridheight Specifies the height of component in terms of cells. The default is 1.

int gridwidth Specifies the width of component in terms of cells. The default is 1.

int gridx Specifies the X coordinate of the cell to which the component will be added.

The default value is GridBagConstraints.RELATIVE.

int gridy Specifies the Y coordinate of the cell to which the component will be added.

The default value is GridBagConstraints.RELATIVE.

Insets insets Specifies the insets. Default insets are all zero.

int ipadx Specifies extra horizontal space that surrounds a component within a cell.

The default is 0.

int ipady Specifies extra vertical space that surrounds a component within a cell. The

default is 0.

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 807

P
a

rt
 I

I

When a component is smaller than its cell, you can use the anchor field to specify where

within the cell the component’s top-left corner will be located. There are three types of

values that you can give to anchor. The first are absolute:

GridBagConstraints.CENTER GridBagConstraints.SOUTH

GridBagConstraints.EAST GridBagConstraints.SOUTHEAST

GridBagConstraints.NORTH GridBagConstraints.SOUTHWEST

GridBagConstraints.NORTHEAST GridBagConstraints.WEST

GridBagConstraints.NORTHWEST

As their names imply, these values cause the component to be placed at the specific

locations.

The second type of values that can be given to anchor is relative, which means the

values are relative to the container’s orientation, which might differ for non-Western

languages. The relative values are shown here:

GridBagConstraints.FIRST_LINE_END GridBagConstraints.LINE_END

GridBagConstraints.FIRST_LINE_START GridBagConstraints.LINE_START

GridBagConstraints.LAST_LINE_END GridBagConstraints.PAGE_END

GridBagConstraints.LAST_LINE_START GridBagConstraints.PAGE_START

Their names describe the placement.

The third type of values that can be given to anchor allows you to position components

relative to the baseline of the row. These values are shown here:

GridBagConstraints.BASELINE GridBagConstraints.BASELINE_LEADING

GridBagConstraints.BASELINE_TRAILING GridBagConstraints.ABOVE_BASELINE

GridBagConstraints.ABOVE_BASELINE_LEADING GridBagConstraints.ABOVE_BASELINE_

TRAILING

GridBagConstraints.BELOW_BASELINE GridBagConstraints.BELOW_BASELINE_

LEADING

GridBagConstraints. BELOW_BASELINE_TRAILING

Field Purpose

double weightx Specifies a weight value that determines the horizontal spacing between cells

and the edges of the container that holds them. The default value is 0.0. The

greater the weight, the more space that is allocated. If all values are 0.0, extra

space is distributed evenly between the edges of the window.

double weighty Specifies a weight value that determines the vertical spacing between cells

and the edges of the container that holds them. The default value is 0.0. The

greater the weight, the more space that is allocated. If all values are 0.0, extra

space is distributed evenly between the edges of the window.

Table 25-1 Constraint Fields Defined by GridBagConstraints (continued)

808 PART II The Java Library

The horizontal position can be either centered, against the leading edge (LEADING), or

against the trailing edge (TRAILING).

The weightx and weighty fields are both quite important and quite confusing at first

glance. In general, their values determine how much of the extra space within a container

is allocated to each row and column. By default, both these values are zero. When all values

within a row or a column are zero, extra space is distributed evenly between the edges of

the window. By increasing the weight, you increase that row or column’s allocation of space

proportional to the other rows or columns. The best way to understand how these values

work is to experiment with them a bit.

The gridwidth variable lets you specify the width of a cell in terms of cell units.

The default is 1. To specify that a component use the remaining space in a row, use

GridBagConstraints.REMAINDER. To specify that a component use the next-to-last cell

in a row, use GridBagConstraints.RELATIVE. The gridheight constraint works the same

way, but in the vertical direction.

You can specify a padding value that will be used to increase the minimum size of a

cell. To pad horizontally, assign a value to ipadx. To pad vertically, assign a value to ipady.

Here is an example that uses GridBagLayout to demonstrate several of the points just

discussed:

// Use GridBagLayout.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="GridBagDemo" width=250 height=200>
 </applet>
*/

public class GridBagDemo extends Applet
 implements ItemListener {

 String msg = "";
 Checkbox winXP, win7, solaris, mac;

 public void init() {
 GridBagLayout gbag = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbag);

 // Define check boxes.
 winXP = new Checkbox("Windows XP ", null, true);
 win7 = new Checkbox("Windows 7");
 solaris = new Checkbox("Solaris");
 mac = new Checkbox("Mac OS");

 // Define the grid bag.

 // Use default row weight of 0 for first row.
 gbc.weightx = 1.0; // use a column weight of 1

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 809

P
a

rt
 I

I

 gbc.ipadx = 200; // pad by 200 units
 gbc.insets = new Insets(4, 4, 0, 0); // inset slightly from top left

 gbc.anchor = GridBagConstraints.NORTHEAST;

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(winXP, gbc);

 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(win7, gbc);

 // Give second row a weight of 1.
 gbc.weighty = 1.0;

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(solaris, gbc);

 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(mac, gbc);

 // Add the components.
 add(winXP);
 add(win7);
 add(solaris);
 add(mac);

 // Register to receive item events.
 winXP.addItemListener(this);
 win7.addItemListener(this);
 solaris.addItemListener(this);
 mac.addItemListener(this);
 }

 // Repaint when status of a check box changes.
 public void itemStateChanged(ItemEvent ie) {
 repaint();
 }

 // Display current state of the check boxes.
 public void paint(Graphics g) {
 msg = "Current state: ";
 g.drawString(msg, 6, 80);
 msg = " Windows XP: " + winXP.getState();
 g.drawString(msg, 6, 100);
 msg = " Windows 7: " + win7.getState();
 g.drawString(msg, 6, 120);
 msg = " Solaris: " + solaris.getState();
 g.drawString(msg, 6, 140);
 msg = " Mac: " + mac.getState();
 g.drawString(msg, 6, 160);
 }
}

810 PART II The Java Library

The output produced by the program is shown here.

In this layout, the operating system check boxes are positioned in a 2×2 grid. Each cell

has a horizontal padding of 200. Each component is inset slightly (by 4 units) from the top

left. The column weight is set to 1, which causes any extra horizontal space to be distributed

evenly between the columns. The first row uses a default weight of 0; the second has a

weight of 1. This means that any extra vertical space is added to the second row.

GridBagLayout is a powerful layout manager. It is worth taking some time to

experiment with and explore. Once you understand what the various settings do, you

can use GridBagLayout to position components with a high degree of precision.

Menu Bars and Menus
A top-level window can have a menu bar associated with it. A menu bar displays a list of

top-level menu choices. Each choice is associated with a drop-down menu. This concept

is implemented in the AWT by the following classes: MenuBar, Menu, and MenuItem. In

general, a menu bar contains one or more Menu objects. Each Menu object contains a list

of MenuItem objects. Each MenuItem object represents something that can be selected by

the user. Since Menu is a subclass of MenuItem, a hierarchy of nested submenus can be

created. It is also possible to include checkable menu items. These are menu options of

type CheckboxMenuItem and will have a check mark next to them when they are selected.

To create a menu bar, first create an instance of MenuBar. This class defines only the

default constructor. Next, create instances of Menu that will define the selections displayed

on the bar. Following are the constructors for Menu:

Menu() throws HeadlessException

Menu(String optionName) throws HeadlessException

Menu(String optionName, boolean removable) throws HeadlessException

Here, optionName specifies the name of the menu selection. If removable is true, the

menu can be removed and allowed to float free. Otherwise, it will remain attached to

the menu bar. (Removable menus are implementation-dependent.) The first form creates

an empty menu.

Individual menu items are of type MenuItem. It defines these constructors:

MenuItem() throws HeadlessException

MenuItem(String itemName) throws HeadlessException

MenuItem(String itemName, MenuShortcut keyAccel) throws HeadlessException

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 811

P
a

rt
 I

I

Here, itemName is the name shown in the menu, and keyAccel is the menu shortcut for

this item.

You can disable or enable a menu item by using the setEnabled() method. Its form is

shown here:

void setEnabled(boolean enabledFlag)

If the argument enabledFlag is true, the menu item is enabled. If false, the menu item is

disabled.

You can determine an item’s status by calling isEnabled(). This method is shown here:

boolean isEnabled()

isEnabled() returns true if the menu item on which it is called is enabled. Otherwise, it

returns false.

You can change the name of a menu item by calling setLabel(). You can retrieve the

current name by using getLabel(). These methods are as follows:

void setLabel(String newName)
String getLabel()

Here, newName becomes the new name of the invoking menu item. getLabel() returns the

current name.

You can create a checkable menu item by using a subclass of MenuItem called

CheckboxMenuItem. It has these constructors:

CheckboxMenuItem() throws HeadlessException

CheckboxMenuItem(String itemName) throws HeadlessException

CheckboxMenuItem(String itemName, boolean on) throws HeadlessException

Here, itemName is the name shown in the menu. Checkable items operate as toggles.

Each time one is selected, its state changes. In the first two forms, the checkable entry

is unchecked. In the third form, if on is true, the checkable entry is initially checked.

Otherwise, it is cleared.

You can obtain the status of a checkable item by calling getState(). You can set it to a

known state by using setState(). These methods are shown here:

boolean getState()

void setState(boolean checked)

If the item is checked, getState() returns true. Otherwise, it returns false. To check an

item, pass true to setState(). To clear an item, pass false.

Once you have created a menu item, you must add the item to a Menu object by using

add(), which has the following general form:

MenuItem add(MenuItem item)

Here, item is the item being added. Items are added to a menu in the order in which the

calls to add() take place. The item is returned.

Once you have added all items to a Menu object, you can add that object to the menu

bar by using this version of add() defined by MenuBar:

Menu add(Menu menu)

Here, menu is the menu being added. The menu is returned.

812 PART II The Java Library

Menus generate events only when an item of type MenuItem or CheckboxMenuItem is

selected. They do not generate events when a menu bar is accessed to display a drop-down

menu, for example. Each time a menu item is selected, an ActionEvent object is generated.

By default, the action command string is the name of the menu item. However, you can

specify a different action command string by calling setActionCommand() on the menu

item. Each time a check box menu item is checked or unchecked, an ItemEvent object is

generated. Thus, you must implement the ActionListener and/or ItemListener interfaces

in order to handle these menu events.

The getItem() method of ItemEvent returns a reference to the item that generated this

event. The general form of this method is shown here:

Object getItem()

Following is an example that adds a series of nested menus to a pop-up window. The

item selected is displayed in the window. The state of the two check box menu items is also

displayed.

// Illustrate menus.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="MenuDemo" width=250 height=250>
 </applet>
*/

// Create a subclass of Frame.
class MenuFrame extends Frame {
 String msg = "";
 CheckboxMenuItem debug, test;

 MenuFrame(String title) {
 super(title);

 // create menu bar and add it to frame
 MenuBar mbar = new MenuBar();
 setMenuBar(mbar);

 // create the menu items
 Menu file = new Menu("File");
 MenuItem item1, item2, item3, item4, item5;
 file.add(item1 = new MenuItem("New..."));
 file.add(item2 = new MenuItem("Open..."));
 file.add(item3 = new MenuItem("Close"));
 file.add(item4 = new MenuItem("-"));
 file.add(item5 = new MenuItem("Quit..."));
 mbar.add(file);

 Menu edit = new Menu("Edit");
 MenuItem item6, item7, item8, item9;
 edit.add(item6 = new MenuItem("Cut"));
 edit.add(item7 = new MenuItem("Copy"));

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 813

P
a

rt
 I

I

 edit.add(item8 = new MenuItem("Paste"));
 edit.add(item9 = new MenuItem("-"));

 Menu sub = new Menu("Special");
 MenuItem item10, item11, item12;
 sub.add(item10 = new MenuItem("First"));
 sub.add(item11 = new MenuItem("Second"));
 sub.add(item12 = new MenuItem("Third"));
 edit.add(sub);

 // these are checkable menu items
 debug = new CheckboxMenuItem("Debug");
 edit.add(debug);
 test = new CheckboxMenuItem("Testing");
 edit.add(test);

 mbar.add(edit);

 // create an object to handle action and item events
 MyMenuHandler handler = new MyMenuHandler(this);
 // register it to receive those events
 item1.addActionListener(handler);
 item2.addActionListener(handler);
 item3.addActionListener(handler);
 item4.addActionListener(handler);
 item5.addActionListener(handler);
 item6.addActionListener(handler);
 item7.addActionListener(handler);
 item8.addActionListener(handler);
 item9.addActionListener(handler);
 item10.addActionListener(handler);
 item11.addActionListener(handler);
 item12.addActionListener(handler);
 debug.addItemListener(handler);
 test.addItemListener(handler);

 // create an object to handle window events
 MyWindowAdapter adapter = new MyWindowAdapter(this);
 // register it to receive those events
 addWindowListener(adapter);
 }

 public void paint(Graphics g) {
 g.drawString(msg, 10, 200);

 if(debug.getState())
 g.drawString("Debug is on.", 10, 220);
 else
 g.drawString("Debug is off.", 10, 220);

 if(test.getState())
 g.drawString("Testing is on.", 10, 240);
 else

814 PART II The Java Library

 g.drawString("Testing is off.", 10, 240);
 }
}

class MyWindowAdapter extends WindowAdapter {
 MenuFrame menuFrame;

 public MyWindowAdapter(MenuFrame menuFrame) {
 this.menuFrame = menuFrame;
 }

 public void windowClosing(WindowEvent we) {
 menuFrame.setVisible(false);
 }
}

class MyMenuHandler implements ActionListener, ItemListener {
 MenuFrame menuFrame;

 public MyMenuHandler(MenuFrame menuFrame) {
 this.menuFrame = menuFrame;
 }

 // Handle action events.
 public void actionPerformed(ActionEvent ae) {
 String msg = "You selected ";
 String arg = ae.getActionCommand();
 if(arg.equals("New..."))
 msg += "New.";
 else if(arg.equals("Open..."))
 msg += "Open.";
 else if(arg.equals("Close"))
 msg += "Close.";
 else if(arg.equals("Quit..."))
 msg += "Quit.";
 else if(arg.equals("Edit"))
 msg += "Edit.";
 else if(arg.equals("Cut"))
 msg += "Cut.";
 else if(arg.equals("Copy"))
 msg += "Copy.";
 else if(arg.equals("Paste"))
 msg += "Paste.";
 else if(arg.equals("First"))
 msg += "First.";
 else if(arg.equals("Second"))
 msg += "Second.";
 else if(arg.equals("Third"))
 msg += "Third.";
 else if(arg.equals("Debug"))
 msg += "Debug.";
 else if(arg.equals("Testing"))
 msg += "Testing.";

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 815

P
a

rt
 I

I

 menuFrame.msg = msg;
 menuFrame.repaint();
 }

 // Handle item events.
 public void itemStateChanged(ItemEvent ie) {
 menuFrame.repaint();
 }
}

// Create frame window.
public class MenuDemo extends Applet {
 Frame f;

 public void init() {
 f = new MenuFrame("Menu Demo");
 int width = Integer.parseInt(getParameter("width"));
 int height = Integer.parseInt(getParameter("height"));

 setSize(new Dimension(width, height));

 f.setSize(width, height);
 f.setVisible(true);
 }

 public void start() {
 f.setVisible(true);
 }

 public void stop() {
 f.setVisible(false);
 }
}

Sample output from the MenuDemo applet is shown in Figure 25-8.

Figure 25-8 Sample output from the MenuDemo applet

816 PART II The Java Library

There is one other menu-related class that you might find interesting: PopupMenu.

It works just like Menu, but produces a menu that can be displayed at a specific location.

PopupMenu provides a flexible, useful alternative for some types of menuing situations.

Dialog Boxes
Often, you will want to use a dialog box to hold a set of related controls. Dialog boxes are

primarily used to obtain user input and are often child windows of a top-level window.

Dialog boxes don’t have menu bars, but in other respects, they function like frame

windows. (You can add controls to them, for example, in the same way that you add

controls to a frame window.) Dialog boxes may be modal or modeless. When a modal dialog

box is active, all input is directed to it until it is closed. This means that you cannot access

other parts of your program until you have closed the dialog box. When a modeless dialog

box is active, input focus can be directed to another window in your program. Thus, other

parts of your program remain active and accessible. Dialog boxes are of type Dialog. Two

commonly used constructors are shown here:

Dialog(Frame parentWindow, boolean mode)
Dialog(Frame parentWindow, String title, boolean mode)

Here, parentWindow is the owner of the dialog box. If mode is true, the dialog box is modal.

Otherwise, it is modeless. The title of the dialog box can be passed in title. Generally, you

will subclass Dialog, adding the functionality required by your application.

Following is a modified version of the preceding menu program that displays a

modeless dialog box when the New option is chosen. Notice that when the dialog box

is closed, dispose() is called. This method is defined by Window, and it frees all system

resources associated with the dialog box window.

// Demonstrate Dialog box.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="DialogDemo" width=250 height=250>
 </applet>
*/

// Create a subclass of Dialog.
class SampleDialog extends Dialog implements ActionListener {
 SampleDialog(Frame parent, String title) {
 super(parent, title, false);
 setLayout(new FlowLayout());
 setSize(300, 200);

 add(new Label("Press this button:"));
 Button b;
 add(b = new Button("Cancel"));
 b.addActionListener(this);
 }

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 817

P
a

rt
 I

I

 public void actionPerformed(ActionEvent ae) {
 dispose();
 }

 public void paint(Graphics g) {
 g.drawString("This is in the dialog box", 10, 70);
 }
}

// Create a subclass of Frame.
class MenuFrame extends Frame {
 String msg = "";
 CheckboxMenuItem debug, test;

 MenuFrame(String title) {
 super(title);

 // create menu bar and add it to frame
 MenuBar mbar = new MenuBar();
 setMenuBar(mbar);

 // create the menu items
 Menu file = new Menu("File");
 MenuItem item1, item2, item3, item4;
 file.add(item1 = new MenuItem("New..."));
 file.add(item2 = new MenuItem("Open..."));
 file.add(item3 = new MenuItem("Close"));
 file.add(new MenuItem("-"));
 file.add(item4 = new MenuItem("Quit..."));
 mbar.add(file);

 Menu edit = new Menu("Edit");
 MenuItem item5, item6, item7;
 edit.add(item5 = new MenuItem("Cut"));
 edit.add(item6 = new MenuItem("Copy"));
 edit.add(item7 = new MenuItem("Paste"));
 edit.add(new MenuItem("-"));

 Menu sub = new Menu("Special", true);
 MenuItem item8, item9, item10;
 sub.add(item8 = new MenuItem("First"));
 sub.add(item9 = new MenuItem("Second"));
 sub.add(item10 = new MenuItem("Third"));
 edit.add(sub);

 // these are checkable menu items
 debug = new CheckboxMenuItem("Debug");
 edit.add(debug);
 test = new CheckboxMenuItem("Testing");
 edit.add(test);

 mbar.add(edit);

818 PART II The Java Library

 // create an object to handle action and item events
 MyMenuHandler handler = new MyMenuHandler(this);
 // register it to receive those events
 item1.addActionListener(handler);
 item2.addActionListener(handler);
 item3.addActionListener(handler);
 item4.addActionListener(handler);
 item5.addActionListener(handler);
 item6.addActionListener(handler);
 item7.addActionListener(handler);
 item8.addActionListener(handler);
 item9.addActionListener(handler);
 item10.addActionListener(handler);
 debug.addItemListener(handler);
 test.addItemListener(handler);

 // create an object to handle window events
 MyWindowAdapter adapter = new MyWindowAdapter(this);

 // register it to receive those events
 addWindowListener(adapter);
 }

 public void paint(Graphics g) {
 g.drawString(msg, 10, 200);

 if(debug.getState())
 g.drawString("Debug is on.", 10, 220);
 else
 g.drawString("Debug is off.", 10, 220);

 if(test.getState())
 g.drawString("Testing is on.", 10, 240);
 else
 g.drawString("Testing is off.", 10, 240);
 }
}

class MyWindowAdapter extends WindowAdapter {
 MenuFrame menuFrame;

 public MyWindowAdapter(MenuFrame menuFrame) {
 this.menuFrame = menuFrame;
 }

 public void windowClosing(WindowEvent we) {
 menuFrame.dispose();
 }
}

class MyMenuHandler implements ActionListener, ItemListener {
 MenuFrame menuFrame;

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 819

P
a

rt
 I

I

 public MyMenuHandler(MenuFrame menuFrame) {
 this.menuFrame = menuFrame;
 }

 // Handle action events.
 public void actionPerformed(ActionEvent ae) {
 String msg = "You selected ";
 String arg = ae.getActionCommand();
 // Activate a dialog box when New is selected.
 if(arg.equals("New...")) {
 msg += "New.";
 SampleDialog d = new
 SampleDialog(menuFrame, "New Dialog Box");
 d.setVisible(true);
 }
 // Try defining other dialog boxes for these options.
 else if(arg.equals("Open..."))
 msg += "Open.";
 else if(arg.equals("Close"))
 msg += "Close.";
 else if(arg.equals("Quit..."))
 msg += "Quit.";
 else if(arg.equals("Edit"))
 msg += "Edit.";
 else if(arg.equals("Cut"))
 msg += "Cut.";
 else if(arg.equals("Copy"))
 msg += "Copy.";
 else if(arg.equals("Paste"))
 msg += "Paste.";
 else if(arg.equals("First"))
 msg += "First.";
 else if(arg.equals("Second"))
 msg += "Second.";
 else if(arg.equals("Third"))
 msg += "Third.";
 else if(arg.equals("Debug"))
 msg += "Debug.";
 else if(arg.equals("Testing"))
 msg += "Testing.";
 menuFrame.msg = msg;
 menuFrame.repaint();
 }

 public void itemStateChanged(ItemEvent ie) {
 menuFrame.repaint();
 }
}

// Create frame window.
public class DialogDemo extends Applet {
 Frame f;

820 PART II The Java Library

 public void init() {
 f = new MenuFrame("Menu Demo");
 int width = Integer.parseInt(getParameter("width"));
 int height = Integer.parseInt(getParameter("height"));

 setSize(width, height);

 f.setSize(width, height);
 f.setVisible(true);
 }

 public void start() {
 f.setVisible(true);
 }

 public void stop() {
 f.setVisible(false);
 }
}

Here is sample output from the DialogDemo applet:

TIP On your own, try defining dialog boxes for the other options presented by the menus.

FileDialog
Java provides a built-in dialog box that lets the user specify a file. To create a file dialog

box, instantiate an object of type FileDialog. This causes a file dialog box to be displayed.

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 821

P
a

rt
 I

I

Usually, this is the standard file dialog box provided by the operating system. Here are

three FileDialog constructors:

FileDialog(Frame parent)
FileDialog(Frame parent, String boxName)
FileDialog(Frame parent, String boxName, int how)

Here, parent is the owner of the dialog box. The boxName parameter specifies the

name displayed in the box’s title bar. If boxName is omitted, the title of the dialog box

is empty. If how is FileDialog.LOAD, then the box is selecting a file for reading. If how is

FileDialog.SAVE, the box is selecting a file for writing. If how is omitted, the box is selecting

a file for reading.

FileDialog provides methods that allow you to determine the name of the file and its

path as selected by the user. Here are two examples:

String getDirectory()

String getFile()

These methods return the directory and the filename, respectively.

The following program activates the standard file dialog box:

/* Demonstrate File Dialog box.

 This is an application, not an applet.
*/
import java.awt.*;
import java.awt.event.*;

// Create a subclass of Frame.
class SampleFrame extends Frame {
 SampleFrame(String title) {
 super(title);

 // remove the window when closed
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent we) {
 System.exit(0);
 }
 });
 }
}

// Demonstrate FileDialog.
class FileDialogDemo {
 public static void main(String args[]) {
 // create a frame that owns the dialog
 Frame f = new SampleFrame("File Dialog Demo");
 f.setVisible(true);
 f.setSize(100, 100);

 FileDialog fd = new FileDialog(f, "File Dialog");

 fd.setVisible(true);
 }
}

822 PART II The Java Library

The output generated by this program is shown here. (The precise configuration of the

dialog box may vary.)

One last point: Beginning with JDK 7, you can use FileDialog to select a list of files. This

functionality is supported by the setMultipleMode(), isMultipleMode(), and getFiles()
methods.

Handling Events by Extending AWT Components
The delegation event model was introduced in Chapter 23, and all of the programs in this

book so far have used that design. But Java also allows you to handle events by subclassing

AWT components. Doing so allows you to handle events in much the same way as they were

handled under the original 1.0 version of Java. Of course, this technique is discouraged,

because it has the same disadvantages of the Java 1.0 event model, the main one being

inefficiency. Handling events by extending AWT components is described in this section

for completeness. However, this technique is not used in any other sections of this book.

When extending an AWT component, you must call the enableEvents() method of

Component. Its general form is shown here:

protected final void enableEvents(long eventMask)

The eventMask argument is a bit mask that defines the events to be delivered to this

component. The AWTEvent class defines int constants for making this mask. Several are

shown here:

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 823

P
a

rt
 I

I

ACTION_EVENT_MASK KEY_EVENT_MASK

ADJUSTMENT_EVENT_MASK MOUSE_EVENT_MASK

COMPONENT_EVENT_MASK MOUSE_MOTION_EVENT_MASK

CONTAINER_EVENT_MASK MOUSE_WHEEL_EVENT_MASK

FOCUS_EVENT_MASK TEXT_EVENT_MASK

INPUT_METHOD_EVENT_MASK WINDOW_EVENT_MASK

ITEM_EVENT_MASK

You must also override the appropriate method from one of your superclasses in order

to process the event. Be sure to also call the superclass version of the method. Table 25-2

lists several commonly used methods and the classes that provide them.

The following sections provide simple programs that show how to extend several AWT

components.

Extending Button

The following program creates an applet that displays a button labeled "Test Button". When

the button is pressed, the string "action event: " is displayed on the status line of the applet

viewer or browser, followed by a count of the number of button presses.

The program has one top-level class named ButtonDemo2 that extends Applet. A static

integer variable named i is defined and initialized to zero. This records the number of

button pushes. The init() method instantiates MyButton and adds it to the applet.

MyButton is an inner class that extends Button. Its constructor uses super to pass the

label of the button to the superclass constructor. It calls enableEvents() so that action

events may be received by this object. When an action event is generated, processActionEvent()
is called. That method displays a string on the status line and calls processActionEvent()

Table 25-2 Commonly Used Event Processing Methods

Class Processing Methods

Button processActionEvent()

Checkbox processItemEvent()

CheckboxMenuItem processItemEvent()

Choice processItemEvent()

Component processComponentEvent(), processFocusEvent(),

processKeyEvent(), processMouseEvent(),

processMouseMotionEvent(), processMouseWheelEvent()

List processActionEvent(), processItemEvent()

MenuItem processActionEvent()

Scrollbar processAdjustmentEvent()

TextComponent processTextEvent()

824 PART II The Java Library

for the superclass. Because MyButton is an inner class, it has direct access to the

showStatus() method of ButtonDemo2.

/*
* <applet code=ButtonDemo2 width=200 height=100>
* </applet>
*/
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class ButtonDemo2 extends Applet {
 MyButton myButton;
 static int i = 0;
 public void init() {
 myButton = new MyButton("Test Button");
 add(myButton);
 }
 class MyButton extends Button {
 public MyButton(String label) {
 super(label);
 enableEvents(AWTEvent.ACTION_EVENT_MASK);
 }
 protected void processActionEvent(ActionEvent ae) {
 showStatus("action event: " + i++);
 super.processActionEvent(ae);
 }
 }
}

Extending Checkbox

The following program creates an applet that displays three check boxes labeled "Item 1",

"Item 2", and "Item 3". When a check box is selected or deselected, a string containing the

name and state of that check box is displayed on the status line of the applet viewer or

browser.

The program has one top-level class named CheckboxDemo2 that extends Applet.
Its init() method creates three instances of MyCheckbox and adds these to the applet.

MyCheckbox is an inner class that extends Checkbox. Its constructor uses super to pass the

label of the check box to the superclass constructor. It calls enableEvents() so that item

events may be received by this object. When an item event is generated, processItemEvent()
is called. That method displays a string on the status line and calls processItemEvent() for

the superclass.

/*
* <applet code=CheckboxDemo2 width=300 height=100>
* </applet>
*/
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 825

P
a

rt
 I

I

public class CheckboxDemo2 extends Applet {
 MyCheckbox myCheckbox1, myCheckbox2, myCheckbox3;
 public void init() {
 myCheckbox1 = new MyCheckbox("Item 1");
 add(myCheckbox1);
 myCheckbox2 = new MyCheckbox("Item 2");
 add(myCheckbox2);
 myCheckbox3 = new MyCheckbox("Item 3");
 add(myCheckbox3);
 }

 class MyCheckbox extends Checkbox {
 public MyCheckbox(String label) {
 super(label);
 enableEvents(AWTEvent.ITEM_EVENT_MASK);
 }
 protected void processItemEvent(ItemEvent ie) {
 showStatus("Checkbox name/state: " + getLabel() +
 "/" + getState());
 super.processItemEvent(ie);
 }
 }
}

Extending a Check Box Group

The following program reworks the preceding check box example so that the check boxes

form a check box group. Thus, only one of the check boxes may be selected at any time.

/*
* <applet code=CheckboxGroupDemo2 width=300 height=100>
* </applet>
*/
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class CheckboxGroupDemo2 extends Applet {
 CheckboxGroup cbg;
 MyCheckbox myCheckbox1, myCheckbox2, myCheckbox3;
 public void init() {
 cbg = new CheckboxGroup();
 myCheckbox1 = new MyCheckbox("Item 1", cbg, true);
 add(myCheckbox1);
 myCheckbox2 = new MyCheckbox("Item 2", cbg, false);
 add(myCheckbox2);
 myCheckbox3 = new MyCheckbox("Item 3", cbg, false);
 add(myCheckbox3);
 }
 class MyCheckbox extends Checkbox {
 public MyCheckbox(String label, CheckboxGroup cbg,
 boolean flag) {
 super(label, cbg, flag);
 enableEvents(AWTEvent.ITEM_EVENT_MASK);
 }

826 PART II The Java Library

 protected void processItemEvent(ItemEvent ie) {
 showStatus("Checkbox name/state: " + getLabel() +
 "/" + getState());
 super.processItemEvent(ie);
 }
 }
}

Extending Choice

The following program creates an applet that displays a choice list with items labeled "Red",

"Green", and "Blue". When an entry is selected, a string that contains the name of the color

is displayed on the status line of the applet viewer or browser.

There is one top-level class named ChoiceDemo2 that extends Applet. Its init() method

creates a choice element and adds it to the applet. MyChoice is an inner class that extends

Choice. It calls enableEvents() so that item events may be received by this object. When an

item event is generated, processItemEvent() is called. That method displays a string on the

status line and calls processItemEvent() for the superclass.

/*
* <applet code=ChoiceDemo2 width=300 height=100>
* </applet>
*/
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class ChoiceDemo2 extends Applet {
 MyChoice choice;
 public void init() {
 choice = new MyChoice();
 choice.add("Red");
 choice.add("Green");
 choice.add("Blue");
 add(choice);
 }
 class MyChoice extends Choice {
 public MyChoice() {
 enableEvents(AWTEvent.ITEM_EVENT_MASK);
 }
 protected void processItemEvent(ItemEvent ie) {
 showStatus("Choice selection: " + getSelectedItem());
 super.processItemEvent(ie);
 }
 }
}

Extending List

The following program modifies the preceding example so that it uses a list instead of a

choice menu. There is one top-level class named ListDemo2 that extends Applet. Its init()
method creates a list element and adds it to the applet. MyList is an inner class that extends

List. It calls enableEvents() so that both action and item events may be received by this

object. When an entry is selected or deselected, processItemEvent() is called. When an

 Chapter 25 Using AWT Controls, Layout Managers, and Menus 827

P
a

rt
 I

I

entry is double-clicked, processActionEvent() is also called. Both methods display a string

and then hand control to the superclass.

/*
* <applet code=ListDemo2 width=300 height=100>
* </applet>
*/
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class ListDemo2 extends Applet {
 MyList list;
 public void init() {
 list = new MyList();
 list.add("Red");
 list.add("Green");
 list.add("Blue");
 add(list);
 }
 class MyList extends List {
 public MyList() {
 enableEvents(AWTEvent.ITEM_EVENT_MASK |
 AWTEvent.ACTION_EVENT_MASK);
 }
 protected void processActionEvent(ActionEvent ae) {
 showStatus("Action event: " + ae.getActionCommand());
 super.processActionEvent(ae);
 }
 protected void processItemEvent(ItemEvent ie) {
 showStatus("Item event: " + getSelectedItem());
 super.processItemEvent(ie);
 }
 }
}

Extending Scrollbar

The following program creates an applet that displays a scroll bar. When this control is

manipulated, a string is displayed on the status line of the applet viewer or browser. That

string includes the value represented by the scroll bar.

There is one top-level class named ScrollbarDemo2 that extends Applet. Its init() method

creates a scroll bar element and adds it to the applet. MyScrollbar is an inner class that

extends Scrollbar. It calls enableEvents() so that adjustment events may be received by this

object. When the scroll bar is manipulated, processAdjustmentEvent() is called. When an

entry is selected, processAdjustmentEvent() is called. It displays a string and then hands

control to the superclass.

/*
* <applet code=ScrollbarDemo2 width=300 height=100>
* </applet>
*/
import java.awt.*;
import java.awt.event.*;

828 PART II The Java Library

import java.applet.*;

public class ScrollbarDemo2 extends Applet {
 MyScrollbar myScrollbar;
 public void init() {
 myScrollbar = new MyScrollbar(Scrollbar.HORIZONTAL,
 0, 1, 0, 100);
 myScrollbar.setPreferredSize(new Dimension(100, 20));
 add(myScrollbar);
 }
 class MyScrollbar extends Scrollbar {
 public MyScrollbar(int style, int initial, int thumb,
 int min, int max) {
 super(style, initial, thumb, min, max);
 enableEvents(AWTEvent.ADJUSTMENT_EVENT_MASK);
 }
 protected void processAdjustmentEvent(AdjustmentEvent ae) {
 showStatus("Adjustment event: " + ae.getValue());
 setValue(getValue());
 super.processAdjustmentEvent(ae);
 }
 }
}

A Word About Overriding paint()
Before concluding our examination of AWT controls, a short word about overriding paint()
is in order. Although not relevant to the simple AWT examples shown in this book, when

overriding paint(), there are times when it is necessary to call the superclass implementation

of paint(). Therefore, for some programs, you will need to use this paint() skeleton:

public void paint(Graphics g) {

 // code to repaint this window

 // Call superclass paint()
 super.paint(g);
}

In Java, there are two general types of components: heavyweight and lightweight. A

heavyweight component has its own native window, which is called its peer. A lightweight

component is implemented completely in Java code and uses the window provided by an

ancestor. The AWT controls described and used in this chapter are all heavyweight.

However, if a container holds any lightweight components (that is, has lightweight child

components), your override of paint() for that container must call super.paint(). By calling

super.paint(), you ensure that any lightweight child components, such as lightweight

controls, get properly painted. If you are unsure of a child component’s type, you can call

isLightweight(), defined by Component, to find out. It returns true if the component is

lightweight, and false otherwise.

26
CHAPTER

 829

Images

This chapter examines the AWT’s Image class and the java.awt.image package. Together,

they provide support for imaging (the display and manipulation of graphical images). An

image is simply a rectangular graphical object. Images are a key component of web design.

In fact, the inclusion of the tag in the Mosaic browser at NCSA (National Center for

Supercomputer Applications) is what caused the Web to begin to grow explosively in 1993.

This tag was used to include an image inline with the flow of hypertext. Java expands upon

this basic concept, allowing images to be managed under program control. Because of its

importance, Java provides extensive support for imaging.

Images are objects of the Image class, which is part of the java.awt package. Images are

manipulated using the classes found in the java.awt.image package. There are a large number

of imaging classes and interfaces defined by java.awt.image, and it is not possible to examine

them all. Instead, we will focus on those that form the foundation of imaging. Here are the

java.awt.image classes discussed in this chapter:

CropImageFilter MemoryImageSource

FilteredImageSource PixelGrabber

ImageFilter RGBImageFilter

These are the interfaces that we will use:

ImageConsumer ImageObserver ImageProducer

Also examined is the MediaTracker class, which is part of java.awt.

File Formats
Originally, web images could only be in GIF format. The GIF image format was created by

CompuServe in 1987 to make it possible for images to be viewed while online, so it was well

suited to the Internet. GIF images can have only up to 256 colors each. This limitation

830 PART II The Java Library

caused the major browser vendors to add support for JPEG images in 1995. The JPEG

format was created by a group of photographic experts to store full-color-spectrum,

continuous-tone images. These images, when properly created, can be of much higher

fidelity as well as more highly compressed than a GIF encoding of the same source image.

Another file format is PNG. It too is an alternative to GIF. In almost all cases, you will never

care or notice which format is being used in your programs. The Java image classes abstract

the differences behind a clean interface.

Image Fundamentals: Creating, Loading, and Displaying
There are three common operations that occur when you work with images: creating an

image, loading an image, and displaying an image. In Java, the Image class is used to refer

to images in memory and to images that must be loaded from external sources. Thus, Java

provides ways for you to create a new image object and ways to load one. It also provides a

means by which an image can be displayed. Let’s look at each.

Creating an Image Object

You might expect that you create a memory image using something like the following:

Image test = new Image(200, 100); // Error -- won’t work

Not so. Because images must eventually be painted on a window to be seen, the Image class

doesn’t have enough information about its environment to create the proper data format

for the screen. Therefore, the Component class in java.awt has a factory method called

createImage() that is used to create Image objects. (Remember that all of the AWT

components are subclasses of Component, so all support this method.)

The createImage() method has the following two forms:

Image createImage(ImageProducer imgProd)

Image createImage(int width, int height)

The first form returns an image produced by imgProd, which is an object of a class that

implements the ImageProducer interface. (We will look at image producers later.) The

second form returns a blank (that is, empty) image that has the specified width and height.

Here is an example:

Canvas c = new Canvas();
Image test = c.createImage(200, 100);

This creates an instance of Canvas and then calls the createImage() method to actually

make an Image object. At this point, the image is blank. Later you will see how to write

data to it.

Loading an Image

The other way to obtain an image is to load one. One way to do this is to use the getImage()
method defined by the Applet class. It has the following forms:

 Chapter 26: Images 831

P
a

rt
 I

I

Image getImage(URL url)
Image getImage(URL url, String imageName)

The first version returns an Image object that encapsulates the image found at the location

specified by url. The second version returns an Image object that encapsulates the image

found at the location specified by url and having the name specified by imageName.

Displaying an Image

Once you have an image, you can display it by using drawImage(), which is a member of

the Graphics class. It has several forms. The one we will be using is shown here:

boolean drawImage(Image imgObj, int left, int top, ImageObserver imgOb)

This displays the image passed in imgObj with its upper-left corner specified by left and top.
imgOb is a reference to a class that implements the ImageObserver interface. This interface

is implemented by all AWT (and Swing) components. An image observer is an object that can

monitor an image while it loads. ImageObserver is described in the next section.

With getImage() and drawImage(), it is actually quite easy to load and display an image.

Here is a sample applet that loads and displays a single image. The file seattle.jpg is loaded,

but you can substitute any GIF, JPG, or PNG file you like (just make sure it is available in

the same directory with the HTML file that contains the applet).

/*
 * <applet code="SimpleImageLoad" width=248 height=146>
 * <param name="img" value="seattle.jpg">
 * </applet>
 */
import java.awt.*;
import java.applet.*;

public class SimpleImageLoad extends Applet
{
 Image img;

 public void init() {
 img = getImage(getDocumentBase(), getParameter("img"));
 }

 public void paint(Graphics g) {
 g.drawImage(img, 0, 0, this);
 }
}

In the init() method, the img variable is assigned to the image returned by getImage().
The getImage() method uses the string returned by getParameter("img") as the filename for

the image. This image is loaded from a URL that is relative to the result of getDocumentBase(),
which is the URL of the HTML page this applet tag was in. The filename returned by

getParameter("img") comes from the applet tag <param name= "img" value="seattle.jpg">.

This is the equivalent, if a little slower, of using the HTML tag <img src="seattle.jpg"
width=248 height=146>. Figure 26-1 shows what it looks like when you run the program.

832 PART II The Java Library

When this applet runs, it starts loading img in the init() method. Onscreen you can see

the image as it loads from the network, because Applet’s implementation of the ImageObserver

interface calls paint() every time more image data arrives.

Seeing the image load is somewhat informative, but it might be better if you use the

time it takes to load the image to do other things in parallel. That way, the fully formed

image can simply appear on the screen in an instant, once it is fully loaded. You can use

ImageObserver, described next, to monitor loading an image while you paint the screen

with other information.

ImageObserver
ImageObserver is an interface used to receive notification as an image is being generated,

and it defines only one method: imageUpdate(). Using an image observer allows you to

perform other actions, such as show a progress indicator or an attract screen, as you are

informed of the progress of the download. This kind of notification is very useful when an

image is being loaded over a slow network.

The imageUpdate() method has this general form:

boolean imageUpdate(Image imgObj, int flags, int left, int top,

 int width, int height)

Here, imgObj is the image being loaded, and flags is an integer that communicates the status

of the update report. The four integers left, top, width, and height represent a rectangle that

contains different values depending on the values passed in flags. imageUpdate() should

return false if it has completed loading, and true if there is more image to process.

The flags parameter contains one or more bit flags defined as static variables inside the

ImageObserver interface. These flags and the information they provide are listed in Table 26-1.

The Applet class has an implementation of the imageUpdate() method for the

ImageObserver interface that is used to repaint images as they are loaded. You can

override this method in your class to change that behavior.

Figure 26-1 Sample output from SimpleImageLoad

 Chapter 26: Images 833

P
a

rt
 I

I

Here is a simple example of an imageUpdate() method:

public boolean imageUpdate(Image img, int flags,
 int x, int y, int w, int h) {
 if ((flags & ALLBITS) == 0) {
 System.out.println("Still processing the image.");
 return true;
 } else {
 System.out.println("Done processing the image.");
 return false;
 }
}

Double Buffering
Not only are images useful for storing pictures, as we’ve just shown, but you can also use

them as offscreen drawing surfaces. This allows you to render any image, including text and

graphics, to an offscreen buffer that you can display at a later time. The advantage to doing

this is that the image is seen only when it is complete. Drawing a complicated image could

take several milliseconds or more, which can be seen by the user as flashing or flickering.

This flashing is distracting and causes the user to perceive your rendering as slower than it

actually is. Use of an offscreen image to reduce flicker is called double buffering, because the

screen is considered a buffer for pixels, and the offscreen image is the second buffer, where

you can prepare pixels for display.

Table 26-1 Bit Flags of the imageUpdate() flags Parameter

Flag Meaning

WIDTH The width parameter is valid and contains the width of the image.

HEIGHT The height parameter is valid and contains the height of the image.

PROPERTIES The properties associated with the image can now be obtained using

imgObj.getProperty().

SOMEBITS More pixels needed to draw the image have been received. The parameters

left, top, width, and height define the rectangle containing the new pixels.

FRAMEBITS A complete frame that is part of a multiframe image, which was previously

drawn, has been received. This frame can be displayed. The left, top, width, and

height parameters are not used.

ALLBITS The image is now complete. The left, top, width, and height parameters are

not used.

ERROR An error has occurred to an image that was being tracked asynchronously. The

image is incomplete and cannot be displayed. No further image information

will be received. The ABORT flag will also be set to indicate that the image

production was aborted.

ABORT An image that was being tracked asynchronously was aborted before it was

complete. However, if an error has not occurred, accessing any part of the

image’s data will restart the production of the image.

834 PART II The Java Library

Earlier in this chapter, you saw how to create a blank Image object. Now you will see

how to draw on that image rather than the screen. As you recall from earlier chapters, you

need a Graphics object in order to use any of Java’s rendering methods. Conveniently, the

Graphics object that you can use to draw on an Image is available via the getGraphics()
method. Here is a code fragment that creates a new image, obtains its graphics context,

and fills the entire image with red pixels:

Canvas c = new Canvas();
Image test = c.createImage(200, 100);
Graphics gc = test.getGraphics();
gc.setColor(Color.red);
gc.fillRect(0, 0, 200, 100);

Once you have constructed and filled an offscreen image, it will still not be visible.

To actually display the image, call drawImage(). Here is an example that draws a time-

consuming image, to demonstrate the difference that double buffering can make in

perceived drawing time:

/*
 * <applet code=DoubleBuffer width=250 height=250>
 * </applet>
 */
 import java.awt.*;
 import java.awt.event.*;
 import java.applet.*;

 public class DoubleBuffer extends Applet {
 int gap = 3;
 int mx, my;
 boolean flicker = true;
 Image buffer = null;
 int w, h;

 public void init() {
 Dimension d = getSize();
 w = d.width;
 h = d.height;
 buffer = createImage(w, h);
 addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent me) {
 mx = me.getX();
 my = me.getY();
 flicker = false;
 repaint();
 }
 public void mouseMoved(MouseEvent me) {
 mx = me.getX();
 my = me.getY();
 flicker = true;
 repaint();
 }
 });
 }

 Chapter 26: Images 835

P
a

rt
 I

I

 public void paint(Graphics g) {
 Graphics screengc = null;

 if (!flicker) {
 screengc = g;
 g = buffer.getGraphics();
 }

 g.setColor(Color.blue);
 g.fillRect(0, 0, w, h);

 g.setColor(Color.red);
 for (int i=0; i<w; i+=gap)
 g.drawLine(i, 0, w-i, h);
 for (int i=0; i<h; i+=gap)
 g.drawLine(0, i, w, h-i);

 g.setColor(Color.black);
 g.drawString("Press mouse button to double buffer", 10, h/2);

 g.setColor(Color.yellow);
 g.fillOval(mx - gap, my - gap, gap*2+1, gap*2+1);

 if (!flicker) {
 screengc.drawImage(buffer, 0, 0, null);
 }
 }

 public void update(Graphics g) {
 paint(g);
 }
}

This simple applet has a complicated paint() method. It fills the background with blue

and then draws a red moiré pattern on top of that. It paints some black text on top of

that and then paints a yellow circle centered at the coordinates mx, my. The mouseMoved()
and mouseDragged() methods are overridden to track the mouse position. These methods

are identical, except for the setting of the flicker Boolean variable. mouseMoved() sets

flicker to true, and mouseDragged() sets it to false. This has the effect of calling repaint()
with flicker set to true when the mouse is moved (but no button is pressed) and set to false

when the mouse is dragged with any button pressed.

When paint() gets called with flicker set to true, we see each drawing operation as it is

executed on the screen. In the case where a mouse button is pressed and paint() is called

with flicker set to false, we see quite a different picture. The paint() method swaps the

Graphics reference g with the graphics context that refers to the offscreen canvas, buffer,

which we created in init(). Then all of the drawing operations are invisible. At the end of

paint(), we simply call drawImage() to show the results of these drawing methods all at once.

Notice that it is okay to pass in a null as the fourth parameter to drawImage(). This is

the parameter used to pass an ImageObserver object that receives notification of image

events. Since this is an image that is not being produced from a network stream, we have no

need for notification. The left snapshot in Figure 26-2 is what the applet looks like with the

836 PART II The Java Library

mouse button not pressed. As you can see, the image was in the middle of repainting when

this snapshot was taken. The right snapshot shows how, when a mouse button is pressed,

the image is always complete and clean due to double buffering.

MediaTracker
A MediaTracker is an object that will check the status of an arbitrary number of images in

parallel. To use MediaTracker, you create a new instance and use its addImage() method to

track the loading status of an image. addImage() has the following general forms:

void addImage(Image imgObj, int imgID)

void addImage(Image imgObj, int imgID, int width, int height)

Here, imgObj is the image being tracked. Its identification number is passed in imgID. ID

numbers do not need to be unique. You can use the same number with several images as a

means of identifying them as part of a group. Furthermore, images with lower IDs are given

priority over those with higher IDs when loading. In the second form, width and height
specify the dimensions of the object when it is displayed.

Once you’ve registered an image, you can check whether it’s loaded, or you can wait for

it to completely load. To check the status of an image, call checkID(). The version used in

this chapter is shown here:

boolean checkID(int imgID)

Here, imgID specifies the ID of the image you want to check. The method returns true if

all images that have the specified ID have been loaded (or if an error or user-abort has

terminated loading). Otherwise, it returns false. You can use the checkAll() method to

see if all images being tracked have been loaded.

You should use MediaTracker when loading a group of images. If all of the images that

you’re interested in aren’t downloaded, you can display something else to entertain the

user until they all arrive.

Figure 26-2 Output from DoubleBuffer without (left) and with (right) double buffering

 Chapter 26: Images 837

P
a

rt
 I

I

CAUTION If you use MediaTracker once you’ve called addImage() on an image, a reference in
MediaTracker will prevent the system from garbage collecting it. If you want the system to be
able to garbage collect images that were being tracked, make sure it can collect the MediaTracker
instance as well.

Here’s an example that loads a seven-image slide show and displays a nice bar chart of

the loading progress:

/*
 * <applet code="TrackedImageLoad" width=300 height=400>
 * <param name="img"
 * value="vincent+leonardo+matisse+picasso+renoir+seurat+vermeer">
 * </applet>
 */
import java.util.*;
import java.applet.*;
import java.awt.*;

public class TrackedImageLoad extends Applet implements Runnable {
 MediaTracker tracker;
 int tracked;
 int frame_rate = 5;
 int current_img = 0;
 Thread motor;
 static final int MAXIMAGES = 10;
 Image img[] = new Image[MAXIMAGES];
 String name[] = new String[MAXIMAGES];
 volatile boolean stopFlag;

 public void init() {
 tracker = new MediaTracker(this);
 StringTokenizer st = new StringTokenizer(getParameter("img"),
 "+");

 while(st.hasMoreTokens() && tracked <= MAXIMAGES) {
 name[tracked] = st.nextToken();
 img[tracked] = getImage(getDocumentBase(),
 name[tracked] + ".jpg");
 tracker.addImage(img[tracked], tracked);
 tracked++;
 }
 }

 public void paint(Graphics g) {
 String loaded = "";
 int donecount = 0;

 for(int i=0; i<tracked; i++) {
 if (tracker.checkID(i, true)) {
 donecount++;
 loaded += name[i] + " ";
 }
 }

838 PART II The Java Library

 Dimension d = getSize();
 int w = d.width;
 int h = d.height;

 if (donecount == tracked) {
 frame_rate = 1;
 Image i = img[current_img++];
 int iw = i.getWidth(null);
 int ih = i.getHeight(null);
 g.drawImage(i, (w - iw)/2, (h - ih)/2, null);
 if (current_img >= tracked)
 current_img = 0;
 } else {
 int x = w * donecount / tracked;
 g.setColor(Color.black);
 g.fillRect(0, h/3, x, 16);
 g.setColor(Color.white);
 g.fillRect(x, h/3, w-x, 16);
 g.setColor(Color.black);
 g.drawString(loaded, 10, h/2);
 }
 }

 public void start() {
 motor = new Thread(this);
 stopFlag = false;
 motor.start();
 }

 public void stop() {
 stopFlag = true;
 }

 public void run() {
 motor.setPriority(Thread.MIN_PRIORITY);
 while (true) {
 repaint();
 try {
 Thread.sleep(1000/frame_rate);
 } catch (InterruptedException e) {
 System.out.println("Interrupted");
 return;
 }
 if(stopFlag)
 return;
 }
 }
}

This example creates a new MediaTracker in the init() method and then adds each of

the named images as a tracked image with addImage(). In the paint() method, it calls

checkID() on each of the images that we’re tracking. If all of the images are loaded, they

are displayed. If not, a simple bar chart of the number of images loaded is shown, with the

names of the fully loaded images displayed underneath the bar. Figure 26-3 shows two

 Chapter 26: Images 839

P
a

rt
 I

I

scenes from this applet running. One is the bar chart, displaying that three of the images

have been loaded. The other is the Van Gogh self-portrait during the slide show.

ImageProducer
ImageProducer is an interface for objects that want to produce data for images. An object

that implements the ImageProducer interface will supply integer or byte arrays that represent

image data and produce Image objects. As you saw earlier, one form of the createImage()
method takes an ImageProducer object as its argument. There are two image producers

contained in java.awt.image: MemoryImageSource and FilteredImageSource. Here, we

will examine MemoryImageSource and create a new Image object from data generated

in an applet.

MemoryImageSource

MemoryImageSource is a class that creates a new Image from an array of data. It defines

several constructors. Here is the one we will be using:

MemoryImageSource(int width, int height, int pixel[], int offset,
 int scanLineWidth)

Figure 26-3 Sample output from TrackedImageLoad

840 PART II The Java Library

The MemoryImageSource object is constructed out of the array of integers specified by

pixel, in the default RGB color model to produce data for an Image object. In the default

color model, a pixel is an integer with Alpha, Red, Green, and Blue (0xAARRGGBB). The

Alpha value represents a degree of transparency for the pixel. Fully transparent is 0 and

fully opaque is 255. The width and height of the resulting image are passed in width and

height. The starting point in the pixel array to begin reading data is passed in offset. The

width of a scan line (which is often the same as the width of the image) is passed in

scanLineWidth.

The following short example generates a MemoryImageSource object using a variation

on a simple algorithm (a bitwise-exclusive-OR of the x and y address of each pixel) from the

book Beyond Photography, The Digital Darkroom by Gerard J. Holzmann (Prentice Hall, 1988).

/*
 * <applet code="MemoryImageGenerator" width=256 height=256>
 * </applet>
 */
import java.applet.*;
import java.awt.*;
import java.awt.image.*;

public class MemoryImageGenerator extends Applet {
 Image img;
 public void init() {
 Dimension d = getSize();
 int w = d.width;
 int h = d.height;
 int pixels[] = new int[w * h];
 int i = 0;

 for(int y=0; y<h; y++) {
 for(int x=0; x<w; x++) {
 int r = (x^y)&0xff;
 int g = (x*2^y*2)&0xff;
 int b = (x*4^y*4)&0xff;
 pixels[i++] = (255 << 24) | (r << 16) | (g << 8) | b;
 }
 }
 img = createImage(new MemoryImageSource(w, h, pixels, 0, w));
 }

 public void paint(Graphics g) {
 g.drawImage(img, 0, 0, this);
 }
}

The data for the new MemoryImageSource is created in the init() method. An array

of integers is created to hold the pixel values; the data is generated in the nested for loops

where the r, g, and b values get shifted into a pixel in the pixels array. Finally, createImage()
is called with a new instance of a MemoryImageSource created from the raw pixel data as

its parameter. Figure 26-4 shows the image when we run the applet. (It looks much nicer in

color.)

 Chapter 26: Images 841

P
a

rt
 I

I

ImageConsumer
ImageConsumer is an interface for objects that want to take pixel data from images and

supply it as another kind of data. This, obviously, is the opposite of ImageProducer,

described earlier. An object that implements the ImageConsumer interface is going to

create int or byte arrays that represent pixels from an Image object. We will examine the

PixelGrabber class, which is a simple implementation of the ImageConsumer interface.

PixelGrabber

The PixelGrabber class is defined within java.lang.image. It is the inverse of the

MemoryImageSource class. Rather than constructing an image from an array of pixel

values, it takes an existing image and grabs the pixel array from it. To use PixelGrabber,

you first create an array of ints big enough to hold the pixel data, and then you create a

PixelGrabber instance passing in the rectangle that you want to grab. Finally, you call

grabPixels() on that instance.

The PixelGrabber constructor that is used in this chapter is shown here:

PixelGrabber(Image imgObj, int left, int top, int width, int height, int pixel [],

 int offset, int scanLineWidth)

Here, imgObj is the object whose pixels are being grabbed. The values of left and top specify

the upper-left corner of the rectangle, and width and height specify the dimensions of the

rectangle from which the pixels will be obtained. The pixels will be stored in pixel
beginning at offset. The width of a scan line (which is often the same as the width of

the image) is passed in scanLineWidth.

grabPixels() is defined like this:

boolean grabPixels()

 throws InterruptedException

boolean grabPixels(long milliseconds)
 throws InterruptedException

Figure 26-4 Sample output from MemoryImageGenerator

842 PART II The Java Library

Both methods return true if successful and false otherwise. In the second form, milliseconds
specifies how long the method will wait for the pixels. Both throw InterruptedException if

execution is interrupted by another thread.

Here is an example that grabs the pixels from an image and then creates a histogram

of pixel brightness. The histogram is simply a count of pixels that are a certain brightness for

all brightness settings between 0 and 255. After the applet paints the image, it draws the

histogram over the top.

/*
 * <applet code=HistoGrab.class width=341 height=400>
 * <param name=img value=vermeer.jpg>
 * </applet> */
import java.applet.*;
import java.awt.* ;
import java.awt.image.* ;

public class HistoGrab extends Applet {
 Dimension d;
 Image img;
 int iw, ih;
 int pixels[];
 int w, h;
 int hist[] = new int[256];
 int max_hist = 0;

 public void init() {
 d = getSize();
 w = d.width;
 h = d.height;

 try {
 img = getImage(getDocumentBase(), getParameter("img"));
 MediaTracker t = new MediaTracker(this);

 t.addImage(img, 0);
 t.waitForID(0);
 iw = img.getWidth(null);
 ih = img.getHeight(null);
 pixels = new int[iw * ih];
 PixelGrabber pg = new PixelGrabber(img, 0, 0, iw, ih,
 pixels, 0, iw);
 pg.grabPixels();
 } catch (InterruptedException e) {
 System.out.println("Interrupted");
 return;
 }

 for (int i=0; i<iw*ih; i++) {
 int p = pixels[i];
 int r = 0xff & (p >> 16);
 int g = 0xff & (p >> 8);
 int b = 0xff & (p);
 int y = (int) (.33 * r + .56 * g + .11 * b);
 hist[y]++;

 Chapter 26: Images 843

P
a

rt
 I

I

 }
 for (int i=0; i<256; i++) {
 if (hist[i] > max_hist)
 max_hist = hist[i];
 }
 }

 public void update() {}

 public void paint(Graphics g) {
 g.drawImage(img, 0, 0, null);
 int x = (w - 256) / 2;
 int lasty = h - h * hist[0] / max_hist;

 for (int i=0; i<256; i++, x++) {
 int y = h - h * hist[i] / max_hist;
 g.setColor(new Color(i, i, i));
 g.fillRect(x, y, 1, h);
 g.setColor(Color.red);
 g.drawLine(x-1,lasty,x,y);
 lasty = y;
 }
 }
}

Figure 26-5 shows the image and histogram for a famous Vermeer painting.

Figure 26-5 Sample output from HistoGrab

844 PART II The Java Library

ImageFilter
Given the ImageProducer and ImageConsumer interface pair—and their concrete classes

MemoryImageSource and PixelGrabber—you can create an arbitrary set of translation filters

that takes a source of pixels, modifies them, and passes them on to an arbitrary consumer. This

mechanism is analogous to the way concrete classes are created from the abstract I/O classes

InputStream, OutputStream, Reader, and Writer (described in Chapter 19). This stream

model for images is completed by the introduction of the ImageFilter class. Some subclasses

of ImageFilter in the java.awt.image package are AreaAveragingScaleFilter, CropImageFilter,

ReplicateScaleFilter, and RGBImageFilter. There is also an implementation of ImageProducer

called FilteredImageSource, which takes an arbitrary ImageFilter and wraps it around

an ImageProducer to filter the pixels it produces. An instance of FilteredImageSource

can be used as an ImageProducer in calls to createImage(), in much the same way that

BufferedInputStreams can be passed off as InputStreams.

In this chapter, we examine two filters: CropImageFilter and RGBImageFilter.

CropImageFilter

CropImageFilter filters an image source to extract a rectangular region. One situation in

which this filter is valuable is where you want to use several small images from a single,

larger source image. Loading twenty 2K images takes much longer than loading a single

40K image that has many frames of an animation tiled into it. If every subimage is the same

size, then you can easily extract these images by using CropImageFilter to disassemble the

block once your program starts. Here is an example that creates 16 images taken from a

single image. The tiles are then scrambled by swapping a random pair from the 16 images

32 times.

/*
 * <applet code=TileImage.class width=288 height=399>
 * <param name=img value=picasso.jpg>
 * </applet>
 */
import java.applet.*;
import java.awt.*;
import java.awt.image.*;

public class TileImage extends Applet {
 Image img;
 Image cell[] = new Image[4*4];
 int iw, ih;
 int tw, th;

 public void init() {
 try {
 img = getImage(getDocumentBase(), getParameter("img"));
 MediaTracker t = new MediaTracker(this);
 t.addImage(img, 0);
 t.waitForID(0);
 iw = img.getWidth(null);
 ih = img.getHeight(null);

 Chapter 26: Images 845

P
a

rt
 I

I

 tw = iw / 4;
 th = ih / 4;
 CropImageFilter f;
 FilteredImageSource fis;
 t = new MediaTracker(this);
 for (int y=0; y<4; y++) {
 for (int x=0; x<4; x++) {
 f = new CropImageFilter(tw*x, th*y, tw, th);
 fis = new FilteredImageSource(img.getSource(), f);
 int i = y*4+x;
 cell[i] = createImage(fis);
 t.addImage(cell[i], i);
 }
 }
 t.waitForAll();
 for (int i=0; i<32; i++) {
 int si = (int)(Math.random() * 16);
 int di = (int)(Math.random() * 16);
 Image tmp = cell[si];
 cell[si] = cell[di];
 cell[di] = tmp;
 }
 } catch (InterruptedException e) {
 System.out.println("Interrupted");
 }
 }

 public void update(Graphics g) {
 paint(g);
 }

 public void paint(Graphics g) {
 for (int y=0; y<4; y++) {
 for (int x=0; x<4; x++) {
 g.drawImage(cell[y*4+x], x * tw, y * th, null);
 }
 }
 }
}

Figure 26-6 shows a famous Picasso painting scrambled by the TileImage applet.

RGBImageFilter

The RGBImageFilter is used to convert one image to another, pixel by pixel, transforming

the colors along the way. This filter could be used to brighten an image, to increase its

contrast, or even to convert it to grayscale.

To demonstrate RGBImageFilter, we have developed a somewhat complicated example

that employs a dynamic plug-in strategy for image-processing filters. We’ve created an

interface for generalized image filtering so that an applet can simply load these filters based

on <param> tags without having to know about all of the ImageFilters in advance. This

example consists of the main applet class called ImageFilterDemo, the interface called

846 PART II The Java Library

PlugInFilter, and a utility class called LoadedImage, which encapsulates some of the

MediaTracker methods we’ve been using in this chapter. Also included are three filters—

Grayscale, Invert, and Contrast—which simply manipulate the color space of the source

image using RGBImageFilters, and two more classes—Blur and Sharpen—which do more

complicated "convolution" filters that change pixel data based on the pixels surrounding

each pixel of source data. Blur and Sharpen are subclasses of an abstract helper class called

Convolver. Let’s look at each part of our example.

ImageFilterDemo.java
The ImageFilterDemo class is the applet framework for our sample image filters. It employs

a simple BorderLayout, with a Panel at the South position to hold the buttons that will

represent each filter. A Label object occupies the North slot for informational messages

about filter progress. The Center is where the image (which is encapsulated in the

LoadedImage Canvas subclass, described later) is put. We parse the buttons/filters

out of the filters <param> tag, separating them with +’s using a StringTokenizer.

The actionPerformed() method is interesting because it uses the label from a button as the

name of a filter class that it tries to load with (PlugInFilter) Class.forName(a).newInstance().
This method is robust and takes appropriate action if the button does not correspond to

a proper class that implements PlugInFilter.

Figure 26-6 Sample output from TileImage

 Chapter 26: Images 847

P
a

rt
 I

I

/*
 * <applet code=ImageFilterDemo width=350 height=450>
 * <param name=img value=vincent.jpg>
 * <param name=filters value="Grayscale+Invert+Contrast+Blur+ Sharpen">
 * </applet>
 */
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class ImageFilterDemo extends Applet implements ActionListener {
 Image img;
 PlugInFilter pif;
 Image fimg;
 Image curImg;
 LoadedImage lim;
 Label lab;
 Button reset;

 public void init() {
 setLayout(new BorderLayout());
 Panel p = new Panel();

 add(p, BorderLayout.SOUTH);
 reset = new Button("Reset");
 reset.addActionListener(this);
 p.add(reset);
 StringTokenizer st = new StringTokenizer(getParameter("filters"), "+");

 while(st.hasMoreTokens()) {
 Button b = new Button(st.nextToken());
 b.addActionListener(this);
 p.add(b);
 }

 lab = new Label("");
 add(lab, BorderLayout.NORTH);

 img = getImage(getDocumentBase(), getParameter("img"));
 lim = new LoadedImage(img);
 add(lim, BorderLayout.CENTER);
 }

 public void actionPerformed(ActionEvent ae) {
 String a = "";

 try {
 a = ae.getActionCommand();
 if (a.equals("Reset")) {
 lim.set(img);
 lab.setText("Normal");
 }

848 PART II The Java Library

 else {
 pif = (PlugInFilter) Class.forName(a).newInstance();
 fimg = pif.filter(this, img);
 lim.set(fimg);
 lab.setText("Filtered: " + a);
 }
 repaint();
 } catch (ClassNotFoundException e) {
 lab.setText(a + " not found");
 lim.set(img);
 repaint();
 } catch (InstantiationException e) {
 lab.setText("couldn’t new " + a);
 } catch (IllegalAccessException e) {
 lab.setText("no access: " + a);
 }
 }
}

Figure 26-7 shows what the applet looks like when it is first loaded using the applet tag

shown at the top of this source file.

Figure 26-7 Sample normal output from ImageFilterDemo

 Chapter 26: Images 849

P
a

rt
 I

I

PlugInFilter.java
PlugInFilter is a simple interface used to abstract image filtering. It has only one method,

filter(), which takes the applet and the source image and returns a new image that has

been filtered in some way.

interface PlugInFilter {
 java.awt.Image filter(java.applet.Applet a, java.awt.Image in);
}

LoadedImage.java
LoadedImage is a convenient subclass of Canvas, which takes an image at construction time

and synchronously loads it using MediaTracker. LoadedImage then behaves properly inside of

LayoutManager control, because it overrides the getPreferredSize() and getMinimumSize()
methods. Also, it has a method called set() that can be used to set a new Image to be

displayed in this Canvas. That is how the filtered image is displayed after the plug-in is

finished.

import java.awt.*;

public class LoadedImage extends Canvas {
 Image img;

 public LoadedImage(Image i) {
 set(i);
 }

 void set(Image i) {
 MediaTracker mt = new MediaTracker(this);
 mt.addImage(i, 0);
 try {
 mt.waitForAll();
 } catch (InterruptedException e) {
 System.out.println("Interrupted");
 return;
 }
 img = i;
 repaint();
 }

 public void paint(Graphics g) {
 if (img == null) {
 g.drawString("no image", 10, 30);
 } else {
 g.drawImage(img, 0, 0, this);
 }
 }

 public Dimension getPreferredSize() {
 return new Dimension(img.getWidth(this), img.getHeight(this));
 }

850 PART II The Java Library

 public Dimension getMinimumSize() {
 return getPreferredSize();
 }
}

Grayscale.java
The Grayscale filter is a subclass of RGBImageFilter, which means that Grayscale can use

itself as the ImageFilter parameter to FilteredImageSource’s constructor. Then all it needs

to do is override filterRGB() to change the incoming color values. It takes the red, green,

and blue values and computes the brightness of the pixel, using the NTSC (National

Television Standards Committee) color-to-brightness conversion factor. It then simply

returns a gray pixel that is the same brightness as the color source.

import java.applet.*;
import java.awt.*;
import java.awt.image.*;

class Grayscale extends RGBImageFilter implements PlugInFilter {
 public Image filter(Applet a, Image in) {
 return a.createImage(new FilteredImageSource(in.getSource(), this));
 }

 public int filterRGB(int x, int y, int rgb) {
 int r = (rgb >> 16) & 0xff;
 int g = (rgb >> 8) & 0xff;
 int b = rgb & 0xff;
 int k = (int) (.56 * g + .33 * r + .11 * b);
 return (0xff000000 | k << 16 | k << 8 | k);
 }
}

Invert.java
The Invert filter is also quite simple. It takes apart the red, green, and blue channels and

then inverts them by subtracting them from 255. These inverted values are packed back

into a pixel value and returned.

import java.applet.*;
import java.awt.*;
import java.awt.image.*;

class Invert extends RGBImageFilter implements PlugInFilter {
 public Image filter(Applet a, Image in) {
 return a.createImage(new FilteredImageSource(in.getSource(), this));
 }

 public int filterRGB(int x, int y, int rgb) {
 int r = 0xff - (rgb >> 16) & 0xff;
 int g = 0xff - (rgb >> 8) & 0xff;
 int b = 0xff - rgb & 0xff;
 return (0xff000000 | r << 16 | g << 8 | b);
 }
}

 Chapter 26: Images 851

P
a

rt
 I

I

Figure 26-8 shows the image after it has been run through the Invert filter.

Contrast.java
The Contrast filter is very similar to Grayscale, except its override of filterRGB() is slightly

more complicated. The algorithm it uses for contrast enhancement takes the red, green,

and blue values separately and boosts them by 1.2 times if they are already brighter than

128. If they are below 128, then they are divided by 1.2. The boosted values are properly

clamped at 255 by the multclamp() method.

import java.applet.*;
import java.awt.*;
import java.awt.image.*;

public class Contrast extends RGBImageFilter implements PlugInFilter {

 public Image filter(Applet a, Image in) {
 return a.createImage(new FilteredImageSource(in.getSource(), this));
 }

 private int multclamp(int in, double factor) {
 in = (int) (in * factor);
 return in > 255 ? 255 : in;
 }

Figure 26-8 Using the Invert filter with ImageFilterDemo

852 PART II The Java Library

 double gain = 1.2;
 private int cont(int in) {
 return (in < 128) ? (int)(in/gain) : multclamp(in, gain);
 }

 public int filterRGB(int x, int y, int rgb) {
 int r = cont((rgb >> 16) & 0xff);
 int g = cont((rgb >> 8) & 0xff);
 int b = cont(rgb & 0xff);
 return (0xff000000 | r << 16 | g << 8 | b);
 }
}

Figure 26-9 shows the image after Contrast is pressed.

Convolver.java
The abstract class Convolver handles the basics of a convolution filter by implementing the

ImageConsumer interface to move the source pixels into an array called imgpixels. It also

creates a second array called newimgpixels for the filtered data. Convolution filters sample

a small rectangle of pixels around each pixel in an image, called the convolution kernel. This

area, 3 x 3 pixels in this demo, is used to decide how to change the center pixel in the area.

NOTE The reason that the filter can’t modify the imgpixels array in place is that the next pixel on a scan
line would try to use the original value for the previous pixel, which would have just been filtered away.

Figure 26-9 Using the Contrast filter with ImageFilterDemo

 Chapter 26: Images 853

P
a

rt
 I

I

The two concrete subclasses, shown in the next section, simply implement the convolve()
method, using imgpixels for source data and newimgpixels to store the result.

import java.applet.*;
import java.awt.*;
import java.awt.image.*;

abstract class Convolver implements ImageConsumer, PlugInFilter {
 int width, height;
 int imgpixels[], newimgpixels[];
 boolean imageReady = false;

 abstract void convolve(); // filter goes here...

 public Image filter(Applet a, Image in) {
 imageReady = false;
 in.getSource().startProduction(this);

 waitForImage();
 newimgpixels = new int[width*height];

 try {
 convolve();
 } catch (Exception e) {
 System.out.println("Convolver failed: " + e);
 e.printStackTrace();
 }
 return a.createImage(
 new MemoryImageSource(width, height, newimgpixels, 0, width));
 }

 synchronized void waitForImage() {
 try {
 while(!imageReady) wait();
 } catch (Exception e) {
 System.out.println("Interrupted");
 }
 }

 public void setProperties(java.util.Hashtable<?,?> dummy) { }
 public void setColorModel(ColorModel dummy) { }
 public void setHints(int dummy) { }

 public synchronized void imageComplete(int dummy) {
 imageReady = true;
 notifyAll();
 }

 public void setDimensions(int x, int y) {
 width = x;
 height = y;
 imgpixels = new int[x*y];
 }

854 PART II The Java Library

 public void setPixels(int x1, int y1, int w, int h,
 ColorModel model, byte pixels[], int off, int scansize) {
 int pix, x, y, x2, y2, sx, sy;

 x2 = x1+w;
 y2 = y1+h;
 sy = off;
 for(y=y1; y<y2; y++) {
 sx = sy;
 for(x=x1; x<x2; x++) {
 pix = model.getRGB(pixels[sx++]);
 if((pix & 0xff000000) == 0)
 pix = 0x00ffffff;
 imgpixels[y*width+x] = pix;
 }
 sy += scansize;
 }
 }

 public void setPixels(int x1, int y1, int w, int h,
 ColorModel model, int pixels[], int off, int scansize) {
 int pix, x, y, x2, y2, sx, sy;

 x2 = x1+w;
 y2 = y1+h;
 sy = off;
 for(y=y1; y<y2; y++) {
 sx = sy;
 for(x=x1; x<x2; x++) {
 pix = model.getRGB(pixels[sx++]);
 if((pix & 0xff000000) == 0)
 pix = 0x00ffffff;
 imgpixels[y*width+x] = pix;
 }
 sy += scansize;
 }
 }
}

Blur.java
The Blur filter is a subclass of Convolver and simply runs through every pixel in the source

image array, imgpixels, and computes the average of the 3 x 3 box surrounding it. The

corresponding output pixel in newimgpixels is that average value.

public class Blur extends Convolver {
 public void convolve() {
 for(int y=1; y<height-1; y++) {
 for(int x=1; x<width-1; x++) {
 int rs = 0;
 int gs = 0;
 int bs = 0;

 Chapter 26: Images 855

P
a

rt
 I

I

 for(int k=-1; k<=1; k++) {
 for(int j=-1; j<=1; j++) {
 int rgb = imgpixels[(y+k)*width+x+j];
 int r = (rgb >> 16) & 0xff;
 int g = (rgb >> 8) & 0xff;
 int b = rgb & 0xff;
 rs += r;
 gs += g;
 bs += b;
 }
 }

 rs /= 9;
 gs /= 9;
 bs /= 9;

 newimgpixels[y*width+x] = (0xff000000 |
 rs << 16 | gs << 8 | bs);
 }
 }
 }
}

Figure 26-10 shows the applet after Blur.

Figure 26-10 Using the Blur filter with ImageFilterDemo

856 PART II The Java Library

Sharpen.java
The Sharpen filter is also a subclass of Convolver and is (more or less) the inverse of Blur.

It runs through every pixel in the source image array, imgpixels, and computes the average

of the 3 x 3 box surrounding it, not counting the center. The corresponding output pixel in

newimgpixels has the difference between the center pixel and the surrounding average

added to it. This basically says that if a pixel is 30 brighter than its surroundings, make it

another 30 brighter. If, however, it is 10 darker, then make it another 10 darker. This tends

to accentuate edges while leaving smooth areas unchanged.

public class Sharpen extends Convolver {

 private final int clamp(int c) {
 return (c > 255 ? 255 : (c < 0 ? 0 : c));
 }

 public void convolve() {
 int r0=0, g0=0, b0=0;

 for(int y=1; y<height-1; y++) {
 for(int x=1; x<width-1; x++) {
 int rs = 0;
 int gs = 0;
 int bs = 0;

 for(int k=-1; k<=1; k++) {
 for(int j=-1; j<=1; j++) {
 int rgb = imgpixels[(y+k)*width+x+j];
 int r = (rgb >> 16) & 0xff;
 int g = (rgb >> 8) & 0xff;
 int b = rgb & 0xff;
 if (j == 0 && k == 0) {
 r0 = r;
 g0 = g;
 b0 = b;
 } else {
 rs += r;
 gs += g;
 bs += b;
 }
 }
 }

 rs >>= 3;
 gs >>= 3;
 bs >>= 3;
 newimgpixels[y*width+x] = (0xff000000 |
 clamp(r0+r0-rs) << 16 |
 clamp(g0+g0-gs) << 8 |
 clamp(b0+b0-bs));
 }
 }
 }
}

 Chapter 26: Images 857

P
a

rt
 I

I

Figure 26-11 shows the applet after Sharpen.

Cell Animation
Now that we have presented an overview of the image APIs, we can put together an

interesting applet that will display a sequence of animation cells. The animation cells are

taken from a single image that can arrange the cells in a grid specified via the rows and

cols <param> tags. Each cell in the image is snipped out in a way similar to that used in the

TileImage example earlier. We obtain the sequence in which to display the cells from the

sequence <param> tag. This is a comma-separated list of cell numbers that is zero-based and

proceeds across the grid from left to right, top to bottom.

Once the applet has parsed the <param> tags and loaded the source image, it cuts the

image into a number of small subimages. Then, a thread is started that causes the images

to be displayed according to the order described in sequence. The thread sleeps for

enough time to maintain the framerate. Here is the source code:

/ Animation example.
import java.applet.*;
import java.awt.*;
import java.awt.image.*;
import java.util.*;

public class Animation extends Applet implements Runnable {
 Image cell[];

Figure 26-11 Using the Sharpen filter with ImageFilterDemo

858 PART II The Java Library

 final int MAXSEQ = 64;
 int sequence[];
 int nseq;
 int idx;
 int framerate;
 volatile boolean stopFlag;

 private int intDef(String s, int def) {
 int n = def;
 if (s != null)
 try {
 n = Integer.parseInt(s);
 } catch (NumberFormatException e) {
 System.out.println("Number Format Exception");
 }
 return n;
 }

 public void init() {
 framerate = intDef(getParameter("framerate"), 5);
 int tilex = intDef(getParameter("cols"), 1);
 int tiley = intDef(getParameter("rows"), 1);
 cell = new Image[tilex*tiley];

 StringTokenizer st = new
 StringTokenizer(getParameter("sequence"), ",");
 sequence = new int[MAXSEQ];
 nseq = 0;
 while(st.hasMoreTokens() && nseq < MAXSEQ) {
 sequence[nseq] = intDef(st.nextToken(), 0);
 nseq++;
 }

 try {
 Image img = getImage(getDocumentBase(), getParameter("img"));
 MediaTracker t = new MediaTracker(this);
 t.addImage(img, 0);
 t.waitForID(0);
 int iw = img.getWidth(null);
 int ih = img.getHeight(null);
 int tw = iw / tilex;
 int th = ih / tiley;
 CropImageFilter f;
 FilteredImageSource fis;

 for (int y=0; y<tiley; y++) {
 for (int x=0; x<tilex; x++) {
 f = new CropImageFilter(tw*x, th*y, tw, th);
 fis = new FilteredImageSource(img.getSource(), f);
 int i = y*tilex+x;
 cell[i] = createImage(fis);
 t.addImage(cell[i], i);
 }
 }

 Chapter 26: Images 859

P
a

rt
 I

I

 t.waitForAll();
 } catch (InterruptedException e) {
 System.out.println("Image Load Interrupted");
 }
 }

 public void update(Graphics g) { }

 public void paint(Graphics g) {
 g.drawImage(cell[sequence[idx]], 0, 0, null);
 }

 Thread t;
 public void start() {
 t = new Thread(this);
 stopFlag = false;
 t.start();
 }

 public void stop() {
 stopFlag = true;
 }

 public void run() {
 idx = 0;
 while (true) {
 paint(getGraphics());
 idx = (idx + 1) % nseq;
 try {
 Thread.sleep(1000/framerate);
 } catch (InterruptedException e) {
 System.out.println("Animation Interrupted");
 return;
 }
 if(stopFlag)
 return;
 }
 }
}

The following applet tag shows the famous locomotion study by Eadweard Muybridge,

which proved that horses do, indeed, get all four hooves off the ground at once. (Of

course, you can substitute another image file in your own applet.)

<applet code=Animation width=67 height=48>
<param name=img value=horse.gif>
<param name=rows value=3>
<param name=cols value=4>
<param name=sequence value=0,1,2,3,4,5,6,7,8,9,10,11>
<param name=framerate value=15>
</applet>

Figure 26-12 shows the applet running. Notice the source image that has been loaded

below the applet using a normal tag.

860 PART II The Java Library

Additional Imaging Classes
In addition to the imaging classes described in this chapter, java.awt.image supplies several

others that offer enhanced control over the imaging process and that support advanced

imaging techniques. Also available is the imaging package called javax.imageio. This

package supports plug-ins that handle various image formats. If sophisticated graphical

output is of special interest to you, then you will want to explore the additional classes

found in java.awt.image and javax.imageio.

Figure 26-12 Sample output of Animation

27
CHAPTER

 861

The Concurrency Utilities

From the start, Java has provided built-in support for multithreading and synchronization.

For example, new threads can be created by implementing Runnable or by extending

Thread; synchronization is available by use of the synchronized keyword; and interthread

communication is supported by the wait() and notify() methods that are defined by Object.
In general, this built-in support for multithreading was one of Java’s most important

innovations and is still one of its major strengths.

However, as conceptually pure as Java’s original support for multithreading is, it is not

ideal for all applications—especially those that make intensive use of multiple threads. For

example, the original multithreading support does not provide several high-level features,

such as semaphores, thread pools, and execution managers, that facilitate the creation of

intensively concurrent programs.

It is important to explain at the outset that many Java programs make use of

multithreading and are, therefore, “concurrent.” For example, many applets and servlets

use multithreading. However, as it is used in this chapter, the term concurrent program refers

to a program that makes extensive, integral use of concurrently executing threads. An example

of such a program is one that uses separate threads to simultaneously compute the partial

results of a larger computation. Another example is a program that coordinates the activities

of several threads, each of which seeks access to information in a database. In this case, read-

only accesses might be handled differently from those that require read/write capabilities.

To begin to handle the needs of a concurrent program, JDK 5 added the concurrency
utilities, also commonly referred to as the concurrent API. The original set of concurrency

utilities supplied many features that had long been wanted by programmers who develop

concurrent applications. For example, it offered synchronizers (such as the semaphore),

thread pools, execution managers, locks, several concurrent collections, and a streamlined

way to use threads to obtain computational results.

Although the original concurrent API was impressive in its own right, it was significantly

expanded by JDK 7. The most important addition is the Fork/Join Framework. The Fork/Join

Framework facilitates the creation of programs that make use of multiple processors (such

as those found in multicore systems). Thus, it streamlines the development of programs in

862 PART II The Java Library

which two or more pieces execute with true simultaneity (that is, true parallel execution),

not just time-slicing. As you can easily imagine, parallel execution can dramatically increase

the speed of certain operations. Because multicore systems are becoming commonplace,

the inclusion of the Fork/Join Framework is as timely as it is powerful.

The original concurrent API was quite large, and the Fork/Join Framework increases

its size substantially. As you might expect, many of the issues surrounding the concurrency

utilities are quite complex. It is beyond the scope of this book to discuss all of its facets. The

preceding notwithstanding, it is important for all programmers to have a general, working

knowledge of the concurrent API. Even in programs that are not intensively parallel, features

such as synchronizers, callable threads, and executors, are applicable to a wide variety of

situations. Perhaps most importantly, because of the rise of multicore computers, solutions

involving the Fork/Join Framework will become more common. For these reasons, this

chapter presents an overview of the concurrency utilities and shows several examples of

their use. It concludes with an in-depth examination of the Fork/Join Framework.

The Concurrent API Packages
The concurrency utilities are contained in the java.util.concurrent package and in its two

subpackages: java.util.concurrent.atomic and java.util.concurrent.locks. A brief overview of

their contents is given here.

java.util.concurrent

java.util.concurrent defines the core features that support alternatives to the built-in

approaches to synchronization and interthread communication. It defines the following

key features:

• Synchronizers

• Executors

• Concurrent collections

• The Fork/Join Framework

Synchronizers offer high-level ways of synchronizing the interactions between multiple

threads. The synchronizer classes defined by java.util.concurrent are

Semaphore Implements the classic semaphore.

CountDownLatch Waits until a specified number of events have occurred.

CyclicBarrier Enables a group of threads to wait at a predefined execution point.

Exchanger Exchanges data between two threads.

Phaser Synchronizes threads that advance through multiple phases of an

operation. (Added by JDK 7.)

Notice that each synchronizer provides a solution to a specific type of synchronization

problem. This enables each synchronizer to be optimized for its intended use. In the past,

these types of synchronization objects had to be crafted by hand. The concurrent API

standardizes them and makes them available to all Java programmers.

 Chapter 27 The Concurrency Utilities 863

P
a

rt
 I

I

Executors manage thread execution. At the top of the executor hierarchy is the Executor

interface, which is used to initiate a thread. ExecutorService extends Executor and provides

methods that manage execution. There are three implementations of ExecutorService:

ThreadPoolExecutor, ScheduledThreadPoolExecutor, and ForkJoinPool (added by JDK 7).

java.util.concurrent also defines the Executors utility class, which includes a number of

static methods that simplify the creation of various executors.

Related to executors are the Future and Callable interfaces. A Future contains a value

that is returned by a thread after it executes. Thus, its value becomes defined “in the

future,” when the thread terminates. Callable defines a thread that returns a value.

java.util.concurrent defines several concurrent collection classes, including

ConcurrentHashMap, ConcurrentLinkedQueue, and CopyOnWriteArrayList. These offer

concurrent alternatives to their related classes defined by the Collections Framework.

The Fork/Join Framework supports parallel programming. Its main classes are ForkJoinTask,

ForkJoinPool, RecursiveTask, and RecursiveAction. As mentioned, the Fork/Join Framework

was added by JDK 7.

Finally, to better handle thread timing, java.util.concurrent defines the TimeUnit
enumeration.

java.util.concurrent.atomic

java.util.concurrent.atomic facilitates the use of variables in a concurrent environment.

It provides a means of efficiently updating the value of a variable without the use of locks.

This is accomplished through the use of classes, such as AtomicInteger and AtomicLong,

and methods, such as compareAndSet(), decrementAndGet(), and getAndSet(). These

methods execute as a single, non-interruptible operation.

java.util.concurrent.locks

java.util.concurrent.locks provides an alternative to the use of synchronized methods. At

the core of this alternative is the Lock interface, which defines the basic mechanism used

to acquire and relinquish access to an object. The key methods are lock(), tryLock(), and

unlock(). The advantage to using these methods is greater control over synchronization.

The remainder of this chapter takes a closer look at the constituents of the concurrent API.

Using Synchronization Objects
Synchronization objects are supported by the Semaphore, CountDownLatch, CyclicBarrier,

Exchanger, and Phaser classes. Collectively, they enable you to handle several formerly

difficult synchronization situations with ease. They are also applicable to a wide range of

programs—even those that contain only limited concurrency. Because the synchronization

objects will be of interest to nearly all Java programs, each is examined here in some detail.

Semaphore

The synchronization object that many readers will immediately recognize is Semaphore,

which implements a classic semaphore. A semaphore controls access to a shared resource

through the use of a counter. If the counter is greater than zero, then access is allowed. If

it is zero, then access is denied. What the counter is counting are permits that allow access to

864 PART II The Java Library

the shared resource. Thus, to access the resource, a thread must be granted a permit from

the semaphore.

In general, to use a semaphore, the thread that wants access to the shared resource tries

to acquire a permit. If the semaphore’s count is greater than zero, then the thread acquires

a permit, which causes the semaphore’s count to be decremented. Otherwise, the thread

will be blocked until a permit can be acquired. When the thread no longer needs access

to the shared resource, it releases the permit, which causes the semaphore’s count to be

incremented. If there is another thread waiting for a permit, then that thread will acquire

a permit at that time. Java’s Semaphore class implements this mechanism.

Semaphore has the two constructors shown here:

Semaphore(int num)

Semaphore(int num, boolean how)

Here, num specifies the initial permit count. Thus, num specifies the number of threads

that can access a shared resource at any one time. If num is one, then only one thread can

access the resource at any one time. By default, waiting threads are granted a permit in an

undefined order. By setting how to true, you can ensure that waiting threads are granted a

permit in the order in which they requested access.

To acquire a permit, call the acquire() method, which has these two forms:

void acquire() throws InterruptedException

void acquire(int num) throws InterruptedException

The first form acquires one permit. The second form acquires num permits. Most often, the

first form is used. If the permit cannot be granted at the time of the call, then the invoking

thread suspends until the permit is available.

To release a permit, call release(), which has these two forms:

void release()

void release(int num)

The first form releases one permit. The second form releases the number of permits

specified by num.
To use a semaphore to control access to a resource, each thread that wants to use that

resource must first call acquire() before accessing the resource. When the thread is done

with the resource, it must call release(). Here is an example that illustrates the use of a

semaphore:

// A simple semaphore example.

import java.util.concurrent.*;

class SemDemo {

 public static void main(String args[]) {
 Semaphore sem = new Semaphore(1);

 new IncThread(sem, "A");
 new DecThread(sem, "B");

 Chapter 27 The Concurrency Utilities 865

P
a

rt
 I

I

 }
}

// A shared resource.
class Shared {
 static int count = 0;
}

// A thread of execution that increments count.
class IncThread implements Runnable {
 String name;
 Semaphore sem;

 IncThread(Semaphore s, String n) {
 sem = s;
 name = n;
 new Thread(this).start();
 }

 public void run() {

 System.out.println("Starting " + name);

 try {
 // First, get a permit.
 System.out.println(name + " is waiting for a permit.");
 sem.acquire();
 System.out.println(name + " gets a permit.");

 // Now, access shared resource.
 for(int i=0; i < 5; i++) {
 Shared.count++;
 System.out.println(name + ": " + Shared.count);

 // Now, allow a context switch -- if possible.
 Thread.sleep(10);
 }
 } catch (InterruptedException exc) {
 System.out.println(exc);
 }

 // Release the permit.
 System.out.println(name + " releases the permit.");
 sem.release();
 }
}

// A thread of execution that decrements count.
class DecThread implements Runnable {
 String name;
 Semaphore sem;

866 PART II The Java Library

 DecThread(Semaphore s, String n) {
 sem = s;
 name = n;
 new Thread(this).start();
 }

 public void run() {

 System.out.println("Starting " + name);

 try {
 // First, get a permit.
 System.out.println(name + " is waiting for a permit.");
 sem.acquire();
 System.out.println(name + " gets a permit.");

 // Now, access shared resource.
 for(int i=0; i < 5; i++) {
 Shared.count--;
 System.out.println(name + ": " + Shared.count);

 // Now, allow a context switch -- if possible.
 Thread.sleep(10);
 }
 } catch (InterruptedException exc) {
 System.out.println(exc);
 }

 // Release the permit.
 System.out.println(name + " releases the permit.");
 sem.release();
 }
}

The output from the program is shown here. (The precise order in which the threads

execute may vary.)

 Starting A
 A is waiting for a permit.
 A gets a permit.
 A: 1
 Starting B
 B is waiting for a permit.
 A: 2
 A: 3
 A: 4
 A: 5
 A releases the permit.
 B gets a permit.
 B: 4
 B: 3
 B: 2
 B: 1
 B: 0
 B releases the permit.

 Chapter 27 The Concurrency Utilities 867

P
a

rt
 I

I

The program uses a semaphore to control access to the count variable, which is a static

variable within the Shared class. Shared.count is incremented five times by the run() method

of IncThread and decremented five times by DecThread. To prevent these two threads from

accessing Shared.count at the same time, access is allowed only after a permit is acquired

from the controlling semaphore. After access is complete, the permit is released. In this

way, only one thread at a time will access Shared.count, as the output shows.

In both IncThread and DecThread, notice the call to sleep() within run(). It is used to

“prove” that accesses to Shared.count are synchronized by the semaphore. In run(), the call

to sleep() causes the invoking thread to pause between each access to Shared.count. This

would normally enable the second thread to run. However, because of the semaphore, the

second thread must wait until the first has released the permit, which happens only after

all accesses by the first thread are complete. Thus, Shared.count is first incremented five

times by IncThread and then decremented five times by DecThread. The increments and

decrements are not intermixed.

Without the use of the semaphore, accesses to Shared.count by both threads would

have occurred simultaneously, and the increments and decrements would be intermixed.

To confirm this, try commenting out the calls to acquire() and release(). When you run

the program, you will see that access to Shared.count is no longer synchronized, and each

thread accesses it as soon as it gets a timeslice.

Although many uses of a semaphore are as straightforward as that shown in the

preceding program, more intriguing uses are also possible. Here is an example. The

following program reworks the producer/consumer program shown in Chapter 11 so that

it uses two semaphores to regulate the producer and consumer threads, ensuring that each

call to put() is followed by a corresponding call to get():

// An implementation of a producer and consumer
// that use semaphores to control synchronization.

import java.util.concurrent.Semaphore;

class Q {
 int n;

 // Start with consumer semaphore unavailable.
 static Semaphore semCon = new Semaphore(0);
 static Semaphore semProd = new Semaphore(1);

 void get() {
 try {
 semCon.acquire();
 } catch(InterruptedException e) {
 System.out.println("InterruptedException caught");
 }

 System.out.println("Got: " + n);
 semProd.release();
 }

 void put(int n) {
 try {
 semProd.acquire();

868 PART II The Java Library

 } catch(InterruptedException e) {
 System.out.println("InterruptedException caught");
 }

 this.n = n;
 System.out.println("Put: " + n);
 semCon.release();
 }
}

class Producer implements Runnable {
 Q q;

 Producer(Q q) {
 this.q = q;
 new Thread(this, "Producer").start();
 }

 public void run() {
 for(int i=0; i < 20; i++) q.put(i);
 }
}

class Consumer implements Runnable {
 Q q;

 Consumer(Q q) {
 this.q = q;
 new Thread(this, "Consumer").start();
 }

 public void run() {
 for(int i=0; i < 20; i++) q.get();
 }
}

class ProdCon {
 public static void main(String args[]) {
 Q q = new Q();
 new Consumer(q);
 new Producer(q);
 }
}

A portion of the output is shown here:

 Put: 0
 Got: 0
 Put: 1
 Got: 1
 Put: 2
 Got: 2

 Chapter 27 The Concurrency Utilities 869

P
a

rt
 I

I

 Put: 3
 Got: 3
 Put: 4
 Got: 4
 Put: 5
 Got: 5
 .
 .
 .

As you can see, the calls to put() and get() are synchronized. That is, each call to put()
is followed by a call to get() and no values are missed. Without the semaphores, multiple

calls to put() would have occurred without matching calls to get(), resulting in values

being missed. (To prove this, remove the semaphore code and observe the results.)

The sequencing of put() and get() calls is handled by two semaphores: semProd and

semCon. Before put() can produce a value, it must acquire a permit from semProd. After

it has set the value, it releases semCon. Before get() can consume a value, it must acquire a

permit from semCon. After it consumes the value, it releases semProd. This “give and take”

mechanism ensures that each call to put() must be followed by a call to get().
Notice that semCon is initialized with no available permits. This ensures that put()

executes first. The ability to set the initial synchronization state is one of the more powerful

aspects of a semaphore.

CountDownLatch

Sometimes you will want a thread to wait until one or more events have occurred. To handle

such a situation, the concurrent API supplies CountDownLatch. A CountDownLatch is

initially created with a count of the number of events that must occur before the latch is

released. Each time an event happens, the count is decremented. When the count reaches

zero, the latch opens.

CountDownLatch has the following constructor:

CountDownLatch(int num)

Here, num specifies the number of events that must occur in order for the latch to open.

To wait on the latch, a thread calls await(), which has the forms shown here:

void await() throws InterruptedException

boolean await(long wait, TimeUnit tu) throws InterruptedException

The first form waits until the count associated with the invoking CountDownLatch reaches

zero. The second form waits only for the period of time specified by wait. The units

represented by wait are specified by tu, which is an object the TimeUnit enumeration.

(TimeUnit is described later in this chapter.) It returns false if the time limit is reached,

and true if the countdown reaches zero

To signal an event, call the countDown() method, shown next:

void countDown()

Each call to countDown() decrements the count associated with the invoking object.

870 PART II The Java Library

The following program demonstrates CountDownLatch. It creates a latch that requires

five events to occur before it opens.

// An example of CountDownLatch.

import java.util.concurrent.CountDownLatch;

class CDLDemo {
 public static void main(String args[]) {
 CountDownLatch cdl = new CountDownLatch(5);

 System.out.println("Starting");

 new MyThread(cdl);

 try {
 cdl.await();
 } catch (InterruptedException exc) {
 System.out.println(exc);
 }

 System.out.println("Done");
 }
}

class MyThread implements Runnable {
 CountDownLatch latch;

 MyThread(CountDownLatch c) {
 latch = c;
 new Thread(this).start();
 }

 public void run() {
 for(int i = 0; i<5; i++) {
 System.out.println(i);
 latch.countDown(); // decrement count
 }
 }
}

The output produced by the program is shown here:

 Starting
 0
 1
 2
 3
 4
 Done

Inside main(), a CountDownLatch called cdl is created with an initial count of five.

Next, an instance of MyThread is created, which begins execution of a new thread. Notice

that cdl is passed as a parameter to MyThread’s constructor and stored in the latch instance

 Chapter 27 The Concurrency Utilities 871

P
a

rt
 I

I

variable. Then, the main thread calls await() on cdl, which causes execution of the main

thread to pause until cdl’s count has been decremented five times.

Inside the run() method of MyThread, a loop is created that iterates five times. With

each iteration, the countDown() method is called on latch, which refers to cdl in main().
After the fifth iteration, the latch opens, which allows the main thread to resume.

CountDownLatch is a powerful yet easy-to-use synchronization object that is appropriate

whenever a thread must wait for one or more events to occur.

CyclicBarrier

A situation not uncommon in concurrent programming occurs when a set of two or more

threads must wait at a predetermined execution point until all threads in the set have

reached that point. To handle such a situation, the concurrent API supplies the CyclicBarrier

class. It enables you to define a synchronization object that suspends until the specified

number of threads has reached the barrier point.

CyclicBarrier has the following two constructors:

CyclicBarrier(int numThreads)
CyclicBarrier(int numThreads, Runnable action)

Here, numThreads specifies the number of threads that must reach the barrier before

execution continues. In the second form, action specifies a thread that will be executed

when the barrier is reached.

Here is the general procedure that you will follow to use CyclicBarrier. First, create a

CyclicBarrier object, specifying the number of threads that you will be waiting for. Next,

when each thread reaches the barrier, have it call await() on that object. This will pause

execution of the thread until all of the other threads also call await(). Once the specified

number of threads has reached the barrier, await() will return and execution will resume.

Also, if you have specified an action, then that thread is executed.

The await() method has the following two forms:

int await() throws InterruptedException, BrokenBarrierException

int await(long wait, TimeUnit tu)

 throws InterruptedException, BrokenBarrierException, TimeoutException

The first form waits until all the threads have reached the barrier point. The second form

waits only for the period of time specified by wait. The units represented by wait are

specified by tu. Both forms return a value that indicates the order that the threads arrive

at the barrier point. The first thread returns a value equal to the number of threads waited

upon minus one. The last thread returns zero.

Here is an example that illustrates CyclicBarrier. It waits until a set of three threads has

reached the barrier. When that occurs, the thread specified by BarAction executes.

// An example of CyclicBarrier.

import java.util.concurrent.*;

class BarDemo {
 public static void main(String args[]) {
 CyclicBarrier cb = new CyclicBarrier(3, new BarAction());

872 PART II The Java Library

 System.out.println("Starting");

 new MyThread(cb, "A");
 new MyThread(cb, "B");
 new MyThread(cb, "C");

 }
}

// A thread of execution that uses a CyclicBarrier.

class MyThread implements Runnable {
 CyclicBarrier cbar;
 String name;

 MyThread(CyclicBarrier c, String n) {
 cbar = c;
 name = n;
 new Thread(this).start();
 }

 public void run() {

 System.out.println(name);

 try {
 cbar.await();
 } catch (BrokenBarrierException exc) {
 System.out.println(exc);
 } catch (InterruptedException exc) {
 System.out.println(exc);
 }
 }
}

// An object of this class is called when the
// CyclicBarrier ends.
class BarAction implements Runnable {
 public void run() {
 System.out.println("Barrier Reached!");
 }
}

The output is shown here. (The precise order in which the threads execute may vary.)

 Starting
 A
 B
 C
 Barrier Reached!

A CyclicBarrier can be reused because it will release waiting threads each time the

specified number of threads calls await(). For example, if you change main() in the

preceding program so that it looks like this:

 Chapter 27 The Concurrency Utilities 873

P
a

rt
 I

I

public static void main(String args[]) {
CyclicBarrier cb = new CyclicBarrier(3, new BarAction());

 System.out.println("Starting");

 new MyThread(cb, "A");
 new MyThread(cb, "B");
 new MyThread(cb, "C");
 new MyThread(cb, "X");
 new MyThread(cb, "Y");
 new MyThread(cb, "Z");

}

The following output will be produced. (The precise order in which the threads execute

may vary.)

 Starting
 A
 B
 C
 Barrier Reached!
 X
 Y
 Z
 Barrier Reached!

As the preceding example shows, the CyclicBarrier offers a streamlined solution to what

was previously a complicated problem.

Exchanger

Perhaps the most interesting of the synchronization classes is Exchanger. It is designed

to simplify the exchange of data between two threads. The operation of an Exchanger is

astoundingly simple: it simply waits until two separate threads call its exchange() method.

When that occurs, it exchanges the data supplied by the threads. This mechanism is both

elegant and easy to use. Uses for Exchanger are easy to imagine. For example, one thread

might prepare a buffer for receiving information over a network connection. Another

thread might fill that buffer with the information from the connection. The two threads

work together so that each time a new buffer is needed, an exchange is made.

Exchanger is a generic class that is declared as shown here:

Exchanger<V>

Here, V specifies the type of the data being exchanged.

The only method defined by Exchanger is exchange(), which has the two forms shown

here:

V exchange(V buffer) throws InterruptedException

V exchange(V buffer, long wait, TimeUnit tu)

 throws InterruptedException, TimeoutException

874 PART II The Java Library

Here, buffer is a reference to the data to exchange. The data received from the other thread

is returned. The second form of exchange() allows a time-out period to be specified. The

key point about exchange() is that it won’t succeed until it has been called on the same

Exchanger object by two separate threads. Thus, exchange() synchronizes the exchange

of the data.

Here is an example that demonstrates Exchanger. It creates two threads. One thread

creates an empty buffer that will receive the data put into it by the second thread. Thus,

the first thread exchanges an empty thread for a full one.

// An example of Exchanger.

import java.util.concurrent.Exchanger;

class ExgrDemo {
 public static void main(String args[]) {
 Exchanger<String> exgr = new Exchanger<String>();

 new UseString(exgr);
 new MakeString(exgr);
 }
}

// A Thread that constructs a string.
class MakeString implements Runnable {
 Exchanger<String> ex;
 String str;

 MakeString(Exchanger<String> c) {
 ex = c;
 str = new String();

 new Thread(this).start();
 }

 public void run() {
 char ch = 'A';

 for(int i = 0; i < 3; i++) {

 // Fill Buffer
 for(int j = 0; j < 5; j++)
 str += ch++;

 try {
 // Exchange a full buffer for an empty one.
 str = ex.exchange(str);
 } catch(InterruptedException exc) {
 System.out.println(exc);
 }
 }
 }
}

 Chapter 27 The Concurrency Utilities 875

P
a

rt
 I

I

// A Thread that uses a string.
class UseString implements Runnable {
 Exchanger<String> ex;
 String str;
 UseString(Exchanger<String> c) {
 ex = c;
 new Thread(this).start();
 }

 public void run() {

 for(int i=0; i < 3; i++) {
 try {
 // Exchange an empty buffer for a full one.
 str = ex.exchange(new String());
 System.out.println("Got: " + str);
 } catch(InterruptedException exc) {
 System.out.println(exc);
 }
 }
 }
}

Here is the output produced by the program:

 Got: ABCDE
 Got: FGHIJ
 Got: KLMNO

In the program, the main() method creates an Exchanger for strings. This object is

then used to synchronize the exchange of strings between the MakeString and UseString

classes. The MakeString class fills a string with data. The UseString exchanges an empty

buffer for a full one. It then displays the contents of the newly constructed string. The

exchange of empty and full buffers is synchronized by the exchange() method, which is

called by both class’ run() method.

Phaser
JDK 7 adds a new synchronization class called Phaser. Its primary purpose is to enable the

synchronization of threads that represent one or more phases of activity. For example, you

might have a set of threads that implement three phases of an order-processing application.

In the first phase, separate threads are used to validate customer information, check

inventory, and confirm pricing. When that phase is complete, the second phase has two

threads that compute shipping costs and all applicable tax. After that, a final phase confirms

payment and determines estimated shipping time. In the past, to synchronize the multiple

threads that comprise this scenario would require a bit of work on your part. With the

inclusion of Phaser, the process is now much easier.

To begin, it helps to know that a Phaser works a bit like a CyclicBarrier, described

earlier, except that it supports multiple phases. As a result, Phaser lets you define a

synchronization object that waits until a specific phase has completed. It then advances

876 PART II The Java Library

to the next phase, again waiting until that phase concludes. It is important to understand

that Phaser can also be used to synchronize only a single phase. In this regard, it acts much

like a CyclicBarrier. However, its primary use is to synchronize multiple phases.

Phaser defines four constructors. Here are the two used in this section:

Phaser()

Phaser(int numParties)

The first creates a phaser that has a registration count of zero. The second sets the

registration count to numParties. The term party is often applied to the objects that register

with a phaser. Although often there is a one-to-correspondence between the number of

registrants and the number of threads being synchronized, this is not required. In both

cases, the current phase is zero. That is, when a Phaser is created, it is initially at phase zero.

In general, here is how you use Phaser. First, create a new instance of Phaser. Next,

register one or more parties with the phaser, either by calling register() or by specifying the

number of parties in the constructor. For each registered party, have the phaser wait until

all registered parties complete a phase. A party signals this by calling one of a variety of

methods supplied by Phaser, such as arrive() or arriveAndAwaitAdvance(). After all parties

have arrived, the phase is complete, and the phaser can move on to the next phase (if there

is one), or terminate. The following sections explain the process in detail.

To register parties after a Phaser has been constructed, call register(). It is shown here:

int register()

It returns the phase number of the phase to which it is registered.

To signal that a party has completed a phase, it must call arrive() or some variation of

arrive(). When the number of arrivals equals the number of registered parties, the phase is

completed and the Phaser moves on the next phase (if there is one). The arrive() method

has this general form:

int arrive()

This method signals that a party (normally a thread of execution) has completed some

task (or portion of a task). It returns the current phase number. If the phaser has been

terminated, then it returns a negative value. The arrive() method does not suspend

execution of the calling thread. This means that it does not wait for the phase to be

completed. This method should be called only by a registered party.

If you want to indicate the completion of a phase and then wait until all other registrants

have also completed that phase, use arriveAndAwaitAdvance(). It is shown here:

int arriveAndAwaitAdvance()

It waits until all parties have arrived. It returns the next phase number or a negative value if

the phaser has been terminated. This method should be called only by a registered party.

A thread can arrive and then deregister itself by calling arriveAndDeregister(). It is
shown here:

int arriveAndDeregister()

It returns the current phase number or a negative value if the phaser has been terminated. It

does not wait until the phase is complete. This method should be called only by a registered

party.

 Chapter 27 The Concurrency Utilities 877

P
a

rt
 I

I

To obtain the current phase number, call getPhase(), which is shown here:

final int getPhase()

When a Phaser is created, the first phase will be 0, the second phase 1, the third phase 2,

and so on. A negative value is returned if the invoking Phaser has been terminated.

Here is an example that shows Phaser in action. It creates three threads, each of which

have three phases. It uses a Phaser to synchronize each phase.

// An example of Phaser.

import java.util.concurrent.*;

class PhaserDemo {
 public static void main(String args[]) {
 Phaser phsr = new Phaser(1);
 int curPhase;

 System.out.println("Starting");

 new MyThread(phsr, "A");
 new MyThread(phsr, "B");
 new MyThread(phsr, "C");

 // Wait for all threads to complete phase one.
 curPhase = phsr.getPhase();
 phsr.arriveAndAwaitAdvance();
 System.out.println("Phase " + curPhase + " Complete");

 // Wait for all threads to complete phase two.
 curPhase = phsr.getPhase();
 phsr.arriveAndAwaitAdvance();
 System.out.println("Phase " + curPhase + " Complete");

 curPhase = phsr.getPhase();
 phsr.arriveAndAwaitAdvance();
 System.out.println("Phase " + curPhase + " Complete");

 // Deregister the main thread.
 phsr.arriveAndDeregister();

 if(phsr.isTerminated())
 System.out.println("The Phaser is terminated");
 }
}

// A thread of execution that uses a Phaser.
class MyThread implements Runnable {
 Phaser phsr;
 String name;

 MyThread(Phaser p, String n) {
 phsr = p;
 name = n;
 phsr.register();

878 PART II The Java Library

 new Thread(this).start();
 }

 public void run() {

 System.out.println("Thread " + name + " Beginning Phase One");
 phsr.arriveAndAwaitAdvance(); // Signal arrival.

 // Pause a bit to prevent jumbled output. This is for illustration
 // only. It is not required for the proper operation of the phaser.
 try {
 Thread.sleep(10);
 } catch(InterruptedException e) {
 System.out.println(e);
 }

 System.out.println("Thread " + name + " Beginning Phase Two");
 phsr.arriveAndAwaitAdvance(); // Signal arrival.

 // Pause a bit to prevent jumbled output. This is for illustration
 // only. It is not required for the proper operation of the phaser.
 try {
 Thread.sleep(10);
 } catch(InterruptedException e) {
 System.out.println(e);
 }

 System.out.println("Thread " + name + " Beginning Phase Three");
 phsr.arriveAndDeregister(); // Signal arrival and deregister.
 }
}

The output is shown here:

 Starting
 Thread A Beginning Phase One
 Thread C Beginning Phase One
 Thread B Beginning Phase One
 Phase 0 Complete
 Thread B Beginning Phase Two
 Thread C Beginning Phase Two
 Thread A Beginning Phase Two
 Phase 1 Complete
 Thread C Beginning Phase Three
 Thread B Beginning Phase Three
 Thread A Beginning Phase Three
 Phase 2 Complete
 The Phaser is terminated

Let’s look closely at the key sections of the program. First, in main(), a Phaser called

phsr is created with an initial party count of 1 (which corresponds to the main thread).

Then three threads are started by creating three MyThread objects. Notice that MyThread

is passed a reference to phsr (the phaser). The MyThread objects use this phaser to

 Chapter 27 The Concurrency Utilities 879

P
a

rt
 I

I

synchronize their activities. Next, main() calls getPhase() to obtain the current phase

number (which is initially zero) and then calls arriveAndAwaitAdvance(). This causes

main() to suspend until phase zero has completed. This won’t happen until all MyThreads

also call arriveAndAwaitAdvance(). When this occurs, main() will resume execution, at

which point it displays that phase zero has completed, and it moves on to phase two. This

process repeats until all three phases have finished. Then, main() calls arriveAndDeregister().
At that point, all three MyThreads have also deregistered. Since this results in there being

no registered parties when the phaser advances to the next phase, the phaser is terminated.

Now look at MyThread. First, notice that the constructor is passed a reference to the

phaser that it will use and then registers with the new thread as a party on that phaser.

Thus, each new MyThread becomes a party registered with the passed-in phaser. Also notice

that each thread has three phases. In this example, each phase consists of a placeholder

that simply displays the name of the thread and what it is doing. Obviously, in real-world

code, the thread would be performing more meaningful actions. Between the first two

phases, the thread calls arriveAndAwaitAdvance(). Thus, each thread waits until all threads

have completed the phase (and the main thread is ready). After all threads have arrived

(including the main thread), the phaser moves on to the next phase. After the third phase,

each thread deregisters itself with a call to arriveAndDeregister(). As the comments in

MyThread explain, the calls to sleep() are used for the purposes of illustration to ensure

that the output is not jumbled because of the multithreading. They are not needed to make

the phaser work properly. If you remove them, the output may look a bit jumbled, but the

phases will still be synchronized correctly.

One other point: Although the preceding example used three threads that were all of

the same type, this is not a requirement. Each party that uses a phaser can be unique, with

each performing some separate task.

It is possible to take control of precisely what happens when a phase advance occurs. To

do this, you must override the onAdvance() method. This method is called by the run time

when a Phaser advances from one phase to the next. It shown here:

protected boolean onAdvance(int phase, int numParties)

Here, phase will contain the current phase number prior to being incremented and

numParties will contain the number of registered parties. To terminate the phaser,

onAdvance() must return true. To keep the phaser alive, onAdvance() must return false.

The default version of onAdvance() returns true (thus terminating the phaser) when there

are no registered parties. As a general rule, your override should also follow this practice.

One reason to override onAdvance() is to enable a phaser to execute a specific number

of phases and then stop. The following example gives you the flavor of this usage. It creates

a class called MyPhaser that extends Phaser so that it will run a specified number of phases.

It does this by overriding the onAdvance() method. The MyPhaser constructor accepts

one argument, which specifies the number of phases to execute. Notice that MyPhaser

automatically registers one party. This behavior is useful in this example, but the needs

of your own applications may differ.

// Extend Phaser and override onAdvance() so that only a specific
// number of phases are executed.

import java.util.concurrent.*;

880 PART II The Java Library

// Extend MyPhaser to allow only a specific number of phases
// to be executed.
class MyPhaser extends Phaser {
 int numPhases;

 MyPhaser(int parties, int phaseCount) {
 super(parties);
 numPhases = phaseCount - 1;
 }

 // Override onAdvance() to execute the specified
 // number of phases.
 protected boolean onAdvance(int p, int regParties) {
 // This println() statement is for illustration only.
 // Normally, onAdvance() will not display output.
 System.out.println("Phase " + p + " completed.\n");

 // If all phases have completed, return true
 if(p == numPhases || regParties == 0) return true;

 // Otherwise, return false.
 return false;
 }
}

class PhaserDemo2 {
 public static void main(String args[]) {

 MyPhaser phsr = new MyPhaser(1, 4);

 System.out.println("Starting\n");

 new MyThread(phsr, "A");
 new MyThread(phsr, "B");
 new MyThread(phsr, "C");

 // Wait for the specified number of phases to complete.
 while(!phsr.isTerminated()) {
 phsr.arriveAndAwaitAdvance();
 }

 System.out.println("The Phaser is terminated");
 }
}

// A thread of execution that uses a Phaser.
class MyThread implements Runnable {
 Phaser phsr;
 String name;

 MyThread(Phaser p, String n) {
 phsr = p;
 name = n;
 phsr.register();

 Chapter 27 The Concurrency Utilities 881

P
a

rt
 I

I

 new Thread(this).start();
 }

 public void run() {

 while(!phsr.isTerminated()) {
 System.out.println("Thread " + name + " Beginning Phase " +
 phsr.getPhase());

 phsr.arriveAndAwaitAdvance();

 // Pause a bit to prevent jumbled output. This is for illustration
 // only. It is not required for the proper operation of the phaser.
 try {
 Thread.sleep(10);
 } catch(InterruptedException e) {
 System.out.println(e);
 }
 }
 }
}

The output from the program is shown here:

 Starting

 Thread B Beginning Phase 0
 Thread A Beginning Phase 0
 Thread C Beginning Phase 0
 Phase 0 completed.

 Thread A Beginning Phase 1
 Thread B Beginning Phase 1
 Thread C Beginning Phase 1
 Phase 1 completed.

 Thread C Beginning Phase 2
 Thread B Beginning Phase 2
 Thread A Beginning Phase 2
 Phase 2 completed.

 Thread C Beginning Phase 3
 Thread B Beginning Phase 3
 Thread A Beginning Phase 3
 Phase 3 completed.

 The Phaser is terminated

Inside main(), one instance of Phaser is created. It is passed 4 as an argument, which

means that it will execute four phases and then stop. Next, three threads are created and

then the following loop is entered:

// Wait for the specified number of phases to complete.
while(!phsr.isTerminated()) {
 phsr.arriveAndAwaitAdvance();
}

882 PART II The Java Library

This loop simply calls arriveAndAwaitAdvance() until the phaser is terminated. The phaser

won’t terminate until the specified number of phases have been executed. In this case, the

loop continues to execute until four phases have run. Next, notice that the threads also call

arriveAndAwaitAdvance() within a loop that runs until the phaser is terminated. This

means that they will execute until the specified number of phases has been completed.

Now, look closely at the code for onAdvance(). Each time onAdvance() is called, it is

passed the current phase and the number of registered parties. If the current phase equals

the specified phase, or if the number of registered parties is zero, onAdvance() returns

true, thus stopping the phaser. This is accomplished with this line of code:

// If all phases have completed, return true
if(p == numPhases || regParties == 0) return true;

As you can see, very little code is needed to accommodate the desired outcome.

Before moving on, it useful to point out that you don’t necessarily need to explicitly

extend Phaser as the previous example does to simply override onAdvance(). In some

cases, more compact code can be created by using an anonymous inner class to override

onAdvance().
Phaser has additional capabilities that may be of use in your applications. You can wait

for a specific phase by calling awaitAdvance(), which is shown here:

int awaitAdvance(int phase)

Here, phase indicates the phase number on which awaitAdvance() will wait until a transition

to the next phase takes place. It will return immediately if the argument passed to phase is
not equal to the current phase. It will also return immediately if the phaser is terminated.

However, if phase is passed the current phase, then it will wait until the phase increments.

This method should be called only by a registered party. There is also an interruptible

version of this method called awaitAdvanceInterruptibly().
To register more than one party, call bulkRegister(). To obtain the number of registered

parties, call getRegisteredParties(). You can also obtain the number of arrived parties and

unarrived parties by calling getArrivedParties() and getUnarrivedParties(), respectively. To

force the phaser to enter a terminated state, call forceTermination().
Phaser also lets you create a tree of phasers. This is supported by two additional

constructors, which let you specify the parent, and the getParent() method.

Using an Executor
The concurrent API supplies a feature called an executor that initiates and controls the

execution of threads. As such, an executor offers an alternative to managing threads

through the Thread class.

At the core of an executor is the Executor interface. It defines the following method:

void execute(Runnable thread)

The thread specified by thread is executed. Thus, execute() starts the specified thread.

The ExecutorService interface extends Executor by adding methods that help manage

and control the execution of threads. For example, ExecutorService defines shutdown(),
shown here, which stops the invoking ExecutorService.

void shutdown()

 Chapter 27 The Concurrency Utilities 883

P
a

rt
 I

I

ExecutorService also defines methods that execute threads that return results, that execute

a set of threads, and that determine the shutdown status. We will look at several of these

methods a little later.

Also defined is the interface ScheduledExecutorService, which extends ExecutorService
to support the scheduling of threads.

The concurrent API defines three predefined executor classes: ThreadPoolExecutor
and ScheduledThreadPoolExecutor, and ForkJoinPool. ThreadPoolExecutor implements

the Executor and ExecutorService interfaces and provides support for a managed pool of

threads. ScheduledThreadPoolExecutor also implements the ScheduledExecutorService

interface to allow a pool of threads to be scheduled. ForkJoinPool implements the Executor

and ExecutorService interfaces and is used by the Fork/Join Framework. It is described

later in this chapter.

A thread pool provides a set of threads that is used to execute various tasks. Instead of

each task using its own thread, the threads in the pool are used. This reduces the overhead

associated with creating many separate threads. Although you can use ThreadPoolExecutor

and ScheduledThreadPoolExecutor directly, most often you will want to obtain an executor

by calling one of the following static factory methods defined by the Executors utility class.

Here are some examples:

static ExecutorService newCachedThreadPool()

static ExecutorService newFixedThreadPool(int numThreads)
static ScheduledExecutorService newScheduledThreadPool(int numThreads)

newCachedThreadPool() creates a thread pool that adds threads as needed but reuses

threads if possible. newFixedThreadPool() creates a thread pool that consists of a specified

number of threads. newScheduledThreadPool() creates a thread pool that supports thread

scheduling. Each returns a reference to an ExecutorService that can be used to manage

the pool.

A Simple Executor Example

Before going any further, a simple example that uses an executor will be of value. The

following program creates a fixed thread pool that contains two threads. It then uses that

pool to execute four tasks. Thus, four tasks share the two threads that are in the pool. After

the tasks finish, the pool is shut down and the program ends.

// A simple example that uses an Executor.

import java.util.concurrent.*;

class SimpExec {
 public static void main(String args[]) {
 CountDownLatch cdl = new CountDownLatch(5);
 CountDownLatch cdl2 = new CountDownLatch(5);
 CountDownLatch cdl3 = new CountDownLatch(5);
 CountDownLatch cdl4 = new CountDownLatch(5);
 ExecutorService es = Executors.newFixedThreadPool(2);

 System.out.println("Starting");

 // Start the threads.

884 PART II The Java Library

 es.execute(new MyThread(cdl, "A"));
 es.execute(new MyThread(cdl2, "B"));
 es.execute(new MyThread(cdl3, "C"));
 es.execute(new MyThread(cdl4, "D"));

 try {
 cdl.await();
 cdl2.await();
 cdl3.await();
 cdl4.await();
 } catch (InterruptedException exc) {
 System.out.println(exc);
 }

 es.shutdown();
 System.out.println("Done");
 }
}

class MyThread implements Runnable {
 String name;
 CountDownLatch latch;

 MyThread(CountDownLatch c, String n) {
 latch = c;
 name = n;

 new Thread(this);
 }

 public void run() {

 for(int i = 0; i < 5; i++) {
 System.out.println(name + ": " + i);
 latch.countDown();
 }
 }
}

The output from the program is shown here. (The precise order in which the threads

execute may vary.)

 Starting
 A: 0
 A: 1
 A: 2
 A: 3
 A: 4
 C: 0
 C: 1
 C: 2
 C: 3
 C: 4

 Chapter 27 The Concurrency Utilities 885

P
a

rt
 I

I

 D: 0
 D: 1
 D: 2
 D: 3
 D: 4
 B: 0
 B: 1
 B: 2
 B: 3
 B: 4
 Done

As the output shows, even though the thread pool contains only two threads, all four tasks

are still executed. However, only two can run at the same time. The others must wait until

one of the pooled threads is available for use.

The call to shutdown() is important. If it were not present in the program, then the

program would not terminate because the executor would remain active. To try this for

yourself, simply comment out the call to shutdown() and observe the result.

Using Callable and Future

One of the most interesting features of the concurrent API is the Callable interface. This

interface represents a thread that returns a value. An application can use Callable objects to

compute results that are then returned to the invoking thread. This is a powerful

mechanism because it facilitates the coding of many types of numerical computations in

which partial results are computed simultaneously. It can also be used to run a thread that

returns a status code that indicates the successful completion of the thread.

Callable is a generic interface that is defined like this:

interface Callable<V>

Here, V indicates the type of data returned by the task. Callable defines only one method,

call(), which is shown here:

V call() throws Exception

Inside call(), you define the task that you want performed. After that task completes, you

return the result. If the result cannot be computed, call() must throw an exception.

A Callable task is executed by an ExecutorService, by calling its submit() method. There

are three forms of submit(), but only one is used to execute a Callable. It is shown here:

<T> Future<T> submit(Callable<T> task)

Here, task is the Callable object that will be executed in its own thread. The result is

returned through an object of type Future.

Future is a generic interface that represents the value that will be returned by a Callable

object. Because this value is obtained at some future time, the name Future is appropriate.

Future is defined like this:

interface Future<V>

Here, V specifies the type of the result.

886 PART II The Java Library

To obtain the returned value, you will call Future’s get() method, which has these two

forms:

V get()

 throws InterruptedException, ExecutionException

V get(long wait, TimeUnit tu)

 throws InterruptedException, ExecutionException, TimeoutException

The first form waits for the result indefinitely. The second form allows you to specify a

timeout period in wait. The units of wait are passed in tu, which is an object of the TimeUnit
enumeration, described later in this chapter.

The following program illustrates Callable and Future by creating three tasks that

perform three different computations. The first returns the summation of a value, the

second computes the length of the hypotenuse of a right triangle given the length of its

sides, and the third computes the factorial of a value. All three computations occur

simultaneously.

// An example that uses a Callable.

import java.util.concurrent.*;

class CallableDemo {
 public static void main(String args[]) {
 ExecutorService es = Executors.newFixedThreadPool(3);
 Future<Integer> f;
 Future<Double> f2;
 Future<Integer> f3;

 System.out.println("Starting");

 f = es.submit(new Sum(10));
 f2 = es.submit(new Hypot(3, 4));
 f3 = es.submit(new Factorial(5));

 try {
 System.out.println(f.get());
 System.out.println(f2.get());
 System.out.println(f3.get());
 } catch (InterruptedException exc) {
 System.out.println(exc);
 }
 catch (ExecutionException exc) {
 System.out.println(exc);
 }

 es.shutdown();
 System.out.println("Done");
 }
}

 Chapter 27 The Concurrency Utilities 887

P
a

rt
 I

I

// Following are three computational threads.

class Sum implements Callable<Integer> {
 int stop;

 Sum(int v) { stop = v; }

 public Integer call() {
 int sum = 0;
 for(int i = 1; i <= stop; i++) {
 sum += i;
 }
 return sum;
 }
}

class Hypot implements Callable<Double> {
 double side1, side2;

 Hypot(double s1, double s2) {
 side1 = s1;
 side2 = s2;
 }

 public Double call() {
 return Math.sqrt((side1*side1) + (side2*side2));
 }
}

class Factorial implements Callable<Integer> {
 int stop;

 Factorial(int v) { stop = v; }

 public Integer call() {
 int fact = 1;
 for(int i = 2; i <= stop; i++) {
 fact *= i;
 }
 return fact;
 }
}

The output is shown here:

 Starting
 55
 5.0
 120
 Done

888 PART II The Java Library

The TimeUnit Enumeration
The concurrent API defines several methods that take an argument of type TimeUnit,
which indicates a time-out period. TimeUnit is an enumeration that is used to specify the

granularity (or resolution) of the timing. TimeUnit is defined within java.util.concurrent. It
can be one of the following values:

DAYS

HOURS

MINUTES

SECONDS

MICROSECONDS

MILLISECONDS

NANOSECONDS

Although TimeUnit lets you specify any of these values in calls to methods that take a

timing argument, there is no guarantee that the system is capable of the specified

resolution.

Here is an example that uses TimeUnit. The CallableDemo class, shown in the previous

section, is modified as shown next to use the second form of get() that takes a TimeUnit
argument.

try {
 System.out.println(f.get(10, TimeUnit.MILLISECONDS));
 System.out.println(f2.get(10, TimeUnit.MILLISECONDS));
 System.out.println(f3.get(10, TimeUnit.MILLISECONDS));
} catch (InterruptedException exc) {
 System.out.println(exc);
}
catch (ExecutionException exc) {
 System.out.println(exc);
} catch (TimeoutException exc) {
 System.out.println(exc);
}

In this version, no call to get() will wait more than 10 milliseconds.

The TimeUnit enumeration defines various methods that convert between units. These

are shown here:

long convert(long tval, TimeUnit tu)

long toMicros(long tval)
long toMillis(long tval)
long toNanos(long tval)
long toSeconds(long tval)
long toDays(long tval)
long toHours(long tval)
long toMinutes(long tval)

The convert() method converts tval into the specified unit and returns the result. The to
methods perform the indicated conversion and return the result.

 Chapter 27 The Concurrency Utilities 889

P
a

rt
 I

I

TimeUnit also defines the following timing methods:

void sleep(long delay) throws InterruptedExecution

void timedJoin(Thread thrd, long delay) throws InterruptedExecution

void timedWait(Object obj, long delay) throws InterruptedExecution

Here, sleep() pauses execution for the specified delay period, which is specified in terms of

the invoking enumeration constant. It translates into a call to Thread.sleep(). The timedJoin()
method is a specialized version of Thread.join() in which thrd pauses for the time period

specified by delay, which is described in terms of the invoking time unit. The timedWait()
method is a specialized version of Object.wait() in which obj is waited on for the period of

time specified by delay, which is described in terms of the invoking time unit.

The Concurrent Collections
As explained, the concurrent API defines several collection classes that have been

engineered for concurrent operation. They include:

ArrayBlockingQueue

ConcurrentHashMap

ConcurrentLinkedDeque (Added by JDK 7.)

ConcurrentLinkedQueue

ConcurrentSkipListMap

ConcurrentSkipListSet

CopyOnWriteArrayList

CopyOnWriteArraySet

DelayQueue

LinkedBlockingDeque

LinkedBlockingQueue

LinkedTransferQueue (Added by JDK 7.)

PriorityBlockingQueue

SynchronousQueue

These offer concurrent alternatives to their related classes defined by the Collections

Framework. These collections work much like the other collections except that they

provide concurrency support. Programmers familiar with the Collections Framework

will have no trouble using these concurrent collections.

Locks
The java.util.concurrent.locks package provides support for locks, which are objects that

offer an alternative to using synchronized to control access to a shared resource. In general,

here is how a lock works. Before accessing a shared resource, the lock that protects that

resource is acquired. When access to the resource is complete, the lock is released. If a

second thread attempts to acquire the lock when it is in use by another thread, the second

thread will suspend until the lock is released. In this way, conflicting access to a shared

resource is prevented.

890 PART II The Java Library

Locks are particularly useful when multiple threads need to access the value of shared

data. For example, an inventory application might have a thread that first confirms that an

item is in stock and then decreases the number of items on hand as each sale occurs. If two

or more of these threads are running, then without some form of synchronization, it would

be possible for one thread to be in middle of a transaction when the second thread begins

its transaction. The result could be that both threads would assume that adequate inventory

exists, even if there is only sufficient inventory on hand to satisfy one sale. In this type of

situation, a lock offers a convenient means of handling the needed synchronization.

All locks implement the Lock interface. The methods defined by Lock are shown in

Table 27-1. In general, to acquire a lock, call lock(). If the lock is unavailable, lock() will

wait. To release a lock, call unlock(). To see if a lock is available, and to acquire it if it is,

call tryLock(). This method will not wait for the lock if it is unavailable. Instead, it returns

true if the lock is acquired and false otherwise. The newCondition() method returns a

Condition object associated with the lock. Using a Condition, you gain detailed control of

the lock through methods such as await() and signal(), which provide functionality similar

to Object.wait() and Object.notify().
java.util.concurrent.locks supplies an implementation of Lock called ReentrantLock.

ReentrantLock implements a reentrant lock, which is a lock that can be repeatedly entered

by the thread that currently holds the lock. Of course, in the case of a thread reentering a

lock, all calls to lock() must be offset by an equal number of calls to unlock(). Otherwise,

a thread seeking to acquire the lock will suspend until the lock is not in use.

The following program demonstrates the use of a lock. It creates two threads that access

a shared resource called Shared.count. Before a thread can access Shared.count, it must

obtain a lock. After obtaining the lock, Shared.count is incremented and then, before

releasing the lock, the thread sleeps. This causes the second thread to attempt to obtain the

lock. However, because the lock is still held by the first thread, the second thread must wait

Table 27-1 The Lock Methods

Method Description

void lock() Waits until the invoking lock can be acquired.

void lockInterruptibly()

 throws InterruptedException

Waits until the invoking lock can be acquired, unless

interrupted.

Condition newCondition() Returns a Condition object that is associated with the

invoking lock.

boolean tryLock() Attempts to acquire the lock. This method will not

wait if the lock is unavailable. Instead, it returns true

if the lock has been acquired and false if the lock is

currently in use by another thread.

boolean tryLock(long wait, TimeUnit tu)

 throws InterruptedException

Attempts to acquire the lock. If the lock is unavailable,

this method will wait no longer than the period

specified by wait, which is in tu units. It returns true

if the lock has been acquired and false if the lock

cannot be acquired within the specified period.

void unlock() Releases the lock.

 Chapter 27 The Concurrency Utilities 891

P
a

rt
 I

I

until the first thread stops sleeping and releases the lock. The output shows that access to

Shared.count is, indeed, synchronized by the lock.

// A simple lock example.

import java.util.concurrent.locks.*;

class LockDemo {

 public static void main(String args[]) {
 ReentrantLock lock = new ReentrantLock();

 new LockThread(lock, "A");
 new LockThread(lock, "B");
 }
}

// A shared resource.
class Shared {
 static int count = 0;
}

// A thread of execution that increments count.
class LockThread implements Runnable {
 String name;
 ReentrantLock lock;

 LockThread(ReentrantLock lk, String n) {
 lock = lk;
 name = n;
 new Thread(this).start();
 }

 public void run() {

 System.out.println("Starting " + name);

 try {
 // First, lock count.
 System.out.println(name + " is waiting to lock count.");
 lock.lock();
 System.out.println(name + " is locking count.");

 Shared.count++;
 System.out.println(name + ": " + Shared.count);

 // Now, allow a context switch -- if possible.
 System.out.println(name + " is sleeping.");
 Thread.sleep(1000);
 } catch (InterruptedException exc) {
 System.out.println(exc);
 } finally {
 // Unlock

892 PART II The Java Library

 System.out.println(name + " is unlocking count.");
 lock.unlock();
 }
 }
}

The output is shown here. (The precise order in which the threads execute may vary.)

 Starting A
 A is waiting to lock count.
 A is locking count.
 A: 1
 A is sleeping.
 Starting B
 B is waiting to lock count.
 A is unlocking count.
 B is locking count.
 B: 2
 B is sleeping.
 B is unlocking count.

java.util.concurrent.locks also defines the ReadWriteLock interface. This interface

specifies a lock that maintains separate locks for read and write access. This enables

multiple locks to be granted for readers of a resource as long as the resource is not being

written. ReentrantReadWriteLock provides an implementation of ReadWriteLock.

Atomic Operations
java.util.concurrent.atomic offers an alternative to the other synchronization features when

reading or writing the value of some types of variables. This package offers methods that

get, set, or compare the value of a variable in one uninterruptible (that is, atomic) operation.

This means that no lock or other synchronization mechanism is required.

Atomic operations are accomplished through the use of classes, such as AtomicInteger

and AtomicLong, and methods such as get(), set(), compareAndSet(), decrementAndGet(),
and getAndSet(), which perform the action indicated by their names.

Here is an example that demonstrates how access to a shared integer can be

synchronized by the use of AtomicInteger:

// A simple example of Atomic.

import java.util.concurrent.atomic.*;

class AtomicDemo {

 public static void main(String args[]) {
 new AtomThread("A");
 new AtomThread("B");
 new AtomThread("C");
 }
}

 Chapter 27 The Concurrency Utilities 893

P
a

rt
 I

I

class Shared {
 static AtomicInteger ai = new AtomicInteger(0);
}

// A thread of execution that increments count.
class AtomThread implements Runnable {
 String name;

 AtomThread(String n) {
 name = n;
 new Thread(this).start();
 }

public void run() {

 System.out.println("Starting " + name);

 for(int i=1; i <= 3; i++)
 System.out.println(name + " got: " +
 Shared.ai.getAndSet(i));
 }
}

In the program, a static AtomicInteger named ai is created by Shared. Then, three

threads of type AtomThread are created. Inside run(), Shared.ai is modified by calling

getAndSet(). This method returns the previous value and then sets the value to the one

passed as an argument. The use of AtomicInteger prevents two threads from writing to ai
at the same time.

In general, the atomic operations offer a convenient (and possibly more efficient)

alternative to the other synchronization mechanisms when only a single variable is involved.

Parallel Programming via the Fork/Join Framework
In recent years, an important new trend has emerged in software development: parallel
programming. Parallel programming is the name commonly given to the techniques that

take advantage of computers that contain two or more processors (multicore). As most

readers will know, multicore computers are becoming commonplace. The advantage that

multi-processor environments offer is the ability to significantly increase program

performance. As a result, there has been a growing need for a mechanism that gives Java

programmers a simple, yet effective way to make use of multiple processors in a clean,

scalable manner. To answer this need, JDK 7 adds several new classes and interfaces that

support parallel programming. They are commonly referred to as the Fork/Join Framework.

It is one of most important additions that JDK 7 has made to the Java class library. The

Fork/Join Framework is defined in the java.util.concurrent package.

The Fork/Join Framework enhances multithreaded programming in two important

ways. First, it simplifies the creation and use of multiple threads. Second, it automatically

makes use of multiple processors. In other words, by using the Fork/Join Framework you

enable your applications to automatically scale to make use of the number of available

processors. These two features make the Fork/Join Framework the recommended

approach to multithreading when parallel processing is desired.

894 PART II The Java Library

Before continuing, it is important to point out the distinction between traditional

multithreading and parallel programming. In the past, most computers had a single CPU

and multithreading was primarily used to take advantage of idle time, such as when a

program is waiting for user input. Using this approach, one thread can execute while

another is waiting. In other words, on a single-CPU system, multithreading is used to allow

two or more tasks to share the CPU. This type of multithreading is typically supported by an

object of type Thread (as described in Chapter 11). Although this type of multithreading

will always remain quite useful, it was not optimized for situations in which two or more

CPUs are available (multicore computers).

When multiple CPUs are present, a second type of multithreading capability that

supports true parallel execution is required. With two or more CPUs, it is possible to

execute portions of a program simultaneously, with each part executing on its own CPU.

This can be used to significantly speed up the execution of some types of operations, such

as sorting, transforming, or searching a large array. In many cases, these types of operations

can be broken down into smaller pieces (each acting on a portion of the array), and each

piece can be run on its own CPU. As you can imagine, the gain in efficiency can be enormous.

Simply put: Parallel programming will be part of nearly every programmer’s future because

it offers a way to dramatically improve program performance.

The Main Fork/Join Classes

The Fork/Join Framework is packaged in java.util.concurrent. At the core of the Fork/Join

Framework are the following four classes:

ForkJoinTask<V> An abstract class that defines a task

ForkJoinPool Manages the execution of ForkJoinTasks

RecursiveAction A subclass of ForkJoinTask<V> for tasks that do not return values

RecursiveTask<V> A subclass of ForkJoinTask<V> for tasks that return values

Here is how they relate. A ForkJoinPool manages the execution of ForkJoinTasks. ForkJoinTask

is an abstract class that is extended by two other abstract classes: RecursiveAction and

RecursiveTask. Typically, your code will extend these classes to create a task. Before looking

at the process in detail, an overview of the key aspects of each class will be helpful.

ForkJoinTask<V>
ForkJoinTask<V> is an abstract class that defines a task that can be managed by a ForkJoinPool.
The type parameter V specifies the result type of the task. ForkJoinTask differs from Thread

in that ForkJoinTask represents lightweight abstraction of a task, rather than a thread of

execution. ForkJoinTasks are executed by threads managed by a thread pool of type

ForkJoinPool. This mechanism allows a large number of tasks to be managed by a small

number of actual threads. Thus, ForkJoinTasks are very efficient when compared to threads.

ForkJoinTask defines many methods. At the core are fork() and join(), shown here:

final ForkJoinTask<V> fork()

final V join()

 Chapter 27 The Concurrency Utilities 895

P
a

rt
 I

I

The fork() method submits the invoking task for asynchronous execution of the invoking

task. This means that the thread that calls fork() continues to run. The fork() method

returns this after the task is scheduled for execution. It can be executed only from within

the computational portion of another ForkJoinTask, which is running within a ForkJoinPool.
(You will see how to do this, shortly.) The join() method waits until the task on which it is

called terminates. The result of the task is returned. Thus, through the use of fork() and

join(), you can start one or more new tasks and then wait for them to finish.

Another important ForkJoinTask method is invoke(). It combines the fork and join

operations into a single call because it begins a task and then waits for it to end. It is shown

here:

final V invoke()

The result of the invoking task is returned.

You can invoke more than one task at a time by using invokeAll(). Two of its forms are

shown here:

static void invokeAll(ForkJoinTask<?> taskA, ForkJoinTask<?> taskB)

static void invokeAll(ForkJoinTask<?> ... taskList)

In the first case, taskA and taskB are executed. In the second case, all specified tasks

are executed. In both cases, the calling thread waits until all of the specified tasks have

terminated. The invokeAll() method can be executed only from within the computational

portion of another ForkJoinTask, which is running within a ForkJoinPool.

RecursiveAction
A subclass of ForkJoinTask is RecursiveAction. This class encapsulates a task that does not

return a result. Typically, your code will extend RecursiveAction to create a task that has a

void return type. RecursiveAction specifies four methods, but only one is usually of interest:

the abstract method called compute(). When you extend RecursiveAction to create a

concrete class, you will put the code that defines the task inside compute(). The compute()
method represents the computational portion of the task.

The compute() method is defined by RecursiveAction like this:

protected abstract void compute()

Notice that compute() is protected. This means that it can be called only by other methods

of its class or subclass. Also, because it is abstract, it must be implemented by a subclass

(unless that subclass is also abstract).

In general, RecursiveAction is used to implement a recursive, divide-and-conquer

strategy for tasks that don’t return results. (See “The Divide-and-Conquer Strategy” later

in this chapter.)

RecursiveTask<V>
Another subclass of ForkJoinTask is RecursiveTask<V>. This class encapsulates a task

that returns a result. The result type is specified by V. Typically, your code will extend

RecursiveTask<V> to create a task that returns a value. Like RecursiveAction, it too specifies

four methods, but often only the abstract compute() method is used, which represents the

896 PART II The Java Library

computational portion of the task. When you extend RecursiveTask<V> to create a concrete

class, put the code that represents the task inside compute(). This code must also return

the result of the task.

The compute() method is defined by RecursiveTask<V> like this:

protected abstract V compute()

Notice that compute() is protected. This means that it can be called only by other methods

of its class or subclass. Also, because it is abstract, it must be implemented by a subclass.

When implemented, it must return the result of the task.

In general, RecursiveTask is used to implement a recursive, divide-and-conquer strategy

for tasks that return results. (See “The Divide-and-Conquer Strategy” later in this chapter.)

ForkJoinPool
The execution of ForkJoinTasks takes place within a ForkJoinPool, which also manages the

execution of the tasks. Therefore, in order to execute a ForkJoinTask, you must first have a

ForkJoinPool.
ForkJoinPool defines several constructors. Here are two commonly used ones:

ForkJoinPool()

ForkJoinPool(int pLevel)

The first creates a default pool that supports a level of parallelism equal to the number of

processors available in the system. The second lets you specify the level of parallelism. Its

value must be greater than zero and not more than the limits of the implementation. The

level of parallelism determines the number of threads that can execute concurrently. As a

result, the level of parallelism effectively determines the number of tasks that can be

executed simultaneously. (Of course, the number of tasks that can execute simultaneously

cannot exceed the number of processors.) It is important to understand that the level of

parallelism does not, however, limit the number of tasks that can be managed by the pool.

A ForkJoinPool can manage many more tasks than its level of parallelism. Also, the level

of parallelism is only a target. It is not a guarantee.

After you have created an instance of ForkJoinPool, you can start a task in a number

of different ways. The first task started is often thought of as the main task. Frequently, the

main task begins subtasks that are also managed by the pool. One common way to begin a

main task is to call invoke() on the ForkJoinPool. It is shown here:

<T> T invoke(ForkJoinTask<T> task)

This method begins the task specified by task, and it returns the result of the task. This

means that the calling code waits until invoke() returns.

To start a task without waiting for its completion, you can use execute(). Here is one

of its forms:

void execute(ForkJoinTask<?> task)

In this case, task is started, but the calling code does not wait for its completion. Rather, the

calling code continues execution asynchronously.

 Chapter 27 The Concurrency Utilities 897

P
a

rt
 I

I

ForkJoinPool manages the execution of its threads using an approach called work-
stealing. Each worker thread maintains a queue of tasks. If one worker thread’s queue is

empty, it will take a task from another worker thread. This adds to overall efficiency and

helps maintain a balanced load. (Because of demands on CPU time by other processes in

the system, even two worker threads with identical tasks in their respective queues may not

complete at the same time.)

One other point: ForkJoinPool uses daemon threads. A daemon thread is automatically

terminated when all user threads have terminated. Thus, there is no need to explicitly shut

down a ForkJoinPool. However, it is possible to do so by calling shutdown().

The Divide-and-Conquer Strategy

As a general rule, uses of the Fork/Join Framework will employ a divide-and-conquer strategy

that is based on recursion. This is why the two subclasses of ForkJoinTask are called

RecursiveAction and RecursiveTask. It is anticipated that you will extend one of these

classes when creating your own fork/join task.

The divide-and-conquer strategy is based on recursively dividing a task into smaller

subtasks until the size of a subtask is small enough to be handled sequentially. For example,

a task that applies a transform to each element in an array of N integers can be broken

down into two subtasks in which each transforms half the elements in the array. That is,

one subtask transforms the elements 0 to N/2, and the other transforms the elements N/2

to N. In turn, each subtask can be reduced to another set of subtasks, each transforming

half of the remaining elements. This process of dividing the array will continue until a

threshold is reached in which a sequential solution is faster than creating another division.

The advantage of the divide-and-conquer strategy is that the processing can occur in

parallel. Therefore, instead of cycling through an entire array using a single thread, pieces

of the array can be processed simultaneously. Of course, the divide-and-conquer approach

works in many cases in which an array (or collection) is not present, but the most common

uses involve some type of array, collection, or grouping of data.

One of the keys to best employing the divide-and-conquer strategy is correctly selecting

the threshold at which sequential processing (rather than further division) is used. Typically,

an optimal threshold is obtained through profiling the execution characteristics. However,

very significant speed-ups will still occur even when a less-than-optimal threshold is used. It

is, however, best to avoid overly large or overly small thresholds. At the time of this writing,

the Java API documentation for ForkJoinTask<T> states that, as a rule-of-thumb, a task

should perform somewhere between 100 and 10,000 computational steps.

It is also important to understand that the optimal threshold value is also affected by

how much time the computation takes. If each computational step is fairly long, then

smaller thresholds might be better. Conversely, if each computational step is quite short,

then larger thresholds could yield better results. For applications that are to be run on a

known system, with a known number of processors, you can use the number of processors

to make informed decisions about the threshold value. However, for applications that will

be running on a variety of systems, the capabilities of which are not known in advance, you

can make no assumptions about the execution environment.

898 PART II The Java Library

One other point: Although multiple processors may be available on a system, other

tasks (and the operating system, itself) will be competing with your application for CPU

time. Thus, it is important not to assume that your program will have unrestricted access to

all CPUs. Furthermore, different runs of the same program may display different run time

characteristics because of varying task loads.

A Simple First Fork/Join Example

At this point, a simple example that demonstrates the Fork/Join Framework and the divide-

and-conquer strategy will be helpful. Following is a program that transforms the elements

in an array of double into their square roots. It does so via a subclass of RecursiveAction.

// A simple example of the basic divide-and-conquer strategy.
// In this case, RecursiveAction is used.
import java.util.concurrent.*;
import java.util.*;

// A ForkJoinTask (via RecursiveAction) that transforms
// the elements in an array of doubles into their square roots.
class SqrtTransform extends RecursiveAction {
 // The threshold value is arbitrarily set at 1,000 in this example.
 // In real-world code, its optimal value can be determined by
 // profiling and experimentation.
 final int seqThreshold = 1000;

 // Array to be accessed.
 double[] data;

 // Determines what part of data to process.
 int start, end;

 SqrtTransform(double[] vals, int s, int e) {
 data = vals;
 start = s;
 end = e;
 }

 // This is the method in which parallel computation will occur.
 protected void compute() {

 // If number of elements is below the sequential threshold,
 // then process sequentially.
 if((end - start) < seqThreshold) {
 // Transform each element into its square root.
 for(int i = start; i < end; i++) {
 data[i] = Math.sqrt(data[i]);
 }
 }
 else {
 // Otherwise, continue to break the data into smaller pieces.

 // Find the midpoint.
 int middle = (start + end) / 2;

 Chapter 27 The Concurrency Utilities 899

P
a

rt
 I

I

 // Invoke new tasks, using the subdivided data.
 invokeAll(new SqrtTransform(data, start, middle),
 new SqrtTransform(data, middle, end));
 }
 }
}

// Demonstrate parallel execution.
class ForkJoinDemo {
 public static void main(String args[]) {
 // Create a task pool.
 ForkJoinPool fjp = new ForkJoinPool();

 double[] nums = new double[100000];

 // Give nums some values.
 for(int i = 0; i < nums.length; i++)
 nums[i] = (double) i;

 System.out.println("A portion of the original sequence:");

 for(int i=0; i < 10; i++)
 System.out.print(nums[i] + " ");
 System.out.println("\n");

 SqrtTransform task = new SqrtTransform(nums, 0, nums.length);

 // Start the main ForkJoinTask.
 fjp.invoke(task);

 System.out.println("A portion of the transformed sequence" +
 " (to four decimal places):");
 for(int i=0; i < 10; i++)
 System.out.format("%.4f ", nums[i]);
 System.out.println();
 }
}

The output from the program is shown here:

A portion of the original sequence:
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

A portion of the transformed sequence (to four decimal places):
0.0000 1.0000 1.4142 1.7321 2.0000 2.2361 2.4495 2.6458 2.8284 3.0000

As you can see, the values of the array elements have been transformed into their square roots.

Let’s look closely at how this program works. First, notice that SqrtTransform is a class

that extends RecursiveAction. As explained, RecursiveAction extends ForkJoinTask for

tasks that do not return results. Next, notice the final variable seqThreshold. This is the

value that determines when sequential processing will take place. This value is set (somewhat

arbitrarily) to 1,000. Next, notice that a reference to the array to be processed is stored in

data and that the fields start and end are used to indicate the boundaries of the elements

to be accessed.

900 PART II The Java Library

The main action of the program takes place in compute(). It begins by checking if the

number of elements to be processed is below the sequential processing threshold. If it is,

then those elements are processed (by computing their square root in this example). If the

sequential processing threshold has not been reached, then two new tasks are started by

calling invokeAll(). In this case, each subtask processes half the elements. As explained

earlier, invokeAll() waits until both tasks return. After all of the recursive calls unwind, each

element in the array will have been modified, with much of the action taking place in

parallel (if multiple processors are available).

Understanding the Impact of the Level of Parallelism

Before moving on, it is important to understand the impact that the level of parallelism has

on the performance of a fork/join task and how the parallelism and the threshold interact.

The program shown in this section lets you experiment with different degrees of parallelism

and threshold values. Assuming that you are using a multicore computer, then you can

interactively observe the effect of these values.

In the preceding example, because the default ForkJoinPool constructor was used,

the default level of parallelism was used, which is equal to the number of processors in the

system. However, you can specify the level of parallelism that you want. One way shown

earlier is to specify it when you create a ForkJoinPool using this constructor:

ForkJoinPool(int pLevel)

Here, pLevel specifies the level of parallelism, which must be greater than zero and less than

the implementation defined limit.

The following program creates a fork/join task that transforms an array of doubles. The

transformation is arbitrary, but it is designed to consume several CPU cycles. This was done

to ensure that the effects of changing the threshold or the level of parallelism would be

more clearly displayed. To use the program, specify the threshold value and the level of

parallelism on the command line. The program then runs the tasks. It also displays the

amount of time it takes the tasks to run. To do this, it uses System.nanoTime(), which

returns the value of the JVM’s high-resolution timer.

// A simple program that lets you experiment with the effects of
// changing the threshold and parallelism of a ForkJoinTask.
import java.util.concurrent.*;

// A ForkJoinTask (via RecursiveAction) that performs a
// a transform on the elements of an array of doubles.
class Transform extends RecursiveAction {

 // Sequential threshold, which is set by the constructor.
 int seqThreshold;

 // Array to be accessed.
 double[] data;

 // Determines what part of data to process.
 int start, end;

 Transform(double[] vals, int s, int e, int t) {

 Chapter 27 The Concurrency Utilities 901

P
a

rt
 I

I

 data = vals;
 start = s;
 end = e;
 seqThreshold = t;
 }

 // This is the method in which parallel computation will occur.
 protected void compute() {

 // If number of elements is below the sequential threshold,
 // then process sequentially.
 if((end - start) < seqThreshold) {
 // The following code assigns an element at an even index the
 // square root of its original value. An element at an odd
 // index is assigned its cube root. This code is designed
 // to simply consume CPU time so that the effects of concurrent
 // execution are more readily observable.
 for(int i = start; i < end; i++) {
 if((data[i] % 2) == 0)
 data[i] = Math.sqrt(data[i]);
 else
 data[i] = Math.cbrt(data[i]);
 }
 }
 else {
 // Otherwise, continue to break the data into smaller pieces.

 // Find the midpoint.
 int middle = (start + end) / 2;

 // Invoke new tasks, using the subdivided data.
 invokeAll(new Transform(data, start, middle, seqThreshold),
 new Transform(data, middle, end, seqThreshold));
 }
 }
}

// Demonstrate parallel execution.
class FJExperiment {

 public static void main(String args[]) {
 int pLevel;
 int threshold;

 if(args.length != 2) {
 System.out.println("Usage: FJExperiment parallelism threshold ");
 return;
 }

 pLevel = Integer.parseInt(args[0]);
 threshold = Integer.parseInt(args[1]);

 // These variables are used to time the task.
 long beginT, endT;

902 PART II The Java Library

 // Create a task pool. Notice that the parallelism level is set.
 ForkJoinPool fjp = new ForkJoinPool(pLevel);

 double[] nums = new double[1000000];

 for(int i = 0; i < nums.length; i++)
 nums[i] = (double) i;

 Transform task = new Transform(nums, 0, nums.length, threshold);

 // Starting timing.
 beginT = System.nanoTime();

 // Start the main ForkJoinTask.
 fjp.invoke(task);

 // End timing.
 endT = System.nanoTime();

 System.out.println("Level of parallelism: " + pLevel);
 System.out.println("Sequential threshold: " + threshold);
 System.out.println("Elapsed time: " + (endT - beginT) + " ns");
 System.out.println();
 }
}

To use the program, specify the level of parallelism followed by the threshold limit. You

should try experimenting with different values for each, observing the results. Remember,

to be effective, you must run the code on a computer with at least two processors. Also,

understand that two different runs may (almost certainly will) produce different results

because of the effect of other processes in the system consuming CPU time.

To give you an idea of the difference that parallelism makes, try this experiment. First,

execute the program like this:

java FJExperiment 1 1000

This requests 1 level of parallelism (essentially sequential execution) with a threshold of

1,000. Here is a sample run produced on a dual-core computer:

Level of parallelism: 1
Sequential threshold: 1000
Elapsed time: 259677487 ns

Now, specify 2 levels of parallelism like this:

java FJExperiment 2 1000

Here is sample output from this run produced by same dual-core computer:

Level of parallelism: 2
Sequential threshold: 1000
Elapsed time: 169254472 ns

 Chapter 27 The Concurrency Utilities 903

P
a

rt
 I

I

As is evident, adding parallelism substantially decreases execution time, thus increasing the

speed of the program. You should experiment with varying the threshold and parallelism

on your own computer. The results may surprise you.

There are two other methods that you might find useful when experimenting with

the execution characteristics of a fork/join program. First, you can obtain the level of

parallelism by calling getParallelism(), which is defined by ForkJoinPool. It is shown here:

int getParallelism()

It returns the parallelism level currently in effect. Recall that, by default, this will equal the

number of available processors. Second, you can obtain the number of processors available

in the system by calling availableProcessors(), which is defined by the Runtime class. It is

shown here:

int availableProcessors()

The value returned may change from one call to the next because of other system demands.

An Example that Uses RecursiveTask<V>

The two preceding examples are based on RecursiveAction, which means that they

concurrently execute tasks that do not return results. To create a task that returns a result,

use RecursiveTask. In general, solutions are designed in the same manner as just shown.

The key difference is that the compute() method returns a result. Thus, you must aggregate

the results, so that when the first invocation finishes, it returns the overall result. Another

difference is that you will typically start a subtask by calling fork() and join() explicitly

(rather than implicitly by calling invokeAll(), for example).

The following program demonstrates RecursiveTask. It creates a task called Sum that

returns the summation of the values in an array of double. In this example, the array

consists of 5,000 elements. However, every other value is negative. Thus, the first values

in the array are 0, –1, 2, –3, 4, and so on.

// A simple example that uses RecursiveTask<V>.
import java.util.concurrent.*;

// A RecursiveTask that computes the summation of an array of doubles.
class Sum extends RecursiveTask<Double> {

 // The sequential threshold value.
 final int seqThresHold = 500;

 // Array to be accessed.
 double[] data;

 // Determines what part of data to process.
 int start, end;

 Sum(double[] vals, int s, int e) {
 data = vals;
 start = s;
 end = e;
 }

904 PART II The Java Library

 // Find the summation of an array of doubles.
 protected Double compute() {
 double sum = 0;

 // If number of elements is below the sequential threshold,
 // then process sequentially.
 if((end - start) < seqThresHold) {
 // Sum the elements.
 for(int i = start; i < end; i++) sum += data[i];
 }
 else {
 // Otherwise, continue to break the data into smaller pieces.

 // Find the midpoint.
 int middle = (start + end) / 2;

 // Invoke new tasks, using the subdivided data.
 Sum subTaskA = new Sum(data, start, middle);
 Sum subTaskB = new Sum(data, middle, end);

 // Start each subtask by forking.
 subTaskA.fork();
 subTaskB.fork();

 // Wait for the subtasks to return, and aggregate the results.
 sum = subTaskA.join() + subTaskB.join();
 }
 // Return the final sum.
 return sum;
 }
}

// Demonstrate parallel execution.
class RecurTaskDemo {
 public static void main(String args[]) {
 // Create a task pool.
 ForkJoinPool fjp = new ForkJoinPool();

 double[] nums = new double[5000];

 // Initialize nums with values that alternate between
 // positive and negative.
 for(int i=0; i < nums.length; i++)
 nums[i] = (double) (((i%2) == 0) ? i : -i) ;

 Sum task = new Sum(nums, 0, nums.length);

 // Start the ForkJoinTasks. Notice that, in this case,
 // invoke() returns a result.
 double summation = fjp.invoke(task);

 System.out.println("Summation " + summation);
 }
}

 Chapter 27 The Concurrency Utilities 905

P
a

rt
 I

I

Here’s the output from the program:

Summation -2500.0

There are a couple of interesting items in this program. First, notice that the two

subtasks are executed by calling fork(), as shown here:

subTaskA.fork();
subTaskB.fork();

In this case, fork() is used because it starts a task but does not wait for it to finish. (Thus,

it asynchronously runs the task.) The result of each task is obtained by calling join(), as

shown here:

sum = subTaskA.join() + subTaskB.join();

This statement waits until each task ends. It then adds the results of each and assigns the

total to sum. Thus, the summation of each subtask is added to the running total. Finally,

compute() ends by returning sum, which will be the final total when the first invocation

returns.

There are other ways to approach the handling of the asynchronous execution of the

subtasks. For example, the following sequence uses fork() to start subTaskA and uses

invoke() to start and wait for subTaskB:

subTaskA.fork();
sum = subTaskA.join() + subTaskB.invoke();

Another alternative is to have subTaskB call compute() directly, as shown here:

subTaskA.fork();
sum = subTaskA.join() + subTaskB.compute();

Executing a Task Asynchronously

The preceding programs have called invoke() on a ForkJoinPool to initiate a task. This

approach is commonly used when the calling thread must wait until the task has completed

(which is often the case) because invoke() does not return until the task has terminated.

However, you can start a task asynchronously. In this approach, the calling thread continues

to execute. Thus, both the calling thread and the task execute simultaneously. To start a

task asynchronously, use execute(), which is also defined by ForkJoinPool. It has the two

forms shown here:

void execute(ForkJoinTask<?> task)

void execute(Runnable task)

In both forms, task specifies the task to run. Notice that the second form lets you specify a

Runnable rather than a ForkJoinTask task. Thus, it forms a bridge between Java’s traditional

approach to multithreading and the new Fork/Join Framework. It is important to remember

that the threads used by a ForkJoinPool are daemon. Thus, they will end when the main

thread ends. As a result, you may need to keep the main thread alive until the tasks have

finished.

906 PART II The Java Library

Cancelling a Task

A task can be cancelled by calling cancel(), which is defined by ForkJoinTask. It has this

general form:

boolean cancel(boolean interuptOK)

It returns true if the task on which it was called is cancelled. It returns false if the task was

already cancelled, has already completed, or can’t be cancelled. At this time, the interruptOK

parameter is not used by the default implementation. In general, cancel() is intended to be

called from code outside the task because a task can easily cancel itself by returning.

You can determine if a task has been cancelled by calling isCancelled(), as shown here:

final boolean isCancelled()

It returns true if the invoking task has been cancelled prior to completion and false

otherwise.

Determining a Task’s Completion Status

In addition to isCancelled(), which was just described, ForkJoinTask includes two other

methods that you can use to determine a task’s completion status. The first is

isCompletedNormally(), which is shown here:

final boolean isCompletedNormally()

It returns true if the invoking task completed normally, that is, if it did not throw an

exception and it was not cancelled via a call to cancel(). It returns false otherwise.

The second is isCompletedAbnormally(), which is shown here:

final boolean isCompletedAbnormally()

It returns true if the invoking task completed because it was cancelled or because it threw

an exception. It returns false otherwise.

Restarting a Task

Normally, you cannot rerun a task. In other words, once a task completes, it cannot be

restarted. However, you can reinitialize the state of the task (after it has completed) so it

can be run again. This is done by calling reinitialize(), as shown here:

void reinitialize()

This method resets the state of the invoking task. However, any modification made to any

persistent data that is operated upon by the task will not be undone. For example, if the

task modifies an array, then those modifications are not undone by calling reinitialize().

Things to Explore

The preceding discussion presented the fundamentals of the Fork/Join Framework and

described the most commonly used methods. However, Fork/Join is a rich framework that

includes additional capabilities that give you extended control over concurrency. Although

it is far beyond the scope of this book to examine all of the issues and nuances surrounding

parallel programming and the Fork/Join Framework, a sampling of the other features

provided by ForkJoinTask and ForkJoinPool are mentioned here.

 Chapter 27 The Concurrency Utilities 907

P
a

rt
 I

I

A Sampling of Other ForkJoinTask Features
As mentioned, methods such as invokeAll() and fork() can be called only from within

a ForkJoinTask. This is usually an easy rule to abide by, but, in some cases, you may have

code that can be executed from inside or outside a task. You can determine if your code is

executing inside a task by calling inForkJoinPool().
You can convert a Runnable or Callable object into a ForkJoinTask by using the adapt()

method defined by ForkJoinTask. It has three forms, one for converting a Callable, one for a

Runnable that does not return a result, and one for a Runnable that does return a result. In the

case of a Callable, the call() method is run. In the case of Runnable, the run() method is run.

You can obtain an approximate count of the number of tasks that are in the queue of the

invoking thread by calling getQueuedTaskCount(). You can obtain an approximate count

of how many tasks the invoking thread has in its queue that are in excess of the number of

other threads in the pool that might “steal” them, by calling getSurplusQueuedTaskCount().
Remember, in the Fork/Join Framework, work-stealing is one way in which a high level of

efficiency is obtained. Although this process is automatic, in some cases, the information

may prove helpful in optimizing through-put.

ForkJoinTask defines two methods that begin with the prefix quietly. They are shown here:

final void quietlyJoin() Joins a task, but does not return a result or throw an exception

final void quietlyInvoke() Invokes a task, but does not return a result or throw an

exception.

In essence, these methods are similar to their non-quiet counterparts except they don’t

return values or throw exceptions.

You can attempt to “un-invoke” (in other words, unschedule) a task by calling tryUnfork().
ForkJoinTask implements Serializable. Thus, it can be serialized. However, serialization

is not used during execution.

A Sampling of Other ForkJoinPool Features
One method that is quite useful when tuning fork/join applications is ForkJoinPool’s
override of toString(). It displays a “user-friendly” synopsis of the state of the pool. To see it

in action, use this sequence to start and then wait for the task in the FJExperiment class of

the task experimenter program shown earlier:

// Asynchronously start the main ForkJoinTask.
fjp.execute(task);

// Display the state of the pool while waiting.
while(!task.isDone()) {
 System.out.println(fjp);
}

When you run the program, you will see a series of messages on the screen that describe

the state of the pool. Here is an example of one. Of course, your output may vary, based

on the number of processors, threshold values, task load, and so on.

java.util.concurrent.ForkJoinPool@141d683[Running, parallelism = 2,
size = 2, active = 0, running = 2, steals = 0, tasks = 0, submissions = 1]

You can determine if a pool is currently idle by calling isQuiescent(). It returns true if

the pool has no active threads and false otherwise.

908 PART II The Java Library

You can obtain the number of worker threads currently in the pool by calling

getPoolSize(). You can obtain an approximate count of the active threads in the pool

by calling getActiveThreadCount().
To shut down a pool, call shutdown(). Currently active tasks will still be executed, but

no new tasks can be started. To stop a pool immediately, call shutdownNow(). In this case,

an attempt is made to cancel currently active tasks. You can determine if a pool is shut

down by calling isShutdown(). It returns true if the pool has been shut down and false

otherwise. To determine if the pool has been shut down and all tasks have been completed,

call isTerminated().

Some Fork/Join Tips

Here are a few tips to help you avoid some of the more troublesome pitfalls associated with

using the Fork/Join Framework. First, avoid using a sequential threshold that is too low. In

general, erring on the high side is better than erring on the low side. If the threshold is too

low, more time can be consumed generating and switching tasks than in processing the

tasks. Second, usually it is best to use the default level of parallelism. If you specify a smaller

number, it may significantly reduce the benefits of using the Fork/Join Framework.

In general, a ForkJoinTask should not use synchronized methods or synchronized

blocks of code. Also, you will not normally want to have the compute() method use other

types of synchronization, such as a semaphore. (The new Phaser can, however, be used

when appropriate because it is compatible with the fork/join mechanism.) Remember, the

main idea behind a ForkJoinTask is the divide-and-conquer strategy. Such an approach

does not normally lend itself to situations in which outside synchronization is needed. Also,

avoid situations in which substantial blocking will occur through I/O. Therefore, in general,

a ForkJoinTask will not perform I/O. Simply put, to best utilize the Fork/Join Framework, a

task should perform a computation that can run without outside blocking or synchronization.

One last point: Except under unusual circumstances, do not make assumptions about

the execution environment that your code will run in. This means you should not assume

that some specific number of processors will be available, or that the execution characteristics

of your program won’t be affected by other processes running at the same time.

The Concurrency Utilities Versus Java’s Traditional

Approach
Given the power and flexibility found in the new concurrency utilities, it is natural to ask

the following question: Do they replace Java’s traditional approach to multithreading and

synchronization? The answer is a resounding no! The original support for multithreading

and the built-in synchronization features are still the mechanism that should be employed

for many, many Java programs, applets, and servlets. For example, synchronized, wait(),
and notify() offer elegant solutions to a wide range of problems. However, when extra

control is needed, the concurrency utilities are available to handle the chore. Furthermore,

the new Fork/Join Framework offers a powerful way to integrate parallel programming

techniques into your more sophisticated applications.

28
CHAPTER

 909

Regular Expressions
and Other Packages

When Java was originally released, it included a set of eight packages, called the core API.
Each subsequent release added to the API. Today, the Java API contains a large number

of packages. Many of the packages support areas of specialization that are beyond the

scope of this book. However, four packages warrant an examination here: java.util.regex,

java.lang.reflect, java.rmi, and java.text. They support regular expression processing,

reflection, Remote Method Invocation (RMI), and text formatting, respectively.

The regular expression package lets you perform sophisticated pattern matching operations.

This chapter provides an in-depth discussion of this package along with extensive examples.

Reflection is the ability of software to analyze itself. It is an essential part of the Java Beans

technology that is covered in Chapter 29. Remote Method Invocation (RMI) allows you to build

Java applications that are distributed among several machines. This chapter provides a simple

client/server example that uses RMI. The text formatting capabilities of java.text have many

uses. The one examined here formats date and time strings.

The Core Java API Packages
Table 28-1 lists all of the core API packages defined by Java (those in the java namespace)

and summarizes their functions.

Table 28-1 The Core Java API Packages

Package Primary Function

java.applet Supports construction of applets.

java.awt Provides capabilities for graphical user interfaces.

java.awt.color Supports color spaces and profiles.

java.awt.datatransfer Transfers data to and from the system clipboard.

java.awt.dnd Supports drag-and-drop operations.

java.awt.event Handles events.

910 PART II The Java Library

Package Primary Function

java.awt.font Represents various types of fonts.

java.awt.geom Allows you to work with geometric shapes.

java.awt.im Allows input of Japanese, Chinese, and Korean characters to text

editing components.

java.awt.im.spi Supports alternative input devices.

java.awt.image Processes images.

java.awt.image.renderable Supports rendering-independent images.

java.awt.print Supports general print capabilities.

java.beans Allows you to build software components.

java.beans.beancontext Provides an execution environment for Beans.

java.io Inputs and outputs data.

java.lang Provides core functionality.

java.lang.annotation Supports annotations (metadata).

java.lang.instrument Supports program instrumentation.

java.lang.invoke Supports dynamic languages.

java.lang.management Supports management of the execution environment.

java.lang.ref Enables some interaction with the garbage collector.

java.lang.reflect Analyzes code at run time.

java.math Handles large integers and decimal numbers.

java.net Supports networking.

java.nio Top-level package for the NIO classes. Encapsulates buffers.

java.nio.channels Encapsulates channels, which are used by the NIO system.

java.nio.channels.spi Supports service providers for channels.

java.nio.charset Encapsulates character sets.

java.nio.charset.spi Supports service providers for character sets.

java.nio.file Provides NIO support for files.

java.nio.file.attribute Supports NIO file attributes.

java.nio.file.spi Supports NIO service providers for files.

java.rmi Provides remote method invocation.

java.rmi.activation Activates persistent objects.

java.rmi.dgc Manages distributed garbage collection.

java.rmi.registry Maps names to remote object references.

java.rmi.server Supports remote method invocation.

java.security Handles certificates, keys, digests, signatures, and other security

functions.

java.security.acl Manages access control lists.

Table 28-1 The Core Java API Packages (continued)

 Chapter 28 Regular Expressions and Other Packages 911

P
a

rt
 I

I

Regular Expression Processing
The java.util.regex package supports regular expression processing. As the term is used

here, a regular expression is a string of characters that describes a character sequence. This

general description, called a pattern, can then be used to find matches in other character

sequences. Regular expressions can specify wildcard characters, sets of characters, and

various quantifiers. Thus, you can specify a regular expression that represents a general

form that can match several different specific character sequences.

There are two classes that support regular expression processing: Pattern and Matcher.

These classes work together. Use Pattern to define a regular expression. Match the pattern

against another sequence using Matcher.

Pattern

The Pattern class defines no constructors. Instead, a pattern is created by calling the

compile() factory method. One of its forms is shown here:

static Pattern compile(String pattern)

Here, pattern is the regular expression that you want to use. The compile() method transforms

the string in pattern into a pattern that can be used for pattern matching by the Matcher

class. It returns a Pattern object that contains the pattern.

Package Primary Function

java.security.cert Parses and manages certificates.

java.security.interfaces Defines interfaces for DSA (Digital Signature Algorithm) keys.

java.security.spec Specifies keys and algorithm parameters.

java.sql Communicates with a SQL (Structured Query Language) database.

java.text Formats, searches, and manipulates text.

java.text.spi Supports service providers for text formatting classes in java.text.

java.util Contains common utilities.

java.util.concurrent Supports the concurrent utilities.

java.util.concurrent.atomic Supports atomic (that is, indivisible) operations on variables without

the use of locks.

java.util.concurrent.locks Supports synchronization locks.

java.util.jar Creates and reads JAR files.

java.util.logging Supports logging of information related to a program’s execution.

java.util.prefs Encapsulates information relating to user preference.

java.util.regex Supports regular expression processing.

java.util.spi Supports service providers for the utility classes in java.util.

java.util.zip Reads and writes compressed and uncompressed ZIP files.

Table 28-1 The Core Java API Packages (continued)

912 PART II The Java Library

Once you have created a Pattern object, you will use it to create a Matcher. This is done

by calling the matcher() factory method defined by Pattern. It is shown here:

Matcher matcher(CharSequence str)

Here str is the character sequence that the pattern will be matched against. This is called

the input sequence. CharSequence is an interface that defines a read-only set of characters. It

is implemented by the String class, among others. Thus, you can pass a string to matcher().

Matcher

The Matcher class has no constructors. Instead, you create a Matcher by calling the matcher()
factory method defined by Pattern, as just explained. Once you have created a Matcher, you

will use its methods to perform various pattern matching operations.

The simplest pattern matching method is matches(), which simply determines whether

the character sequence matches the pattern. It is shown here:

boolean matches()

It returns true if the sequence and the pattern match, and false otherwise. Understand that

the entire sequence must match the pattern, not just a subsequence of it.

To determine if a subsequence of the input sequence matches the pattern, use find().
One version is shown here:

boolean find()

It returns true if there is a matching subsequence and false otherwise. This method can be

called repeatedly, allowing it to find all matching subsequences. Each call to find() begins

where the previous one left off.

You can obtain a string containing the last matching sequence by calling group(). One

of its forms is shown here:

String group()

The matching string is returned. If no match exists, then an IllegalStateException is thrown.

You can obtain the index within the input sequence of the current match by calling

start(). The index one past the end of the current match is obtained by calling end().
These methods are shown here:

int start()

int end()

Both throw IllegalStateException if no match exists.

You can replace all occurrences of a matching sequence with another sequence by

calling replaceAll(), shown here:

String replaceAll(String newStr)

Here, newStr specifies the new character sequence that will replace the ones that match the

pattern. The updated input sequence is returned as a string.

 Chapter 28 Regular Expressions and Other Packages 913

P
a

rt
 I

I

Regular Expression Syntax

Before demonstrating Pattern and Matcher, it is necessary to explain how to construct a

regular expression. Although no rule is complicated by itself, there are a large number of

them, and a complete discussion is beyond the scope of this chapter. However, a few of the

more commonly used constructs are described here.

In general, a regular expression is comprised of normal characters, character classes

(sets of characters), wildcard characters, and quantifiers. A normal character is matched

as-is. Thus, if a pattern consists of "xy", then the only input sequence that will match it is

"xy". Characters such as newline and tab are specified using the standard escape sequences,

which begin with a \ . For example, a newline is specified by \n. In the language of regular

expressions, a normal character is also called a literal.
A character class is a set of characters. A character class is specified by putting the

characters in the class between brackets. For example, the class [wxyz] matches w, x, y, or z.

To specify an inverted set, precede the characters with a ^. For example, [^wxyz] matches

any character except w, x, y, or z. You can specify a range of characters using a hyphen. For

example, to specify a character class that will match the digits 1 through 9, use [1-9].

The wildcard character is the . (dot) and it matches any character. Thus, a pattern that

consists of "." will match these (and other) input sequences: "A", "a", "x", and so on.

A quantifier determines how many times an expression is matched. The quantifiers are

shown here:

+ Match one or more.

* Match zero or more.

? Match zero or one.

For example, the pattern "x+" will match "x", "xx", and "xxx", among others.

One other point: In general, if you specify an invalid expression, a

PatternSyntaxException will be thrown.

Demonstrating Pattern Matching

The best way to understand how regular expression pattern matching operates is to work

through some examples. The first, shown here, looks for a match with a literal pattern:

// A simple pattern matching demo.
import java.util.regex.*;

class RegExpr {
 public static void main(String args[]) {
 Pattern pat;
 Matcher mat;
 boolean found;

 pat = Pattern.compile("Java");
 mat = pat.matcher("Java");
 found = mat.matches(); // check for a match

914 PART II The Java Library

 System.out.println("Testing Java against Java.");
 if(found) System.out.println("Matches");
 else System.out.println("No Match");

 System.out.println();

 System.out.println("Testing Java against Java 7.");
 mat = pat.matcher("Java 7"); // create a new matcher

 found = mat.matches(); // check for a match

 if(found) System.out.println("Matches");
 else System.out.println("No Match");
 }
}

The output from the program is shown here:

 Testing Java against Java.
 Matches

 Testing Java against Java 7.
 No Match

Let’s look closely at this program. The program begins by creating the pattern that contains

the sequence "Java". Next, a Matcher is created for that pattern that has the input sequence

"Java". Then, the matches() method is called to determine if the input sequence matches

the pattern. Because the sequence and the pattern are the same, matches() returns true.

Next, a new Matcher is created with the input sequence "Java 7" and matches() is called

again. In this case, the pattern and the input sequence differ, and no match is found.

Remember, the matches() function returns true only when the input sequence precisely

matches the pattern. It will not return true just because a subsequence matches.

You can use find() to determine if the input sequence contains a subsequence that

matches the pattern. Consider the following program:

// Use find() to find a subsequence.
import java.util.regex.*;

class RegExpr2 {
 public static void main(String args[]) {
 Pattern pat = Pattern.compile("Java");
 Matcher mat = pat.matcher("Java 7");

 System.out.println("Looking for Java in Java 7.");

 if(mat.find()) System.out.println("subsequence found");
 else System.out.println("No Match");
 }
}

The output is shown here:

 Looking for Java in Java 7.
 subsequence found

 Chapter 28 Regular Expressions and Other Packages 915

P
a

rt
 I

I

In this case, find() finds the subsequence "Java".

The find() method can be used to search the input sequence for repeated occurrences

of the pattern because each call to find() picks up where the previous one left off. For

example, the following program finds two occurrences of the pattern "test":

// Use find() to find multiple subsequences.
import java.util.regex.*;

class RegExpr3 {
 public static void main(String args[]) {
 Pattern pat = Pattern.compile("test");
 Matcher mat = pat.matcher("test 1 2 3 test");

 while(mat.find()) {
 System.out.println("test found at index " +
 mat.start());
 }
 }
}

The output is shown here:

 test found at index 0
 test found at index 11

As the output shows, two matches were found. The program uses the start() method to

obtain the index of each match.

Using Wildcards and Quantifiers
Although the preceding programs show the general technique for using Pattern and

Matcher, they don’t show their power. The real benefit of regular expression processing is

not seen until wildcards and quantifiers are used. To begin, consider the following example

that uses the + quantifier to match any arbitrarily long sequence of Ws:

// Use a quantifier.
import java.util.regex.*;

class RegExpr4 {
 public static void main(String args[]) {
 Pattern pat = Pattern.compile("W+");
 Matcher mat = pat.matcher("W WW WWW");

 while(mat.find())
 System.out.println("Match: " + mat.group());
 }
}

The output from the program is shown here:

 Match: W
 Match: WW
 Match: WWW

916 PART II The Java Library

As the output shows, the regular expression pattern "W+" matches any arbitrarily long

sequence of Ws.

The next program uses a wildcard to create a pattern that will match any sequence that

begins with e and ends with d. To do this, it uses the dot wildcard character along with the +

quantifier.

// Use wildcard and quantifier.
import java.util.regex.*;

class RegExpr5 {
 public static void main(String args[]) {
 Pattern pat = Pattern.compile("e.+d");
 Matcher mat = pat.matcher("extend cup end table");

 while(mat.find())
 System.out.println("Match: " + mat.group());
 }
}

You might be surprised by the output produced by the program, which is shown here:

 Match: extend cup end

Only one match is found, and it is the longest sequence that begins with e and ends with

d. You might have expected two matches: "extend" and "end". The reason that the longer

sequence is found is that by default, find() matches the longest sequence that fits the

pattern. This is called greedy behavior. You can specify reluctant behavior by adding the ?

quantifier to the pattern, as shown in this version of the program. It causes the shortest

matching pattern to be obtained.

// Use the ? quantifier.
import java.util.regex.*;

class RegExpr6 {
 public static void main(String args[]) {
 // Use reluctant matching behavior.
 Pattern pat = Pattern.compile("e.+?d");
 Matcher mat = pat.matcher("extend cup end table");

 while(mat.find())
 System.out.println("Match: " + mat.group());
 }
}

The output from the program is shown here:

 Match: extend
 Match: end

As the output shows, the pattern "e.+?d" will match the shortest sequence that begins with

e and ends with d. Thus, two matches are found.

 Chapter 28 Regular Expressions and Other Packages 917

P
a

rt
 I

I

Working with Classes of Characters
Sometimes you will want to match any sequence that contains one or more characters, in

any order, that are part of a set of characters. For example, to match whole words, you want

to match any sequence of the letters of the alphabet. One of the easiest ways to do this is

to use a character class, which defines a set of characters. Recall that a character class

is created by putting the characters you want to match between brackets. For example, to

match the lowercase characters a through z, use [a-z]. The following program demonstrates

this technique:

// Use a character class.
import java.util.regex.*;

class RegExpr7 {
 public static void main(String args[]) {
 // Match lowercase words.
 Pattern pat = Pattern.compile("[a-z]+");
 Matcher mat = pat.matcher("this is a test.");

 while(mat.find())
 System.out.println("Match: " + mat.group());
 }
}

The output is shown here:

 Match: this
 Match: is
 Match: a
 Match: test

Using replaceAll()
The replaceAll() method supplied by Matcher lets you perform powerful search and

replace operations that use regular expressions. For example, the following program

replaces all occurrences of sequences that begin with "Jon" with "Eric":

// Use replaceAll().
import java.util.regex.*;

class RegExpr8 {
 public static void main(String args[]) {
 String str = "Jon Jonathan Frank Ken Todd";

 Pattern pat = Pattern.compile("Jon.*? ");
 Matcher mat = pat.matcher(str);

 System.out.println("Original sequence: " + str);

 str = mat.replaceAll("Eric ");

 System.out.println("Modified sequence: " + str);

 }
}

918 PART II The Java Library

The output is shown here:

 Original sequence: Jon Jonathan Frank Ken Todd
 Modified sequence: Eric Eric Frank Ken Todd

Because the regular expression "Jon.*? " matches any string that begins with Jon followed

by zero or more characters, ending in a space, it can be used to match and replace both

Jon and Jonathan with the name Eric. Such a substitution is not possible without pattern

matching capabilities.

Using split()
You can reduce an input sequence into its individual tokens by using the split() method

defined by Pattern. One form of the split() method is shown here:

String[] split(CharSequence str)

It processes the input sequence passed in str, reducing it into tokens based on the

delimiters specified by the pattern.

For example, the following program finds tokens that are separated by spaces, commas,

periods, and exclamation points:

// Use split().
import java.util.regex.*;

class RegExpr9 {
 public static void main(String args[]) {

 // Match lowercase words.
 Pattern pat = Pattern.compile("[,.!]");

 String strs[] = pat.split("one two,alpha9 12!done.");

 for(int i=0; i < strs.length; i++)
 System.out.println("Next token: " + strs[i]);

 }
}

The output is shown here:

 Next token: one
 Next token: two
 Next token: alpha9
 Next token: 12
 Next token: done

As the output shows, the input sequence is reduced to its individual tokens. Notice that the

delimiters are not included.

 Chapter 28 Regular Expressions and Other Packages 919

P
a

rt
 I

I

Two Pattern-Matching Options

Although the pattern-matching techniques described in the foregoing offer the greatest

flexibility and power, there are two alternatives which you might find useful in some

circumstances. If you only need to perform a one-time pattern match, you can use the

matches() method defined by Pattern. It is shown here:

static boolean matches(String pattern, CharSequence str)

It returns true if pattern matches str and false otherwise. This method automatically compiles

pattern and then looks for a match. If you will be using the same pattern repeatedly, then

using matches() is less efficient than compiling the pattern and using the pattern-matching

methods defined by Matcher, as described previously.

You can also perform a pattern match by using the matches() method implemented by

String. It is shown here:

boolean matches(String pattern)

If the invoking string matches the regular expression in pattern, then matches() returns

true. Otherwise, it returns false.

Exploring Regular Expressions

The overview of regular expressions presented in this section only hints at their power. Since

text parsing, manipulation, and tokenization are a large part of programming, you will likely

find Java’s regular expression subsystem a powerful tool that you can use to your advantage.

It is, therefore, wise to explore the capabilities of regular expressions. Experiment with

several different types of patterns and input sequences. Once you understand how regular

expression pattern matching works, you will find it useful in many of your programming

endeavors.

Reflection
Reflection is the ability of software to analyze itself. This is provided by the java.lang.reflect
package and elements in Class. Reflection is an important capability, especially when using

components called Java Beans. It allows you to analyze a software component and describe

its capabilities dynamically, at run time rather than at compile time. For example, by using

reflection, you can determine what methods, constructors, and fields a class supports.

Reflection was introduced in Chapter 12. It is examined further here.

The package java.lang.reflect includes several interfaces. Of special interest is Member,

which defines methods that allow you to get information about a field, constructor, or

method of a class. There are also eight classes in this package. These are listed in Table 28-2.

The following application illustrates a simple use of the Java reflection capabilities. It

prints the constructors, fields, and methods of the class java.awt.Dimension. The program

begins by using the forName() method of Class to get a class object for java.awt.Dimension.

920 PART II The Java Library

Once this is obtained, getConstructors(), getFields(), and getMethods() are used to

analyze this class object. They return arrays of Constructor, Field, and Method objects that

provide the information about the object. The Constructor, Field, and Method classes

define several methods that can be used to obtain information about an object. You will

want to explore these on your own. However, each supports the toString() method.

Therefore, using Constructor, Field, and Method objects as arguments to the println()
method is straightforward, as shown in the program.

// Demonstrate reflection.
import java.lang.reflect.*;
public class ReflectionDemo1 {
 public static void main(String args[]) {
 try {
 Class<?> c = Class.forName("java.awt.Dimension");
 System.out.println("Constructors:");
 Constructor constructors[] = c.getConstructors();
 for(int i = 0; i < constructors.length; i++) {
 System.out.println(" " + constructors[i]);
 }

 System.out.println("Fields:");
 Field fields[] = c.getFields();
 for(int i = 0; i < fields.length; i++) {
 System.out.println(" " + fields[i]);
 }

 System.out.println("Methods:");
 Method methods[] = c.getMethods();
 for(int i = 0; i < methods.length; i++) {
 System.out.println(" " + methods[i]);
 }
 }
 catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

Table 28-2 Classes Defined in java.lang.reflect

Class Primary Function

AccessibleObject Allows you to bypass the default access control checks.

Array Allows you to dynamically create and manipulate arrays.

Constructor Provides information about a constructor.

Field Provides information about a field.

Method Provides information about a method.

Modifier Provides information about class and member access modifiers.

Proxy Supports dynamic proxy classes.

ReflectPermission Allows reflection of private or protected members of a class.

 Chapter 28 Regular Expressions and Other Packages 921

P
a

rt
 I

I

Here is the output from this program. (The precise order may differ slightly from that shown.)

 Constructors:
 public java.awt.Dimension(int,int)
 public java.awt.Dimension()
 public java.awt.Dimension(java.awt.Dimension)
 Fields:
 public int java.awt.Dimension.width
 public int java.awt.Dimension.height
 Methods:
 public int java.awt.Dimension.hashCode()
 public boolean java.awt.Dimension.equals(java.lang.Object)
 public java.lang.String java.awt.Dimension.toString()
 public java.awt.Dimension java.awt.Dimension.getSize()
 public void java.awt.Dimension.setSize(double,double)
 public void java.awt.Dimension.setSize(java.awt.Dimension)
 public void java.awt.Dimension.setSize(int,int)
 public double java.awt.Dimension.getHeight()
 public double java.awt.Dimension.getWidth()
 public java.lang.Object java.awt.geom.Dimension2D.clone()
 public void java.awt.geom.
 Dimension2D.setSize(java.awt.geom.Dimension2D)
 public final native java.lang.Class java.lang.Object.getClass()
 public final native void java.lang.Object.wait(long)
 throws java.lang.InterruptedException
 public final void java.lang.Object.wait()
 throws java.lang.InterruptedException
 public final void java.lang.Object.wait(long,int)
 throws java.lang.InterruptedException
 public final native void java.lang.Object.notify()
 public final native void java.lang.Object.notifyAll()

The next example uses Java’s reflection capabilities to obtain the public methods of a

class. The program begins by instantiating class A. The getClass() method is applied to this

object reference, and it returns the Class object for class A. The getDeclaredMethods()
method returns an array of Method objects that describe only the methods declared by

this class. Methods inherited from superclasses such as Object are not included.

Each element of the methods array is then processed. The getModifiers() method

returns an int containing flags that describe which modifiers apply for this element. The

Modifier class provides a set of isX methods, shown in Table 28-3, that can be used to

examine this value. For example, the static method isPublic() returns true if its argument

includes the public modifier. Otherwise, it returns false. In the following program, if the

method supports public access, its name is obtained by the getName() method and is then

printed.

// Show public methods.
import java.lang.reflect.*;
public class ReflectionDemo2 {
 public static void main(String args[]) {

922 PART II The Java Library

 try {
 A a = new A();
 Class<?> c = a.getClass();
 System.out.println("Public Methods:");
 Method methods[] = c.getDeclaredMethods();
 for(int i = 0; i < methods.length; i++) {
 int modifiers = methods[i].getModifiers();
 if(Modifier.isPublic(modifiers)) {
 System.out.println(" " + methods[i].getName());
 }
 }
 }
 catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

class A {
 public void a1() {
 }
 public void a2() {
 }
 protected void a3() {
 }
 private void a4() {
 }
}

Here is the output from this program:

 Public Methods:
 a1
 a2

Beginning with JDK 7, Modifier also includes a set of static methods that return the type

of modifiers that can be applied to a specific type of program element. These methods are

static int classModifiers()

static int constructorModifiers()

static int fieldModifiers()

static int interfaceModifiers()

static int methodModifiers()

For example, methodModifiers() returns the modifiers that can be applied to a method.

Each method returns flags, packed into an int, that indicate which modifiers are legal.

The modifier values are defined by constants in Modifier, which include PROTECTED,

PUBLIC, PRIVATE, STATIC, FINAL, and so on.

 Chapter 28 Regular Expressions and Other Packages 923

P
a

rt
 I

I

Remote Method Invocation (RMI)
Remote Method Invocation (RMI) allows a Java object that executes on one machine to

invoke a method of a Java object that executes on another machine. This is an important

feature, because it allows you to build distributed applications. While a complete discussion

of RMI is outside the scope of this book, the following simplified example describes the

basic principles involved.

A Simple Client/Server Application Using RMI

This section provides step-by-step directions for building a simple client/server application

by using RMI. The server receives a request from a client, processes it, and returns a result.

In this example, the request specifies two numbers. The server adds these together and

returns the sum.

Table 28-3 The “is” Methods Defined by Modifier That Determine Modifiers

Method Description

static boolean isAbstract(int val) Returns true if val has the abstract flag set and false

otherwise.

static boolean isFinal(int val) Returns true if val has the final flag set and false

otherwise.

static boolean isInterface(int val) Returns true if val has the interface flag set and false

otherwise.

static boolean isNative(int val) Returns true if val has the native flag set and false

otherwise.

static boolean isPrivate(int val) Returns true if val has the private flag set and false

otherwise.

static boolean isProtected(int val) Returns true if val has the protected flag set and false

otherwise.

static boolean isPublic(int val) Returns true if val has the public flag set and false

otherwise.

static boolean isStatic(int val) Returns true if val has the static flag set and false

otherwise.

static boolean isStrict(int val) Returns true if val has the strict flag set and false

otherwise.

static boolean isSynchronized(int val) Returns true if val has the synchronized flag set and

false otherwise.

static boolean isTransient(int val) Returns true if val has the transient flag set and false

otherwise.

static boolean isVolatile(int val) Returns true if val has the volatile flag set and false

otherwise.

924 PART II The Java Library

Step One: Enter and Compile the Source Code
This application uses four source files. The first file, AddServerIntf.java, defines the remote

interface that is provided by the server. It contains one method that accepts two double

arguments and returns their sum. All remote interfaces must extend the Remote interface,

which is part of java.rmi. Remote defines no members. Its purpose is simply to indicate that

an interface uses remote methods. All remote methods can throw a RemoteException.

import java.rmi.*;

public interface AddServerIntf extends Remote {
 double add(double d1, double d2) throws RemoteException;
}

The second source file, AddServerImpl.java, implements the remote interface. The

implementation of the add() method is straightforward. Remote objects typically extend

UnicastRemoteObject, which provides functionality that is needed to make objects available

from remote machines.

import java.rmi.*;
import java.rmi.server.*;

public class AddServerImpl extends UnicastRemoteObject
 implements AddServerIntf {

 public AddServerImpl() throws RemoteException {
 }
 public double add(double d1, double d2) throws RemoteException {
 return d1 + d2;
 }
}

The third source file, AddServer.java, contains the main program for the server

machine. Its primary function is to update the RMI registry on that machine. This is done

by using the rebind() method of the Naming class (found in java.rmi). That method

associates a name with an object reference. The first argument to the rebind() method

is a string that names the server as "AddServer". Its second argument is a reference to an

instance of AddServerImpl.

import java.net.*;
import java.rmi.*;

public class AddServer {
 public static void main(String args[]) {

 try {
 AddServerImpl addServerImpl = new AddServerImpl();
 Naming.rebind("AddServer", addServerImpl);
 }
 catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

 Chapter 28 Regular Expressions and Other Packages 925

P
a

rt
 I

I

The fourth source file, AddClient.java, implements the client side of this distributed

application. AddClient.java requires three command-line arguments. The first is the IP

address or name of the server machine. The second and third arguments are the two

numbers that are to be summed.

The application begins by forming a string that follows the URL syntax. This URL uses

the rmi protocol. The string includes the IP address or name of the server and the string

"AddServer". The program then invokes the lookup() method of the Naming class. This

method accepts one argument, the rmi URL, and returns a reference to an object of type

AddServerIntf. All remote method invocations can then be directed to this object.

The program continues by displaying its arguments and then invokes the remote add()
method. The sum is returned from this method and is then printed.

import java.rmi.*;

public class AddClient {
 public static void main(String args[]) {
 try {
 String addServerURL = "rmi://" + args[0] + "/AddServer";
 AddServerIntf addServerIntf =
 (AddServerIntf)Naming.lookup(addServerURL);
 System.out.println("The first number is: " + args[1]);
 double d1 = Double.valueOf(args[1]).doubleValue();
 System.out.println("The second number is: " + args[2]);

 double d2 = Double.valueOf(args[2]).doubleValue();
 System.out.println("The sum is: " + addServerIntf.add(d1, d2));
 }
 catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

After you enter all the code, use javac to compile the four source files that you created.

Step Two: Manually Generate a Stub if Required
In the context of RMI, a stub is a Java object that resides on the client machine. Its function

is to present the same interfaces as the remote server. Remote method calls initiated by the

client are actually directed to the stub. The stub works with the other parts of the RMI

system to formulate a request that is sent to the remote machine.

A remote method may accept arguments that are simple types or objects. In the latter

case, the object may have references to other objects. All of this information must be sent to

the remote machine. That is, an object passed as an argument to a remote method call must

be serialized and sent to the remote machine. Recall from Chapter 19 that the serialization

facilities also recursively process all referenced objects.

If a response must be returned to the client, the process works in reverse. Note that the

serialization and deserialization facilities are also used if objects are returned to a client.

Prior to Java 5, stubs needed to be built manually by using rmic. This step is not

required for modern versions of Java. However, if you are working in a legacy environment,

then you can use the rmic compiler, as shown here, to build a stub:

rmic AddServerImpl

926 PART II The Java Library

This command generates the file AddServerImpl_Stub.class. When using rmic, be sure that

CLASSPATH is set to include the current directory.

Step Three: Install Files on the Client and Server Machines
Copy AddClient.class, AddServerImpl_Stub.class (if needed), and AddServerIntf.class

to a directory on the client machine. Copy AddServerIntf.class, AddServerImpl.class,

AddServerImpl_Stub.class (if needed), and AddServer.class to a directory on the server

machine.

NOTE RMI has techniques for dynamic class loading, but they are not used by the example at hand.
Instead, all of the files that are used by the client and server applications must be installed manually
on those machines.

Step Four: Start the RMI Registry on the Server Machine
The JDK provides a program called rmiregistry, which executes on the server machine. It

maps names to object references. First, check that the CLASSPATH environment variable

includes the directory in which your files are located. Then, start the RMI Registry from the

command line, as shown here:

start rmiregistry

When this command returns, you should see that a new window has been created. You need

to leave this window open until you are done experimenting with the RMI example.

Step Five: Start the Server
The server code is started from the command line, as shown here:

java AddServer

Recall that the AddServer code instantiates AddServerImpl and registers that object with

the name "AddServer".

Step Six: Start the Client
The AddClient software requires three arguments: the name or IP address of the server

machine and the two numbers that are to be summed together. You may invoke it from the

command line by using one of the two formats shown here:

java AddClient server1 8 9

java AddClient 11.12.13.14 8 9

In the first line, the name of the server is provided. The second line uses its IP address

(11.12.13.14).

You can try this example without actually having a remote server. To do so, simply install

all of the programs on the same machine, start rmiregistry, start AddServer, and then execute

AddClient using this command line:

java AddClient 127.0.0.1 8 9

Here, the address 127.0.0.1 is the “loop back” address for the local machine. Using this

address allows you to exercise the entire RMI mechanism without actually having to install

the server on a remote computer.

In either case, sample output from this program is shown here:

 Chapter 28 Regular Expressions and Other Packages 927

P
a

rt
 I

I

 The first number is: 8
 The second number is: 9
 The sum is: 17.0

NOTE When working with RMI in the real world, it may be necessary for the server to install a security
manager.

Text Formatting
The package java.text allows you to format, search, and manipulate text. Chapter 33 illustrates

its NumberFormat class, which is used to format numeric data. This section examines two

more of its most commonly used classes: those that format date and time information.

DateFormat Class

DateFormat is an abstract class that provides the ability to format and parse dates and times.

The getDateInstance() method returns an instance of DateFormat that can format date

information. It is available in these forms:

static final DateFormat getDateInstance()

static final DateFormat getDateInstance(int style)
static final DateFormat getDateInstance(int style, Locale locale)

The argument style is one of the following values: DEFAULT, SHORT, MEDIUM, LONG,

or FULL. These are int constants defined by DateFormat. They cause different details about

the date to be presented. The argument locale is one of the static references defined by

Locale (refer to Chapter 18 for details). If the style and/or locale is not specified, defaults

are used.

One of the most commonly used methods in this class is format(). It has several

overloaded forms, one of which is shown here:

final String format(Date d)

The argument is a Date object that is to be displayed. The method returns a string

containing the formatted information.

The following listing illustrates how to format date information. It begins by creating a

Date object. This captures the current date and time information. Then it outputs the date

information by using different styles and locales.

// Demonstrate date formats.
import java.text.*;
import java.util.*;

public class DateFormatDemo {
 public static void main(String args[]) {
 Date date = new Date();
 DateFormat df;

 df = DateFormat.getDateInstance(DateFormat.SHORT, Locale.JAPAN);
 System.out.println("Japan: " + df.format(date));

 df = DateFormat.getDateInstance(DateFormat.MEDIUM, Locale.KOREA);
 System.out.println("Korea: " + df.format(date));

928 PART II The Java Library

 df = DateFormat.getDateInstance(DateFormat.LONG, Locale.UK);
 System.out.println("United Kingdom: " + df.format(date));

 df = DateFormat.getDateInstance(DateFormat.FULL, Locale.US);
 System.out.println("United States: " + df.format(date));
 }
}

Sample output from this program is shown here:

 Japan: 11/01/01
 Korea: 2011. 1. 1
 United Kingdom: 01 January 2011
 United States: Saturday, January 1, 2011

The getTimeInstance() method returns an instance of DateFormat that can format

time information. It is available in these versions:

static final DateFormat getTimeInstance()

static final DateFormat getTimeInstance(int style)
static final DateFormat getTimeInstance(int style, Locale locale)

The argument style is one of the following values: DEFAULT, SHORT, MEDIUM, LONG,

or FULL. These are int constants defined by DateFormat. They cause different details about

the time to be presented. The argument locale is one of the static references defined by

Locale. If the style and/or locale is not specified, defaults are used.

The following listing illustrates how to format time information. It begins by creating a

Date object. This captures the current date and time information. Then it outputs the time

information by using different styles and locales.

// Demonstrate time formats.
import java.text.*;
import java.util.*;
public class TimeFormatDemo {
 public static void main(String args[]) {
 Date date = new Date();
 DateFormat df;

 df = DateFormat.getTimeInstance(DateFormat.SHORT, Locale.JAPAN);
 System.out.println("Japan: " + df.format(date));

 df = DateFormat.getTimeInstance(DateFormat.LONG, Locale.UK);
 System.out.println("United Kingdom: " + df.format(date));

 df = DateFormat.getTimeInstance(DateFormat.FULL, Locale.CANADA);
 System.out.println("Canada: " + df.format(date));
 }
}

Sample output from this program is shown here:

 Japan: 20:25
 United Kingdom: 20:25:14 CDT
 Canada: 8:25:14 o'clock PM CDT

 Chapter 28 Regular Expressions and Other Packages 929

P
a

rt
 I

I

The DateFormat class also has a getDateTimeInstance() method that can format both

date and time information. You may wish to experiment with it on your own.

SimpleDateFormat Class

SimpleDateFormat is a concrete subclass of DateFormat. It allows you to define your own

formatting patterns that are used to display date and time information.

One of its constructors is shown here:

SimpleDateFormat(String formatString)

The argument formatString describes how date and time information is displayed. An

example of its use is given here:

SimpleDateFormat sdf = SimpleDateFormat("dd MMM yyyy hh:mm:ss zzz");

The symbols used in the formatting string determine the information that is displayed.

Table 28-4 lists these symbols and gives a description of each.

Table 28-4 Formatting String Symbols for SimpleDateFormat

Symbol Description

a AM or PM

d Day of month (1–31)

h Hour in AM/PM (1–12)

k Hour in day (1–24)

m Minute in hour (0–59)

s Second in minute (0–59)

u Day of week, with Monday being 1

w Week of year (1–52)

y Year

z Time zone

D Day of year (1–366)

E Day of week (for example, Thursday)

F Day of week in month

G Era (for example, AD or BC)

H Hour in day (0–23)

K Hour in AM/PM (0–11)

M Month

S Millisecond in second

W Week of month (1–5)

X Time zone in ISO 8601 format

Y Week year

Z Time zone in RFC 822 format

930 PART II The Java Library

In most cases, the number of times a symbol is repeated determines how that data

is presented. Text information is displayed in an abbreviated form if the pattern letter is

repeated less than four times. Otherwise, the unabbreviated form is used. For example, a

zzzz pattern can display Pacific Daylight Time, and a zzz pattern can display PDT.

For numbers, the number of times a pattern letter is repeated determines how many

digits are presented. For example, hh:mm:ss can present 01:51:15, but h:m:s displays the

same time value as 1:51:15.

Finally, M or MM causes the month to be displayed as one or two digits. However, three

or more repetitions of M cause the month to be displayed as a text string.

The following program shows how this class is used:

// Demonstrate SimpleDateFormat.
import java.text.*;
import java.util.*;

public class SimpleDateFormatDemo {
 public static void main(String args[]) {
 Date date = new Date();
 SimpleDateFormat sdf;
 sdf = new SimpleDateFormat("hh:mm:ss");
 System.out.println(sdf.format(date));
 sdf = new SimpleDateFormat("dd MMM yyyy hh:mm:ss zzz");
 System.out.println(sdf.format(date));
 sdf = new SimpleDateFormat("E MMM dd yyyy");
 System.out.println(sdf.format(date));
 }
}

Sample output from this program is shown here:

 12:46:49
 01 Jan 2011 12:46:49 CST
 Sat Jan 01 2011

Software Development
Using Java

PART

III
CHAPTER 29
Java Beans

CHAPTER 30
Introducing Swing

CHAPTER 31
Exploring Swing

CHAPTER 32
Servlets

This page intentionally left blank

29
CHAPTER

 933

Java Beans

This chapter provides an overview of Java Beans. Beans are important because they allow

you to build complex systems from software components. These components may be

provided by you or supplied by one or more different vendors. Java Beans defines an

architecture that specifies how these building blocks can operate together.

To better understand the value of Beans, consider the following. Hardware designers

have a wide variety of components that can be integrated together to construct a system.

Resistors, capacitors, and inductors are examples of simple building blocks. Integrated

circuits provide more advanced functionality. All of these different parts can be reused. It

is not necessary or possible to rebuild these capabilities each time a new system is needed.

Also, the same pieces can be used in different types of circuits. This is possible because the

behavior of these components is understood and documented.

The software industry has also been seeking the benefits of reusability and interoperability

of a component-based approach. To realize these benefits, a component architecture is

needed that allows programs to be assembled from software building blocks, perhaps

provided by different vendors. It must also be possible for a designer to select a component,

understand its capabilities, and incorporate it into an application. When a new version of a

component becomes available, it should be easy to incorporate this functionality into existing

code. Fortunately, Java Beans provides just such an architecture.

What Is a Java Bean?
A Java Bean is a software component that has been designed to be reusable in a variety of

different environments. There is no restriction on the capability of a Bean. It may perform

a simple function, such as obtaining an inventory value, or a complex function, such as

forecasting the performance of a stock portfolio. A Bean may be visible to an end user. One

example of this is a button on a graphical user interface. A Bean may also be invisible to a

user. Software to decode a stream of multimedia information in real time is an example of

this type of building block. Finally, a Bean may be designed to work autonomously on a

user’s workstation or to work in cooperation with a set of other distributed components.

934 PART III Software Development Using Java

Software to generate a pie chart from a set of data points is an example of a Bean that can

execute locally. However, a Bean that provides real-time price information from a stock or

commodities exchange would need to work in cooperation with other distributed software

to obtain its data.

Advantages of Java Beans
The following list enumerates some of the benefits that Java Bean technology provides for a

component developer:

• A Bean obtains all the benefits of Java’s “write-once, run-anywhere” paradigm.

• The properties, events, and methods of a Bean that are exposed to another

application can be controlled.

• Auxiliary software can be provided to help configure a Bean. This software is only

needed when the design-time parameters for that component are being set. It does

not need to be included in the run-time environment.

• The configuration settings of a Bean can be saved in persistent storage and restored

at a later time.

• A Bean may register to receive events from other objects and can generate events

that are sent to other objects.

Introspection
At the core of Java Beans is introspection. This is the process of analyzing a Bean to determine

its capabilities. This is an essential feature of the Java Beans API because it allows another

application, such as a design tool, to obtain information about a component. Without

introspection, the Java Beans technology could not operate.

There are two ways in which the developer of a Bean can indicate which of its properties,

events, and methods should be exposed. With the first method, simple naming conventions

are used. These allow the introspection mechanisms to infer information about a Bean. In

the second way, an additional class that extends the BeanInfo interface is provided that

explicitly supplies this information. Both approaches are examined here.

Design Patterns for Properties

A property is a subset of a Bean’s state. The values assigned to the properties determine the

behavior and appearance of that component. A property is set through a setter method. A

property is obtained by a getter method. There are two types of properties: simple and indexed.

Simple Properties
A simple property has a single value. It can be identified by the following design patterns,

where N is the name of the property and T is its type:

public T getN()

public void setN(T arg)

A read/write property has both of these methods to access its values. A read-only property

has only a get method. A write-only property has only a set method.

 Chapter 29 Java Beans 935

P
a

rt
 I

II

Here are three read/write simple properties along with their getter and setter methods:

private double depth, height, width;

public double getDepth() {
 return depth;
}
public void setDepth(double d) {
 depth = d;
}

public double getHeight() {
 return height;
}
public void setHeight(double h) {
 height = h;
}

public double getWidth() {
 return width;
}
public void setWidth(double w) {
 width = w;
}

Indexed Properties
An indexed property consists of multiple values. It can be identified by the following design

patterns, where N is the name of the property and T is its type:

public T getN(int index);

public void setN(int index, T value);

public T[] getN();

public void setN(T values[]);

Here is an indexed property called data along with its getter and setter methods:

private double data[];

public double getData(int index) {
 return data[index];
}
public void setData(int index, double value) {
 data[index] = value;
}
public double[] getData() {
 return data;
}
public void setData(double[] values) {
 data = new double[values.length];
 System.arraycopy(values, 0, data, 0, values.length);
}

936 PART III Software Development Using Java

Design Patterns for Events

Beans use the delegation event model that was discussed earlier in this book. Beans can

generate events and send them to other objects. These can be identified by the following

design patterns, where T is the type of the event:

public void addTListener(TListener eventListener)
public void addTListener(TListener eventListener)
 throws java.util.TooManyListenersException

public void removeTListener(TListener eventListener)

These methods are used to add or remove a listener for the specified event. The version of

AddTListener() that does not throw an exception can be used to multicast an event, which

means that more than one listener can register for the event notification. The version that

throws TooManyListenersException unicasts the event, which means that the number of

listeners is restricted to one. In either case, removeTListener() is used to remove the listener.

For example, assuming an event interface type called TemperatureListener, a Bean that

monitors temperature might supply the following methods:

public void addTemperatureListener(TemperatureListener tl) {
 ...
}
public void removeTemperatureListener(TemperatureListener tl) {
 ...
}

Methods and Design Patterns

Design patterns are not used for naming nonproperty methods. The introspection

mechanism finds all of the public methods of a Bean. Protected and private methods

are not presented.

Using the BeanInfo Interface

As the preceding discussion shows, design patterns implicitly determine what information is

available to the user of a Bean. The BeanInfo interface enables you to explicitly control what

information is available. The BeanInfo interface defines several methods, including these:

PropertyDescriptor[] getPropertyDescriptors()

EventSetDescriptor[] getEventSetDescriptors()

MethodDescriptor[] getMethodDescriptors()

They return arrays of objects that provide information about the properties, events, and

methods of a Bean. The classes PropertyDescriptor, EventSetDescriptor, and MethodDescriptor

are defined within the java.beans package, and they describe the indicated elements. By

implementing these methods, a developer can designate exactly what is presented to a user,

bypassing introspection based on design patterns.

When creating a class that implements BeanInfo, you must call that class bnameBeanInfo,

where bname is the name of the Bean. For example, if the Bean is called MyBean, then the

information class must be called MyBeanBeanInfo.

 Chapter 29 Java Beans 937

P
a

rt
 I

II

To simplify the use of BeanInfo, JavaBeans supplies the SimpleBeanInfo class. It provides

default implementations of the BeanInfo interface, including the three methods just shown.

You can extend this class and override one or more of the methods to explicitly control

what aspects of a Bean are exposed. If you don’t override a method, then design-pattern

introspection will be used. For example, if you don’t override getPropertyDescriptors(),
then design patterns are used to discover a Bean’s properties. You will see SimpleBeanInfo

in action later in this chapter.

Bound and Constrained Properties
A Bean that has a bound property generates an event when the property is changed. The

event is of type PropertyChangeEvent and is sent to objects that previously registered an

interest in receiving such notifications. A class that handles this event must implement the

PropertyChangeListener interface.

A Bean that has a constrained property generates an event when an attempt is made to

change its value. It also generates an event of type PropertyChangeEvent. It too is sent to objects

that previously registered an interest in receiving such notifications. However, those other

objects have the ability to veto the proposed change by throwing a PropertyVetoException. This

capability allows a Bean to operate differently according to its run-time environment. A class

that handles this event must implement the VetoableChangeListener interface.

Persistence
Persistence is the ability to save the current state of a Bean, including the values of a Bean’s

properties and instance variables, to nonvolatile storage and to retrieve them at a later time.

The object serialization capabilities provided by the Java class libraries are used to provide

persistence for Beans.

The easiest way to serialize a Bean is to have it implement the java.io.Serializable

interface, which is simply a marker interface. Implementing java.io.Serializable makes

serialization automatic. Your Bean need take no other action. Automatic serialization can

also be inherited. Therefore, if any superclass of a Bean implements java.io.Serializable,

then automatic serialization is obtained. There is one important restriction: any class that

implements java.io.Serializable must supply a parameterless constructor.

When using automatic serialization, you can selectively prevent a field from being saved

through the use of the transient keyword. Thus, data members of a Bean specified as transient
will not be serialized.

If a Bean does not implement java.io.Serializable, you must provide serialization yourself,

such as by implementing java.io.Externalizable. Otherwise, containers cannot save the

configuration of your component.

Customizers
A Bean developer can provide a customizer that helps another developer configure the Bean.

A customizer can provide a step-by-step guide through the process that must be followed to

use the component in a specific context. Online documentation can also be provided. A

Bean developer has great flexibility to develop a customizer that can differentiate his or her

product in the marketplace.

938 PART III Software Development Using Java

The Java Beans API
The Java Beans functionality is provided by a set of classes and interfaces in the java.beans

package. This section provides a brief overview of its contents. Table 29-1 lists the interfaces

in java.beans and provides a brief description of their functionality. Table 29-2 lists the

classes in java.beans.

Table 29-1 The Interfaces in java.beans

Interface Description

AppletInitializer Methods in this interface are used to initialize Beans that are

also applets.

BeanInfo This interface allows a designer to specify information about the

properties, events, and methods of a Bean.

Customizer This interface allows a designer to provide a graphical user interface

through which a Bean may be configured.

DesignMode Methods in this interface determine if a Bean is executing in

design mode.

ExceptionListener A method in this interface is invoked when an exception has occurred.

PropertyChangeListener A method in this interface is invoked when a bound property

is changed.

PropertyEditor Objects that implement this interface allow designers to change and

display property values.

VetoableChangeListener A method in this interface is invoked when a constrained property is

changed.

Visibility Methods in this interface allow a Bean to execute in environments

where a graphical user interface is not available.

Table 29-2 The Classes in java.beans

Class Description

BeanDescriptor This class provides information about a Bean. It also allows

you to associate a customizer with a Bean.

Beans This class is used to obtain information about a Bean.

DefaultPersistenceDelegate A concrete subclass of PersistenceDelegate.

Encoder Encodes the state of a set of Beans. Can be used to write this

information to a stream.

EventHandler Supports dynamic event listener creation.

EventSetDescriptor Instances of this class describe an event that can be generated

by a Bean.

Expression Encapsulates a call to a method that returns a result.

FeatureDescriptor This is the superclass of the PropertyDescriptor,

EventSetDescriptor, and MethodDescriptor classes.

 Chapter 29 Java Beans 939

P
a

rt
 I

II

Although it is beyond the scope of this chapter to discuss all of the classes, four

are of particular interest: Introspector, PropertyDescriptor, EventSetDescriptor, and

MethodDescriptor. Each is briefly examined here.

Class Description

IndexedPropertyChangeEvent A subclass of PropertyChangeEvent that represents a change

to an indexed property.

IndexedPropertyDescriptor Instances of this class describe an indexed property of a Bean.

IntrospectionException An exception of this type is generated if a problem occurs

when analyzing a Bean.

Introspector This class analyzes a Bean and constructs a BeanInfo object

that describes the component.

MethodDescriptor Instances of this class describe a method of a Bean.

ParameterDescriptor Instances of this class describe a method parameter.

PersistenceDelegate Handles the state information of an object.

PropertyChangeEvent This event is generated when bound or constrained

properties are changed. It is sent to objects that registered

an interest in these events and that implement either the

PropertyChangeListener or VetoableChangeListener interfaces.

PropertyChangeListenerProxy Extends EventListenerProxy and implements

PropertyChangeListener.

PropertyChangeSupport Beans that support bound properties can use this class to

notify PropertyChangeListener objects.

PropertyDescriptor Instances of this class describe a property of a Bean.

PropertyEditorManager This class locates a PropertyEditor object for a given type.

PropertyEditorSupport This class provides functionality that can be used when writing

property editors.

PropertyVetoException An exception of this type is generated if a change to a

constrained property is vetoed.

SimpleBeanInfo This class provides functionality that can be used when writing

BeanInfo classes.

Statement Encapsulates a call to a method.

VetoableChangeListenerProxy Extends EventListenerProxy and implements

VetoableChangeListener.

VetoableChangeSupport Beans that support constrained properties can use this class to

notify VetoableChangeListener objects.

XMLDecoder Used to read a Bean from an XML document.

XMLEncoder Used to write a Bean to an XML document.

Table 29-2 The Classes in java.beans (continued)

940 PART III Software Development Using Java

Introspector

The Introspector class provides several static methods that support introspection. Of most

interest is getBeanInfo(). This method returns a BeanInfo object that can be used to obtain

information about the Bean. The getBeanInfo() method has several forms, including the

one shown here:

static BeanInfo getBeanInfo(Class<?> bean) throws IntrospectionException

The returned object contains information about the Bean specified by bean.

PropertyDescriptor

The PropertyDescriptor class describes a Bean property. It supports several methods that

manage and describe properties. For example, you can determine if a property is bound by

calling isBound(). To determine if a property is constrained, call isConstrained(). You can

obtain the name of a property by calling getName().

EventSetDescriptor

The EventSetDescriptor class represents a Bean event. It supports several methods that obtain

the methods that a Bean uses to add or remove event listeners, and to otherwise manage

events. For example, to obtain the method used to add listeners, call getAddListenerMethod().
To obtain the method used to remove listeners, call getRemoveListenerMethod(). To obtain

the type of a listener, call getListenerType(). You can obtain the name of an event by calling

getName().

MethodDescriptor

The MethodDescriptor class represents a Bean method. To obtain the name of the method,

call getName(). You can obtain information about the method by calling getMethod(),
shown here:

Method getMethod()

An object of type Method that describes the method is returned.

A Bean Example
This chapter concludes with an example that illustrates various aspects of Bean programming,

including introspection and using a BeanInfo class. It also makes use of the Introspector,

PropertyDescriptor, and EventSetDescriptor classes. The example uses three classes. The

first is a Bean called Colors, shown here:

// A simple Bean.
import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;

public class Colors extends Canvas implements Serializable {
 transient private Color color; // not persistent
 private boolean rectangular; // is persistent

 Chapter 29 Java Beans 941

P
a

rt
 I

II

 public Colors() {
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent me) {
 change();
 }
 });
 rectangular = false;
 setSize(200, 100);
 change();
 }

 public boolean getRectangular() {
 return rectangular;
 }

 public void setRectangular(boolean flag) {
 this.rectangular = flag;
 repaint();
 }

 public void change() {
 color = randomColor();
 repaint();
 }

 private Color randomColor() {
 int r = (int)(255*Math.random());
 int g = (int)(255*Math.random());
 int b = (int)(255*Math.random());
 return new Color(r, g, b);
 }

 public void paint(Graphics g) {
 Dimension d = getSize();
 int h = d.height;
 int w = d.width;
 g.setColor(color);
 if(rectangular) {
 g.fillRect(0, 0, w-1, h-1);
 }
 else {
 g.fillOval(0, 0, w-1, h-1);
 }
 }
}

The Colors Bean displays a colored object within a frame. The color of the component

is determined by the private Color variable color, and its shape is determined by the private

boolean variable rectangular. The constructor defines an anonymous inner class that extends

MouseAdapter and overrides its mousePressed() method. The change() method is invoked

in response to mouse presses. It selects a random color and then repaints the component.

The getRectangular() and setRectangular() methods provide access to the one property

of this Bean. The change() method calls randomColor() to choose a color and then calls

942 PART III Software Development Using Java

repaint() to make the change visible. Notice that the paint() method uses the rectangular

and color variables to determine how to present the Bean.

The next class is ColorsBeanInfo. It is a subclass of SimpleBeanInfo that provides explicit

information about Colors. It overrides getPropertyDescriptors() in order to designate

which properties are presented to a Bean user. In this case, the only property exposed is

rectangular. The method creates and returns a PropertyDescriptor object for the rectangular

property. The PropertyDescriptor constructor that is used is shown here:

PropertyDescriptor(String property, Class<?> beanCls)
 throws IntrospectionException

Here, the first argument is the name of the property, and the second argument is the class

of the Bean.

// A Bean information class.
import java.beans.*;
public class ColorsBeanInfo extends SimpleBeanInfo {
 public PropertyDescriptor[] getPropertyDescriptors() {
 try {
 PropertyDescriptor rectangular = new
 PropertyDescriptor("rectangular", Colors.class);
 PropertyDescriptor pd[] = {rectangular};
 return pd;
 }
 catch(Exception e) {
 System.out.println("Exception caught. " + e);
 }
 return null;
 }
}

The final class is called IntrospectorDemo. It uses introspection to display the

properties and events that are available within the Colors Bean.

// Show properties and events.
import java.awt.*;
import java.beans.*;

public class IntrospectorDemo {
 public static void main(String args[]) {
 try {
 Class<?> c = Class.forName("Colors");
 BeanInfo beanInfo = Introspector.getBeanInfo(c);

 System.out.println("Properties:");
 PropertyDescriptor propertyDescriptor[] =
 beanInfo.getPropertyDescriptors();
 for(int i = 0; i < propertyDescriptor.length; i++) {
 System.out.println("\t" + propertyDescriptor[i].getName());
 }

 Chapter 29 Java Beans 943

P
a

rt
 I

II

 System.out.println("Events:");
 EventSetDescriptor eventSetDescriptor[] =
 beanInfo.getEventSetDescriptors();
 for(int i = 0; i < eventSetDescriptor.length; i++) {
 System.out.println("\t" + eventSetDescriptor[i].getName());
 }
 }
 catch(Exception e) {
 System.out.println("Exception caught. " + e);
 }
 }
}

The output from this program is the following:

 Properties:
 rectangular
 Events:
 mouseWheel
 mouse
 mouseMotion
 component
 hierarchyBounds
 focus
 hierarchy
 propertyChange
 inputMethod
 key

Notice two things in the output. First, because ColorsBeanInfo overrides

getPropertyDescriptors() such that the only property returned is rectangular, only

the rectangular property is displayed. However, because getEventSetDescriptors() is not

overridden by ColorsBeanInfo, design-pattern introspection is used, and all events are

found, including those in Colors’ superclass, Canvas. Remember, if you don’t override

one of the “get” methods defined by SimpleBeanInfo, then the default, design-pattern

introspection is used. To observe the difference that ColorsBeanInfo makes, erase its class

file and then run IntrospectorDemo again. This time it will report more properties.

This page intentionally left blank

30
CHAPTER

 945

Introducing Swing

In Part II, you saw how to build user interfaces with the AWT classes. Although the AWT is

still a crucial part of Java, its component set is no longer widely used to create graphical

user interfaces. Today, most programmers use Swing for this purpose. Swing is a set of

classes that provides more powerful and flexible GUI components than does the AWT.

Simply put, Swing provides the look and feel of the modern Java GUI.

Coverage of Swing is divided between two chapters. This chapter introduces Swing. It

begins by describing Swing’s core concepts. It then shows the general form of a Swing

program, including both applications and applets. It concludes by explaining how painting

is accomplished in Swing. The following chapter presents several commonly used Swing

components. It is important to understand that the number of classes and interfaces in

the Swing packages is quite large, and they can’t all be covered in this book. (In fact, full

coverage of Swing requires an entire book of its own.) However, these two chapters will give

you a basic understanding of this important topic.

NOTE For a comprehensive introduction to Swing, see my book Swing: A Beginner's Guide published by
McGraw-Hill Professional (2007).

The Origins of Swing
Swing did not exist in the early days of Java. Rather, it was a response to deficiencies present

in Java’s original GUI subsystem: the Abstract Window Toolkit. The AWT defines a basic set

of controls, windows, and dialog boxes that support a usable, but limited graphical interface.

One reason for the limited nature of the AWT is that it translates its various visual components

into their corresponding, platform-specific equivalents, or peers. This means that the look

and feel of a component is defined by the platform, not by Java. Because the AWT components

use native code resources, they are referred to as heavyweight.
The use of native peers led to several problems. First, because of variations between

operating systems, a component might look, or even act, differently on different platforms.

This potential variability threatened the overarching philosophy of Java: write once, run

946 PART III Software Development Using Java

anywhere. Second, the look and feel of each component was fixed (because it is defined by

the platform) and could not be (easily) changed. Third, the use of heavyweight components

caused some frustrating restrictions. For example, a heavyweight component was always

rectangular and opaque.

Not long after Java’s original release, it became apparent that the limitations and

restrictions present in the AWT were sufficiently serious that a better approach was needed.

The solution was Swing. Introduced in 1997, Swing was included as part of the Java Foundation

Classes (JFC). Swing was initially available for use with Java 1.1 as a separate library. However,

beginning with Java 1.2, Swing (and the rest of the JFC) was fully integrated into Java.

Swing Is Built on the AWT
Before moving on, it is necessary to make one important point: although Swing eliminates

a number of the limitations inherent in the AWT, Swing does not replace it. Instead, Swing is

built on the foundation of the AWT. This is why the AWT is still a crucial part of Java. Swing

also uses the same event handling mechanism as the AWT. Therefore, a basic understanding

of the AWT and of event handling is required to use Swing. (The AWT is covered in

Chapters 24 and 25. Event handling is described in Chapter 23.)

Two Key Swing Features
As just explained, Swing was created to address the limitations present in the AWT. It does

this through two key features: lightweight components and a pluggable look and feel.

Together they provide an elegant, yet easy-to-use solution to the problems of the AWT.

More than anything else, it is these two features that define the essence of Swing. Each

is examined here.

Swing Components Are Lightweight

With very few exceptions, Swing components are lightweight. This means that they

are written entirely in Java and do not map directly to platform-specific peers. Thus,

lightweight components are more efficient and more flexible. Furthermore, because

lightweight components do not translate into native peers, the look and feel of each

component is determined by Swing, not by the underlying operating system. This means

that each component will work in a consistent manner across all platforms.

Swing Supports a Pluggable Look and Feel

Swing supports a pluggable look and feel (PLAF). Because each Swing component is rendered

by Java code rather than by native peers, the look and feel of a component is under the

control of Swing. This fact means that it is possible to separate the look and feel of a

component from the logic of the component, and this is what Swing does. Separating out

the look and feel provides a significant advantage: it becomes possible to change the way

that a component is rendered without affecting any of its other aspects. In other words, it is

possible to “plug in” a new look and feel for any given component without creating any side

effects in the code that uses that component. Moreover, it becomes possible to define entire

 Chapter 30 Introducing Swing 947

P
a

rt
 I

II

sets of look-and-feels that represent different GUI styles. To use a specific style, its look and

feel is simply “plugged in.” Once this is done, all components are automatically rendered

using that style.

Pluggable look-and-feels offer several important advantages. It is possible to define a

look and feel that is consistent across all platforms. Conversely, it is possible to create a look

and feel that acts like a specific platform. For example, if you know that an application will

be running only in a Windows environment, it is possible to specify the Windows look and

feel. It is also possible to design a custom look and feel. Finally, the look and feel can be

changed dynamically at run time.

Java 7 provides look-and-feels, such as metal, Motif, and Nimbus, that are available to

all Swing users. The metal look and feel is also called the Java look and feel. It is platform-

independent and available in all Java execution environments. It is also the default look

and feel. Windows environments also have access to the Windows and Windows Classic

look and feel. This book uses the default Java look and feel (metal) because it is platform

independent.

The MVC Connection
In general, a visual component is a composite of three distinct aspects:

• The way that the component looks when rendered on the screen

• The way that the component reacts to the user

• The state information associated with the component

No matter what architecture is used to implement a component, it must implicitly contain

these three parts. Over the years, one component architecture has proven itself to be

exceptionally effective: Model-View-Controller, or MVC for short.

The MVC architecture is successful because each piece of the design corresponds to an

aspect of a component. In MVC terminology, the model corresponds to the state information

associated with the component. For example, in the case of a check box, the model contains

a field that indicates if the box is checked or unchecked. The view determines how the

component is displayed on the screen, including any aspects of the view that are affected by

the current state of the model. The controller determines how the component reacts to the

user. For example, when the user clicks a check box, the controller reacts by changing the

model to reflect the user’s choice (checked or unchecked). This then results in the view

being updated. By separating a component into a model, a view, and a controller, the specific

implementation of each can be changed without affecting the other two. For instance,

different view implementations can render the same component in different ways without

affecting the model or the controller.

Although the MVC architecture and the principles behind it are conceptually sound,

the high level of separation between the view and the controller is not beneficial for Swing

components. Instead, Swing uses a modified version of MVC that combines the view and

the controller into a single logical entity called the UI delegate. For this reason, Swing’s

approach is called either the Model-Delegate architecture or the Separable Model architecture.

Therefore, although Swing’s component architecture is based on MVC, it does not use a

classical implementation of it.

948 PART III Software Development Using Java

Swing’s pluggable look and feel is made possible by its Model-Delegate architecture.

Because the view (look) and controller (feel) are separate from the model, the look and

feel can be changed without affecting how the component is used within a program.

Conversely, it is possible to customize the model without affecting the way that the

component appears on the screen or responds to user input.

To support the Model-Delegate architecture, most Swing components contain two

objects. The first represents the model. The second represents the UI delegate. Models are

defined by interfaces. For example, the model for a button is defined by the ButtonModel
interface. UI delegates are classes that inherit ComponentUI. For example, the UI delegate

for a button is ButtonUI. Normally, your programs will not interact directly with the UI

delegate.

Components and Containers
A Swing GUI consists of two key items: components and containers. However, this distinction is

mostly conceptual because all containers are also components. The difference between the

two is found in their intended purpose: As the term is commonly used, a component is an

independent visual control, such as a push button or slider. A container holds a group of

components. Thus, a container is a special type of component that is designed to hold

other components. Furthermore, in order for a component to be displayed, it must be held

within a container. Thus, all Swing GUIs will have at least one container. Because containers

are components, a container can also hold other containers. This enables Swing to define

what is called a containment hierarchy, at the top of which must be a top-level container.
Let’s look a bit more closely at components and containers.

Components

In general, Swing components are derived from the JComponent class. (The only exceptions

to this are the four top-level containers, described in the next section.) JComponent provides

the functionality that is common to all components. For example, JComponent supports the

pluggable look and feel. JComponent inherits the AWT classes Container and Component.
Thus, a Swing component is built on and compatible with an AWT component.

All of Swing’s components are represented by classes defined within the package

javax.swing. The following table shows the class names for Swing components (including

those used as containers).

JApplet JButton JCheckBox JCheckBoxMenuItem

JColorChooser JComboBox JComponent JDesktopPane

JDialog JEditorPane JFileChooser JFormattedTextField

JFrame JInternalFrame JLabel JLayer

JLayeredPane JList JMenu JMenuBar

JMenuItem JOptionPane JPanel JPasswordField

JPopupMenu JProgressBar JRadioButton JRadioButtonMenuItem

JRootPane JScrollBar JScrollPane JSeparator

JSlider JSpinner JSplitPane JTabbedPane

 Chapter 30 Introducing Swing 949

P
a

rt
 I

II

JTable JTextArea JTextField JTextPane

JTogglebutton JToolBar JToolTip JTree

JViewport JWindow

Notice that all component classes begin with the letter J. For example, the class for a label

is JLabel; the class for a push button is JButton; and the class for a scroll bar is JScrollBar.

Containers

Swing defines two types of containers. The first are top-level containers: JFrame, JApplet,
JWindow, and JDialog. These containers do not inherit JComponent. They do, however,

inherit the AWT classes Component and Container. Unlike Swing’s other components,

which are lightweight, the top-level containers are heavyweight. This makes the top-level

containers a special case in the Swing component library.

As the name implies, a top-level container must be at the top of a containment hierarchy.

A top-level container is not contained within any other container. Furthermore, every

containment hierarchy must begin with a top-level container. The one most commonly

used for applications is JFrame. The one used for applets is JApplet.
The second type of containers supported by Swing are lightweight containers. Lightweight

containers do inherit JComponent. An example of a lightweight container is JPanel, which

is a general-purpose container. Lightweight containers are often used to organize and

manage groups of related components because a lightweight container can be contained

within another container. Thus, you can use lightweight containers such as JPanel to create

subgroups of related controls that are contained within an outer container.

The Top-Level Container Panes

Each top-level container defines a set of panes. At the top of the hierarchy is an instance

of JRootPane. JRootPane is a lightweight container whose purpose is to manage the other

panes. It also helps manage the optional menu bar. The panes that comprise the root pane

are called the glass pane, the content pane, and the layered pane.
The glass pane is the top-level pane. It sits above and completely covers all other panes.

By default, it is a transparent instance of JPanel. The glass pane enables you to manage

mouse events that affect the entire container (rather than an individual control) or to paint

over any other component, for example. In most cases, you won’t need to use the glass

pane directly, but it is there if you need it.

The layered pane is an instance of JLayeredPane. The layered pane allows components

to be given a depth value. This value determines which component overlays another. (Thus,

the layered pane lets you specify a Z-order for a component, although this is not something

that you will usually need to do.) The layered pane holds the content pane and the (optional)

menu bar.

Although the glass pane and the layered panes are integral to the operation of a

top-level container and serve important purposes, much of what they provide occurs

behind the scene. The pane with which your application will interact the most is the

content pane, because this is the pane to which you will add visual components. In other

words, when you add a component, such as a button, to a top-level container, you will add

it to the content pane. By default, the content pane is an opaque instance of JPanel.

950 PART III Software Development Using Java

The Swing Packages
Swing is a very large subsystem and makes use of many packages. At the time of this writing,

these are the packages defined by Swing.

javax.swing javax.swing.plaf.basic javax.swing.text

javax.swing.border javax.swing.plaf.metal javax.swing.text.html

javax.swing.colorchooser javax.swing.plaf.multi javax.swing.text.html.parser

javax.swing.event javax.swing.plaf.nimbus javax.swing.text.rtf

javax.swing.filechooser javax.swing.plaf.synth javax.swing.tree

javax.swing.plaf javax.swing.table javax.swing.undo

The main package is javax.swing. This package must be imported into any program that

uses Swing. It contains the classes that implement the basic Swing components, such as

push buttons, labels, and check boxes.

A Simple Swing Application
Swing programs differ from both the console-based programs and the AWT-based programs

shown earlier in this book. For example, they use a different set of components and a different

container hierarchy than does the AWT. Swing programs also have special requirements that

relate to threading. The best way to understand the structure of a Swing program is to work

through an example. There are two types of Java programs in which Swing is typically used.

The first is a desktop application. The second is the applet. This section shows how to create

a Swing application. The creation of a Swing applet is described later in this chapter.

Although quite short, the following program shows one way to write a Swing

application. In the process, it demonstrates several key features of Swing. It uses two Swing

components: JFrame and JLabel. JFrame is the top-level container that is commonly used

for Swing applications. JLabel is the Swing component that creates a label, which is a

component that displays information. The label is Swing’s simplest component because

it is passive. That is, a label does not respond to user input. It just displays output. The

program uses a JFrame container to hold an instance of a JLabel. The label displays a

short text message.

// A simple Swing application.

import javax.swing.*;

class SwingDemo {

 SwingDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("A Simple Swing Application");

 // Give the frame an initial size.
 jfrm.setSize(275, 100);

 Chapter 30 Introducing Swing 951

P
a

rt
 I

II

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create a text-based label.
 JLabel jlab = new JLabel(" Swing means powerful GUIs.");

 // Add the label to the content pane.
 jfrm.add(jlab);

 // Display the frame.
 jfrm.setVisible(true);
 }

 public static void main(String args[]) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new SwingDemo();
 }
 });
 }
}

Swing programs are compiled and run in the same way as other Java applications. Thus,

to compile this program, you can use this command line:

javac SwingDemo.java

To run the program, use this command line:

java SwingDemo

When the program is run, it will produce the window shown in Figure 30-1.

Because the SwingDemo program illustrates several core Swing concepts, we will

examine it carefully, line by line. The program begins by importing javax.swing. As

mentioned, this package contains the components and models defined by Swing. For

example, javax.swing defines classes that implement labels, buttons, text controls, and

menus. It will be included in all programs that use Swing.

Next, the program declares the SwingDemo class and a constructor for that class.

The constructor is where most of the action of the program occurs. It begins by creating

a JFrame, using this line of code:

JFrame jfrm = new JFrame("A Simple Swing Application");

Figure 30-1 The window produced by the SwingDemo program

952 PART III Software Development Using Java

This creates a container called jfrm that defines a rectangular window complete with a title

bar; close, minimize, maximize, and restore buttons; and a system menu. Thus, it creates a

standard, top-level window. The title of the window is passed to the constructor.

Next, the window is sized using this statement:

jfrm.setSize(275, 100);

The setSize() method (which is inherited by JFrame from the AWT class Component) sets

the dimensions of the window, which are specified in pixels. Its general form is shown here:

void setSize(int width, int height)

In this example, the width of the window is set to 275 and the height is set to 100.

By default, when a top-level window is closed (such as when the user clicks the close

box), the window is removed from the screen, but the application is not terminated.

While this default behavior is useful in some situations, it is not what is needed for most

applications. Instead, you will usually want the entire application to terminate when its

top-level window is closed. There are a couple of ways to achieve this. The easiest way is to

call setDefaultCloseOperation(), as the program does:

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

After this call executes, closing the window causes the entire application to terminate. The

general form of setDefaultCloseOperation() is shown here:

void setDefaultCloseOperation(int what)

The value passed in what determines what happens when the window is closed. There are

several other options in addition to JFrame.EXIT_ON_CLOSE. They are shown here:

DISPOSE_ON_CLOSE

HIDE_ON_CLOSE

DO_NOTHING_ON_CLOSE

Their names reflect their actions. These constants are declared in WindowConstants, which

is an interface declared in javax.swing that is implemented by JFrame.
The next line of code creates a Swing JLabel component:

JLabel jlab = new JLabel(" Swing means powerful GUIs.");

JLabel is the simplest and easiest-to-use component because it does not accept user input. It

simply displays information, which can consist of text, an icon, or a combination of the two.

The label created by the program contains only text, which is passed to its constructor.

The next line of code adds the label to the content pane of the frame:

jfrm.add(jlab);

As explained earlier, all top-level containers have a content pane in which components are

stored. Thus, to add a component to a frame, you must add it to the frame’s content pane.

This is accomplished by calling add() on the JFrame reference (jfrm in this case). The

general form of add() is shown here:

 Chapter 30 Introducing Swing 953

P
a

rt
 I

II

Component add(Component comp)

The add() method is inherited by JFrame from the AWT class Container.
By default, the content pane associated with a JFrame uses border layout. The version

of add() just shown adds the label to the center location. Other versions of add() enable

you to specify one of the border regions. When a component is added to the center, its size

is adjusted automatically to fit the size of the center.

Before continuing, an important historical point needs to be made. Prior to JDK 5,

when adding a component to the content pane, you could not invoke the add() method

directly on a JFrame instance. Instead, you needed to call add() on the content pane of the

JFrame object. The content pane can be obtained by calling getContentPane() on a JFrame

instance. The getContentPane() method is shown here:

Container getContentPane()

It returns a Container reference to the content pane. The add() method was then called

on that reference to add a component to a content pane. Thus, in the past, you had to use

the following statement to add jlab to jfrm:

jfrm.getContentPane().add(jlab); // old-style

Here, getContentPane() first obtains a reference to content pane, and then add() adds the

component to the container linked to this pane. This same procedure was also required to

invoke remove() to remove a component and setLayout() to set the layout manager for

the content pane. You will see explicit calls to getContentPane() frequently throughout

pre-5.0 code. Today, the use of getContentPane() is no longer necessary. You can simply

call add(), remove(), and setLayout() directly on JFrame because these methods have

been changed so that they operate on the content pane automatically.

The last statement in the SwingDemo constructor causes the window to become visible:

jfrm.setVisible(true);

The setVisible() method is inherited from the AWT Component class. If its argument is true,

the window will be displayed. Otherwise, it will be hidden. By default, a JFrame is invisible,

so setVisible(true) must be called to show it.

Inside main(), a SwingDemo object is created, which causes the window and the label

to be displayed. Notice that the SwingDemo constructor is invoked using these lines of code:

SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new SwingDemo();
 }
});

This sequence causes a SwingDemo object to be created on the event dispatching thread

rather than on the main thread of the application. Here’s why. In general, Swing programs

are event-driven. For example, when a user interacts with a component, an event is

generated. An event is passed to the application by calling an event handler defined by the

application. However, the handler is executed on the event dispatching thread provided by

Swing and not on the main thread of the application. Thus, although event handlers are

defined by your program, they are called on a thread that was not created by your program.

954 PART III Software Development Using Java

To avoid problems (including the potential for deadlock), all Swing GUI components

must be created and updated from the event dispatching thread, not the main thread of

the application. However, main() is executed on the main thread. Thus, main() cannot

directly instantiate a SwingDemo object. Instead, it must create a Runnable object that

executes on the event dispatching thread and have this object create the GUI.

To enable the GUI code to be created on the event dispatching thread, you must use

one of two methods that are defined by the SwingUtilities class. These methods are

invokeLater() and invokeAndWait(). They are shown here:

static void invokeLater(Runnable obj)

static void invokeAndWait(Runnable obj)
 throws InterruptedException, InvocationTargetException

Here, obj is a Runnable object that will have its run() method called by the event dispatching

thread. The difference between the two methods is that invokeLater() returns immediately,

but invokeAndWait() waits until obj.run() returns. You can use one of these methods to

call a method that constructs the GUI for your Swing application, or whenever you need to

modify the state of the GUI from code not executed by the event dispatching thread. You

will normally want to use invokeLater(), as the preceding program does. However, when

constructing the initial GUI for an applet, you will need to use invokeAndWait().

Event Handling
The preceding example showed the basic form of a Swing program, but it left out one

important part: event handling. Because JLabel does not take input from the user, it does not

generate events, so no event handling was needed. However, the other Swing components do

respond to user input and the events generated by those interactions need to be handled.

Events can also be generated in ways not directly related to user input. For example, an event

is generated when a timer goes off. Whatever the case, event handling is a large part of any

Swing-based application.

The event handling mechanism used by Swing is the same as that used by the AWT.

This approach is called the delegation event model, and it is described in Chapter 23. In

many cases, Swing uses the same events as does the AWT, and these events are packaged

in java.awt.event. Events specific to Swing are stored in javax.swing.event.
Although events are handled in Swing in the same way as they are with the AWT, it is

still useful to work through a simple example. The following program handles the event

generated by a Swing push button. Sample output is shown in Figure 30-2.

Figure 30-2 Output from the EventDemo program

 Chapter 30 Introducing Swing 955

P
a

rt
 I

II

// Handle an event in a Swing program.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class EventDemo {

 JLabel jlab;

 EventDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("An Event Example");

 // Specify FlowLayout for the layout manager.
 jfrm.setLayout(new FlowLayout());

 // Give the frame an initial size.
 jfrm.setSize(220, 90);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Make two buttons.
 JButton jbtnAlpha = new JButton("Alpha");
 JButton jbtnBeta = new JButton("Beta");

 // Add action listener for Alpha.
 jbtnAlpha.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("Alpha was pressed.");
 }
 });

 // Add action listener for Beta.
 jbtnBeta.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("Beta was pressed.");
 }
 });

 // Add the buttons to the content pane.
 jfrm.add(jbtnAlpha);
 jfrm.add(jbtnBeta);

 // Create a text-based label.
 jlab = new JLabel("Press a button.");

 // Add the label to the content pane.
 jfrm.add(jlab);

956 PART III Software Development Using Java

 // Display the frame.
 jfrm.setVisible(true);
 }

 public static void main(String args[]) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new EventDemo();
 }
 });
 }
}

First, notice that the program now imports both the java.awt and java.awt.event
packages. The java.awt package is needed because it contains the FlowLayout class, which

supports the standard flow layout manager used to lay out components in a frame. (See

Chapter 25 for coverage of layout managers.) The java.awt.event package is needed

because it defines the ActionListener interface and the ActionEvent class.

The EventDemo constructor begins by creating a JFrame called jfrm. It then sets

the layout manager for the content pane of jfrm to FlowLayout. Recall that, by default, the

content pane uses BorderLayout as its layout manager. However, for this example,

FlowLayout is more convenient. Notice that FlowLayout is assigned using this statement:

jfrm.setLayout(new FlowLayout());

As explained, in the past you had to explicitly call getContentPane() to set the layout

manager for the content pane. This requirement was removed as of JDK 5.

After setting the size and default close operation, EventDemo() creates two push

buttons, as shown here:

JButton jbtnAlpha = new JButton("Alpha");
JButton jbtnBeta = new JButton("Beta");

The first button will contain the text "Alpha" and the second will contain the text "Beta".

Swing push buttons are instances of JButton. JButton supplies several constructors. The

one used here is

JButton(String msg)

The msg parameter specifies the string that will be displayed inside the button.

When a push button is pressed, it generates an ActionEvent. Thus, JButton provides

the addActionListener() method, which is used to add an action listener. (JButton also

provides removeActionListener() to remove a listener, but this method is not used by the

program.) As explained in Chapter 23, the ActionListener interface defines only one

method: actionPerformed(). It is shown again here for your convenience:

void actionPerformed(ActionEvent ae)

This method is called when a button is pressed. In other words, it is the event handler that

is called when a button press event has occurred.

Next, event listeners for the button’s action events are added by the code shown here:

 Chapter 30 Introducing Swing 957

P
a

rt
 I

II

// Add action listener for Alpha.
jbtnAlpha.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("Alpha was pressed.");
 }
});

// Add action listener for Beta.
jbtnBeta.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("Beta was pressed.");
 }
});

Here, anonymous inner classes are used to provide the event handlers for the two buttons.

Each time a button is pressed, the string displayed in jlab is changed to reflect which button

was pressed.

Next, the buttons are added to the content pane of jfrm:

jfrm.add(jbtnAlpha);
jfrm.add(jbtnBeta);

Finally, jlab is added to the content pane and window is made visible. When you run the

program, each time you press a button, a message is displayed in the label that indicates

which button was pressed.

One last point: Remember that all event handlers, such as actionPerformed(), are

called on the event dispatching thread. Therefore, an event handler must return quickly

in order to avoid slowing down the application. If your application needs to do something

time consuming as the result of an event, it must use a separate thread.

Create a Swing Applet
The second type of program that commonly uses Swing is the applet. Swing-based applets

are similar to AWT-based applets, but with an important difference: A Swing applet extends

JApplet rather than Applet. JApplet is derived from Applet. Thus, JApplet includes all of

the functionality found in Applet and adds support for Swing. JApplet is a top-level Swing

container, which means that it is not derived from JComponent. Because JApplet is a top-

level container, it includes the various panes described earlier. This means that all components

are added to JApplet’s content pane in the same way that components are added to

JFrame's content pane.

Swing applets use the same four lifecycle methods as described in Chapter 22: init(),
start(), stop(), and destroy(). Of course, you need override only those methods that are

needed by your applet. Painting is accomplished differently in Swing than it is in the AWT,

and a Swing applet will not normally override the paint() method. (Painting in Swing is

described later in this chapter.)

One other point: All interaction with components in a Swing applet must take place

on the event dispatching thread, as described in the previous section. This threading issue

applies to all Swing programs.

Here is an example of a Swing applet. It provides the same functionality as the previous

application, but does so in applet form. Figure 30-3 shows the program when executed by

appletviewer.

958 PART III Software Development Using Java

// A simple Swing-based applet

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/*
This HTML can be used to launch the applet:

<applet code="MySwingApplet" width=220 height=90>
</applet>
*/

public class MySwingApplet extends JApplet {
 JButton jbtnAlpha;
 JButton jbtnBeta;

 JLabel jlab;

 // Initialize the applet.
 public void init() {
 try {
 SwingUtilities.invokeAndWait(new Runnable () {
 public void run() {
 makeGUI(); // initialize the GUI
 }
 });
 } catch(Exception exc) {
 System.out.println("Can’t create because of "+ exc);
 }
 }

 // This applet does not need to override start(), stop(),
 // or destroy().

 // Set up and initialize the GUI.
 private void makeGUI() {

 // Set the applet to use flow layout.
 setLayout(new FlowLayout());

Figure 30-3 Output from the example Swing applet

 Chapter 30 Introducing Swing 959

P
a

rt
 I

II

 // Make two buttons.
 jbtnAlpha = new JButton("Alpha");
 jbtnBeta = new JButton("Beta");

 // Add action listener for Alpha.
 jbtnAlpha.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent le) {
 jlab.setText("Alpha was pressed.");
 }
 });

 // Add action listener for Beta.
 jbtnBeta.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent le) {
 jlab.setText("Beta was pressed.");
 }
 });

 // Add the buttons to the content pane.
 add(jbtnAlpha);
 add(jbtnBeta);

 // Create a text-based label.
 jlab = new JLabel("Press a button.");

 // Add the label to the content pane.
 add(jlab);
 }
}

There are two important things to notice about this applet. First, MySwingApplet
extends JApplet. As explained, all Swing-based applets extend JApplet rather than Applet.
Second, the init() method initializes the Swing components on the event dispatching

thread by setting up a call to makeGUI(). Notice that this is accomplished through the use

of invokeAndWait() rather than invokeLater(). Applets must use invokeAndWait() because

the init() method must not return until the entire initialization process has been completed.

In essence, the start() method cannot be called until after initialization, which means that

the GUI must be fully constructed.

Inside makeGUI(), the two buttons and label are created, and the action listeners are

added to the buttons. Finally, the components are added to the content pane. Although

this example is quite simple, this same general approach must be used when building any

Swing GUI that will be used by an applet.

Painting in Swing
Although the Swing component set is quite powerful, you are not limited to using it because

Swing also lets you write directly into the display area of a frame, panel, or one of Swing’s

other components, such as JLabel. Although many (perhaps most) uses of Swing will not
involve drawing directly to the surface of a component, it is available for those applications

that need this capability. To write output directly to the surface of a component, you will

960 PART III Software Development Using Java

use one or more drawing methods defined by the AWT, such as drawLine() or drawRect().
Thus, most of the techniques and methods described in Chapter 24 also apply to Swing.

However, there are also some very important differences, and the process is discussed in

detail in this section.

Painting Fundamentals

Swing’s approach to painting is built on the original AWT-based mechanism, but Swing’s

implementation offers more finally grained control. Before examining the specifics of

Swing-based painting, it is useful to review the AWT-based mechanism that underlies it.

The AWT class Component defines a method called paint() that is used to draw output

directly to the surface of a component. For the most part, paint() is not called by your

program. (In fact, only in the most unusual cases should it ever be called by your program.)

Rather, paint() is called by the run-time system whenever a component must be rendered.

This situation can occur for several reasons. For example, the window in which the component

is displayed can be overwritten by another window and then uncovered. Or, the window might

be minimized and then restored. The paint() method is also called when a program begins

running. When writing AWT-based code, an application will override paint() when it needs

to write output directly to the surface of the component.

Because JComponent inherits Component, all Swing’s lightweight components inherit

the paint() method. However, you will not override it to paint directly to the surface of a

component. The reason is that Swing uses a bit more sophisticated approach to painting that

involves three distinct methods: paintComponent(), paintBorder(), and paintChildren().
These methods paint the indicated portion of a component and divide the painting process

into its three distinct, logical actions. In a lightweight component, the original AWT method

paint() simply executes calls to these methods, in the order just shown.

To paint to the surface of a Swing component, you will create a subclass of the component

and then override its paintComponent() method. This is the method that paints the interior

of the component. You will not normally override the other two painting methods. When

overriding paintComponent(), the first thing you must do is call super.paintComponent(),
so that the superclass portion of the painting process takes place. (The only time this is not

required is when you are taking complete, manual control over how a component is

displayed.) After that, write the output that you want to display. The paintComponent()
method is shown here:

protected void paintComponent(Graphics g)

The parameter g is the graphics context to which output is written.

To cause a component to be painted under program control, call repaint(). It works in

Swing just as it does for the AWT. The repaint() method is defined by Component. Calling

it causes the system to call paint() as soon as it is possible to do so. Because painting is a

time-consuming operation, this mechanism allows the run-time system to defer painting

momentarily until some higher-priority task has completed, for example. Of course, in

Swing the call to paint() results in a call to paintComponent(). Therefore, to output to

the surface of a component, your program will store the output until paintComponent()
is called. Inside the overridden paintComponent(), you will draw the stored output.

 Chapter 30 Introducing Swing 961

P
a

rt
 I

II

Compute the Paintable Area

When drawing to the surface of a component, you must be careful to restrict your output

to the area that is inside the border. Although Swing automatically clips any output that will

exceed the boundaries of a component, it is still possible to paint into the border, which will

then get overwritten when the border is drawn. To avoid this, you must compute the paintable
area of the component. This is the area defined by the current size of the component minus

the space used by the border. Therefore, before you paint to a component, you must obtain

the width of the border and then adjust your drawing accordingly.

To obtain the border width, call getInsets(), shown here:

Insets getInsets()

This method is defined by Container and overridden by JComponent. It returns an Insets
object that contains the dimensions of the border. The inset values can be obtained by

using these fields:

int top;

int bottom;

int left;

int right;

These values are then used to compute the drawing area given the width and the height

of the component. You can obtain the width and height of the component by calling

getWidth() and getHeight() on the component. They are shown here:

int getWidth()

int getHeight()

By subtracting the value of the insets, you can compute the usable width and height of the

component.

A Paint Example

Here is a program that puts into action the preceding discussion. It creates a class called

PaintPanel that extends JPanel. The program then uses an object of that class to display

lines whose endpoints have been generated randomly. Sample output is shown in Figure 10-4.

Figure 30-4 Sample output from the PaintPanel program

962 PART III Software Development Using Java

// Paint lines to a panel.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

// This class extends JPanel. It overrides
// the paintComponent() method so that random
// lines are plotted in the panel.
class PaintPanel extends JPanel {
 Insets ins; // holds the panel’s insets

 Random rand; // used to generate random numbers

 // Construct a panel.
 PaintPanel() {

 // Put a border around the panel.
 setBorder(
 BorderFactory.createLineBorder(Color.RED, 5));

 rand = new Random();
 }

 // Override the paintComponent() method.
 protected void paintComponent(Graphics g) {
 // Always call the superclass method first.
 super.paintComponent(g);

 int x, y, x2, y2;

 // Get the height and width of the component.
 int height = getHeight();
 int width = getWidth();

 // Get the insets.
 ins = getInsets();

 // Draw ten lines whose endpoints are randomly generated.
 for(int i=0; i < 10; i++) {
 // Obtain random coordinates that define
 // the endpoints of each line.
 x = rand.nextInt(width-ins.left);
 y = rand.nextInt(height-ins.bottom);
 x2 = rand.nextInt(width-ins.left);
 y2 = rand.nextInt(height-ins.bottom);

 // Draw the line.
 g.drawLine(x, y, x2, y2);
 }
 }
}

 Chapter 30 Introducing Swing 963

P
a

rt
 I

II

// Demonstrate painting directly onto a panel.
class PaintDemo {

 JLabel jlab;
 PaintPanel pp;

 PaintDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("Paint Demo");

 // Give the frame an initial size.
 jfrm.setSize(200, 150);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create the panel that will be painted.
 pp = new PaintPanel();

 // Add the panel to the content pane. Because the default
 // border layout is used, the panel will automatically be
 // sized to fit the center region.
 jfrm.add(pp);

 // Display the frame.
 jfrm.setVisible(true);
 }

 public static void main(String args[]) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new PaintDemo();
 }
 });
 }
}

Let’s examine this program closely. The PaintPanel class extends JPanel. JPanel is one of

Swing’s lightweight containers, which means that it is a component that can be added to the

content pane of a JFrame. To handle painting, PaintPanel overrides the paintComponent()
method. This enables PaintPanel to write directly to the surface of the component when

painting takes place. The size of the panel is not specified because the program uses the

default border layout and the panel is added to the center. This results in the panel being

sized to fill the center. If you change the size of the window, the size of the panel will be

adjusted accordingly.

Notice that the constructor also specifies a 5-pixel wide, red border. This is

accomplished by setting the border by using the setBorder() method, shown here:

void setBorder(Border border)

964 PART III Software Development Using Java

Border is the Swing interface that encapsulates a border. You can obtain a border by calling

one of the factory methods defined by the BorderFactory class. The one used in the program

is createLineBorder(), which creates a simple line border. It is shown here:

static Border createLineBorder(Color clr, int width)

Here, clr specifies the color of the border and width specifies its width in pixels.

Inside the override of paintComponent(), notice that it first calls super.paintComponent().
As explained, this is necessary to ensure that the component is properly drawn. Next the width

and height of the panel are obtained along with the insets. These values are used to ensure the

lines lie within the drawing area of the panel. The drawing area is the overall width and height

of a component less the border width. The computations are designed to work with differently

sized PaintPanels and borders. To prove this, try changing the size of the window. The lines will

still all lie within the borders of the panel.

The PaintDemo class creates a PaintPanel and then adds the panel to the content pane.

When the application is first displayed, the overridden paintComponent() method is called,

and the lines are drawn. Each time you resize or hide and restore the window, a new set of

lines are drawn. In all cases, the lines fall within the paintable area.

31
CHAPTER

 965

Exploring Swing

The previous chapter described several of the core concepts relating to Swing and showed

the general form of both a Swing application and a Swing applet. This chapter continues

the discussion of Swing by presenting an overview of several Swing components, such as

buttons, check boxes, trees, and tables. The Swing components provide rich functionality

and allow a high level of customization. Because of space limitations, it is not possible to

describe all of their features and attributes. Rather, the purpose of this overview is to give

you a feel for the capabilities of the Swing component set.

The Swing component classes described in this chapter are shown here:

JButton JCheckBox JComboBox JLabel

JList JRadioButton JScrollPane JTabbedPane

JTable JTextField JToggleButton JTree

These components are all lightweight, which means that they are all derived from

JComponent.
Also discussed is the ButtonGroup class, which encapsulates a mutually exclusive set of

Swing buttons, and ImageIcon, which encapsulates a graphics image. Both are defined by

Swing and packaged in javax.swing.

One other point: The Swing components are demonstrated in applets because the code

for an applet is more compact than it is for a desktop application. However, the same

techniques apply to both applets and applications.

JLabel and ImageIcon
JLabel is Swing’s easiest-to-use component. It creates a label and was introduced in the

preceding chapter. Here, we will look at JLabel a bit more closely. JLabel can be used to

display text and/or an icon. It is a passive component in that it does not respond to user

input. JLabel defines several constructors. Here are three of them:

JLabel(Icon icon)

JLabel(String str)
JLabel(String str, Icon icon, int align)

966 PART III Software Development Using Java

Here, str and icon are the text and icon used for the label. The align argument specifies the

horizontal alignment of the text and/or icon within the dimensions of the label. It must be

one of the following values: LEFT, RIGHT, CENTER, LEADING, or TRAILING. These

constants are defined in the SwingConstants interface, along with several others used by

the Swing classes.

Notice that icons are specified by objects of type Icon, which is an interface defined by

Swing. The easiest way to obtain an icon is to use the ImageIcon class. ImageIcon implements

Icon and encapsulates an image. Thus, an object of type ImageIcon can be passed as an

argument to the Icon parameter of JLabel’s constructor. There are several ways to provide

the image, including reading it from a file or downloading it from a URL. Here is the

ImageIcon constructor used by the example in this section:

ImageIcon(String filename)

It obtains the image in the file named filename.
The icon and text associated with the label can be obtained by the following methods:

Icon getIcon()

String getText()

The icon and text associated with a label can be set by these methods:

void setIcon(Icon icon)

void setText(String str)

Here, icon and str are the icon and text, respectively. Therefore, using setText() it is
possible to change the text inside a label during program execution.

The following applet illustrates how to create and display a label containing both an

icon and a string. It begins by creating an ImageIcon object for the file france.gif, which

depicts the flag for France. This is used as the second argument to the JLabel constructor.

The first and last arguments for the JLabel constructor are the label text and the alignment.

Finally, the label is added to the content pane.

// Demonstrate JLabel and ImageIcon.
import java.awt.*;
import javax.swing.*;
/*
 <applet code="JLabelDemo" width=250 height=150>
 </applet>
*/

public class JLabelDemo extends JApplet {

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);

 Chapter 31 Exploring Swing 967

P
a

rt
 I

II

 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Create an icon.
 ImageIcon ii = new ImageIcon("france.gif");

 // Create a label.
 JLabel jl = new JLabel("France", ii, JLabel.CENTER);

 // Add the label to the content pane.
 add(jl);
 }
}

Output from the label example is shown here:

JTextField
JTextField is the simplest Swing text component. It is also probably its most widely used text

component. JTextField allows you to edit one line of text. It is derived from JTextComponent,
which provides the basic functionality common to Swing text components. JTextField uses

the Document interface for its model.

Three of JTextField’s constructors are shown here:

JTextField(int cols)
JTextField(String str, int cols)
JTextField(String str)

Here, str is the string to be initially presented, and cols is the number of columns in the text

field. If no string is specified, the text field is initially empty. If the number of columns is

not specified, the text field is sized to fit the specified string.

JTextField generates events in response to user interaction. For example, an ActionEvent
is fired when the user presses enter. A CaretEvent is fired each time the caret (i.e., the

cursor) changes position. (CaretEvent is packaged in javax.swing.event.) Other events are

also possible. In many cases, your program will not need to handle these events. Instead,

you will simply obtain the string currently in the text field when it is needed. To obtain the

text currently in the text field, call getText().

968 PART III Software Development Using Java

The following example illustrates JTextField. It creates a JTextField and adds it to the

content pane. When the user presses enter, an action event is generated. This is handled

by displaying the text in the status window.

// Demonstrate JTextField.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JTextFieldDemo" width=300 height=50>
 </applet>
*/

public class JTextFieldDemo extends JApplet {
 JTextField jtf;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Add text field to content pane.
 jtf = new JTextField(15);
 add(jtf);
 jtf.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 // Show text when user presses ENTER.
 showStatus(jtf.getText());
 }
 });
 }
}

Output from the text field example is shown here:

 Chapter 31 Exploring Swing 969

P
a

rt
 I

II

The Swing Buttons
Swing defines four types of buttons: JButton, JToggleButton, JCheckBox, and JRadioButton.

All are subclasses of the AbstractButton class, which extends JComponent. Thus, all buttons

share a set of common traits.

AbstractButton contains many methods that allow you to control the behavior of buttons.

For example, you can define different icons that are displayed for the button when it is

disabled, pressed, or selected. Another icon can be used as a rollover icon, which is displayed

when the mouse is positioned over a button. The following methods set these icons:

void setDisabledIcon(Icon di)
void setPressedIcon(Icon pi)
void setSelectedIcon(Icon si)
void setRolloverIcon(Icon ri)

Here, di, pi, si, and ri are the icons to be used for the indicated purpose.

The text associated with a button can be read and written via the following methods:

String getText()

void setText(String str)

Here, str is the text to be associated with the button.

The model used by all buttons is defined by the ButtonModel interface. A button

generates an action event when it is pressed. Other events are possible. Each of the

concrete button classes is examined next.

JButton

The JButton class provides the functionality of a push button. You have already seen a

simple form of it in the preceding chapter. JButton allows an icon, a string, or both to be

associated with the push button. Three of its constructors are shown here:

JButton(Icon icon)

JButton(String str)
JButton(String str, Icon icon)

Here, str and icon are the string and icon used for the button.

When the button is pressed, an ActionEvent is generated. Using the ActionEvent object

passed to the actionPerformed() method of the registered ActionListener, you can obtain

the action command string associated with the button. By default, this is the string displayed

inside the button. However, you can set the action command by calling setActionCommand()
on the button. You can obtain the action command by calling getActionCommand() on the

event object. It is declared like this:

String getActionCommand()

The action command identifies the button. Thus, when using two or more buttons within

the same application, the action command gives you an easy way to determine which button

was pressed.

In the preceding chapter, you saw an example of a text-based button. The following

demonstrates an icon-based button. It displays four push buttons and a label. Each button

970 PART III Software Development Using Java

displays an icon that represents the flag of a country. When a button is pressed, the name

of that country is displayed in the label.

// Demonstrate an icon-based JButton.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JButtonDemo" width=250 height=450>
 </applet>
*/

public class JButtonDemo extends JApplet
implements ActionListener {
 JLabel jlab;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Add buttons to content pane.
 ImageIcon france = new ImageIcon("france.gif");
 JButton jb = new JButton(france);
 jb.setActionCommand("France");
 jb.addActionListener(this);
 add(jb);

 ImageIcon germany = new ImageIcon("germany.gif");
 jb = new JButton(germany);
 jb.setActionCommand("Germany");
 jb.addActionListener(this);
 add(jb);

 ImageIcon italy = new ImageIcon("italy.gif");
 jb = new JButton(italy);
 jb.setActionCommand("Italy");
 jb.addActionListener(this);
 add(jb);

 Chapter 31 Exploring Swing 971

P
a

rt
 I

II

 ImageIcon japan = new ImageIcon("japan.gif");
 jb = new JButton(japan);
 jb.setActionCommand("Japan");
 jb.addActionListener(this);
 add(jb);

 // Create and add the label to content pane.
 jlab = new JLabel("Choose a Flag");
 add(jlab);
 }

 // Handle button events.
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("You selected " + ae.getActionCommand());
 }
}

Output from the button example is shown here:

JToggleButton

A useful variation on the push button is called a toggle
button. A toggle button looks just like a push button, but

it acts differently because it has two states: pushed and

released. That is, when you press a toggle button, it stays

pressed rather than popping back up as a regular push

button does. When you press the toggle button a second

time, it releases (pops up). Therefore, each time a toggle

button is pushed, it toggles between its two states.

Toggle buttons are objects of the JToggleButton class.

JToggleButton implements AbstractButton. In addition

to creating standard toggle buttons, JToggleButton is a

superclass for two other Swing components that also

represent two-state controls. These are JCheckBox and

JRadioButton, which are described later in this chapter.

Thus, JToggleButton defines the basic functionality of all

two-state components.

JToggleButton defines several constructors. The one

used by the example in this section is shown here:

JToggleButton(String str)

This creates a toggle button that contains the text passed in str. By default, the button is in

the off position. Other constructors enable you to create toggle buttons that contain

images, or images and text.

JToggleButton uses a model defined by a nested class called

JToggleButton.ToggleButtonModel. Normally, you won’t need to interact

directly with the model to use a standard toggle button.

Like JButton, JToggleButton generates an action event each time it is pressed. Unlike

JButton, however, JToggleButton also generates an item event. This event is used by those

972 PART III Software Development Using Java

components that support the concept of selection. When a JToggleButton is pressed in, it is

selected. When it is popped out, it is deselected.

To handle item events, you must implement the ItemListener interface. Recall from

Chapter 23, that each time an item event is generated, it is passed to the itemStateChanged()
method defined by ItemListener. Inside itemStateChanged(), the getItem() method can

be called on the ItemEvent object to obtain a reference to the JToggleButton instance that

generated the event. It is shown here:

Object getItem()

A reference to the button is returned. You will need to cast this reference to JToggleButton.

The easiest way to determine a toggle button’s state is by calling the isSelected() method

(inherited from AbstractButton) on the button that generated the event. It is shown here:

boolean isSelected()

It returns true if the button is selected and false otherwise.

Here is an example that uses a toggle button. Notice how the item listener works. It

simply calls isSelected() to determine the button’s state.

// Demonstrate JToggleButton.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JToggleButtonDemo" width=200 height=80>
 </applet>
*/

public class JToggleButtonDemo extends JApplet {

 JLabel jlab;
 JToggleButton jtbn;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 Chapter 31 Exploring Swing 973

P
a

rt
 I

II

 // Create a label.
 jlab = new JLabel("Button is off.");

 // Make a toggle button.
 jtbn = new JToggleButton("On/Off");

 // Add an item listener for the toggle button.
 jtbn.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent ie) {
 if(jtbn.isSelected())
 jlab.setText("Button is on.");
 else
 jlab.setText("Button is off.");
 }

 });

 // Add the toggle button and label to the content pane.
 add(jtbn);
 add(jlab);
 }
}

The output from the toggle button example is shown here:

Check Boxes

The JCheckBox class provides the functionality of a check box. Its immediate superclass is

JToggleButton, which provides support for two-state buttons, as just described. JCheckBox
defines several constructors. The one used here is

JCheckBox(String str)

It creates a check box that has the text specified by str as a label. Other constructors let you

specify the initial selection state of the button and specify an icon.

When the user selects or deselects a check box, an ItemEvent is generated. You can

obtain a reference to the JCheckBox that generated the event by calling getItem() on the

ItemEvent passed to the itemStateChanged() method defined by ItemListener. The easiest

way to determine the selected state of a check box is to call isSelected() on the JCheckBox
instance.

The following example illustrates check boxes. It displays four check boxes and a label.

When the user clicks a check box, an ItemEvent is generated. Inside the itemStateChanged()
method, getItem() is called to obtain a reference to the JCheckBox object that generated

974 PART III Software Development Using Java

the event. Next, a call to isSelected() determines if the box was selected or cleared. The

getText() method gets the text for that check box and uses it to set the text inside the label.

// Demonstrate JCheckbox.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JCheckBoxDemo" width=270 height=50>
 </applet>
*/

public class JCheckBoxDemo extends JApplet
implements ItemListener {
 JLabel jlab;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Add check boxes to the content pane.
 JCheckBox cb = new JCheckBox("C");
 cb.addItemListener(this);
 add(cb);

 cb = new JCheckBox("C++");
 cb.addItemListener(this);
 add(cb);

 cb = new JCheckBox("Java");
 cb.addItemListener(this);
 add(cb);

 cb = new JCheckBox("Perl");
 cb.addItemListener(this);
 add(cb);

 // Create the label and add it to the content pane.

 Chapter 31 Exploring Swing 975

P
a

rt
 I

II

 jlab = new JLabel("Select languages");
 add(jlab);
 }

 // Handle item events for the check boxes.
 public void itemStateChanged(ItemEvent ie) {
 JCheckBox cb = (JCheckBox)ie.getItem();

 if(cb.isSelected())
 jlab.setText(cb.getText() + " is selected");
 else
 jlab.setText(cb.getText() + " is cleared");
 }
}

Output from this example is shown here:

Radio Buttons

Radio buttons are a group of mutually exclusive buttons, in which only one button can be

selected at any one time. They are supported by the JRadioButton class, which extends

JToggleButton. JRadioButton provides several constructors. The one used in the example

is shown here:

JRadioButton(String str)

Here, str is the label for the button. Other constructors let you specify the initial selection

state of the button and specify an icon.

In order for their mutually exclusive nature to be activated, radio buttons must be

configured into a group. Only one of the buttons in the group can be selected at any time.

For example, if a user presses a radio button that is in a group, any previously selected

button in that group is automatically deselected. A button group is created by the

ButtonGroup class. Its default constructor is invoked for this purpose. Elements are

then added to the button group via the following method:

void add(AbstractButton ab)

Here, ab is a reference to the button to be added to the group.

A JRadioButton generates action events, item events, and change events each time the

button selection changes. Most often, it is the action event that is handled, which means

that you will normally implement the ActionListener interface. Recall that the only method

defined by ActionListener is actionPerformed(). Inside this method, you can use a number

of different ways to determine which button was selected. First, you can check its action

command by calling getActionCommand(). By default, the action command is the same

as the button label, but you can set the action command to something else by calling

setActionCommand() on the radio button. Second, you can call getSource() on the

ActionEvent object and check that reference against the buttons. Finally, you can simply

check each radio button to find out which one is currently selected by calling isSelected()
on each button. Remember, each time an action event occurs, it means that the button

being selected has changed and that one and only one button will be selected.

976 PART III Software Development Using Java

The following example illustrates how to use radio buttons. Three radio buttons are

created. The buttons are then added to a button group. As explained, this is necessary to

cause their mutually exclusive behavior. Pressing a radio button generates an action event,

which is handled by actionPerformed(). Within that handler, the getActionCommand()
method gets the text that is associated with the radio button and uses it to set the text

within a label.

// Demonstrate JRadioButton
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JRadioButtonDemo" width=300 height=50>
 </applet>
*/

public class JRadioButtonDemo extends JApplet
implements ActionListener {
 JLabel jlab;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Create radio buttons and add them to content pane.
 JRadioButton b1 = new JRadioButton("A");
 b1.addActionListener(this);
 add(b1);

 JRadioButton b2 = new JRadioButton("B");
 b2.addActionListener(this);
 add(b2);

 JRadioButton b3 = new JRadioButton("C");
 b3.addActionListener(this);
 add(b3);

 Chapter 31 Exploring Swing 977

P
a

rt
 I

II

 // Define a button group.
 ButtonGroup bg = new ButtonGroup();
 bg.add(b1);
 bg.add(b2);
 bg.add(b3);

 // Create a label and add it to the content pane.
 jlab = new JLabel("Select One");
 add(jlab);
 }

 // Handle button selection.
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("You selected " + ae.getActionCommand());
 }
}

Output from the radio button example is shown here:

JTabbedPane
JTabbedPane encapsulates a tabbed pane. It manages a set of components by linking them

with tabs. Selecting a tab causes the component associated with that tab to come to the

forefront. Tabbed panes are very common in the modern GUI, and you have no doubt used

them many times. Given the complex nature of a tabbed pane, they are surprisingly easy to

create and use.

JTabbedPane defines three constructors. We will use its default constructor, which

creates an empty control with the tabs positioned across the top of the pane. The other

two constructors let you specify the location of the tabs, which can be along any of the four

sides. JTabbedPane uses the SingleSelectionModel model.

Tabs are added by calling addTab(). Here is one of its forms:

void addTab(String name, Component comp)

Here, name is the name for the tab, and comp is the component that should be added to the

tab. Often, the component added to a tab is a JPanel that contains a group of related

components. This technique allows a tab to hold a set of components.

The general procedure to use a tabbed pane is outlined here:

 1. Create an instance of JTabbedPane.

 2. Add each tab by calling addTab().

 3. Add the tabbed pane to the content pane.

978 PART III Software Development Using Java

The following example illustrates a tabbed pane. The first tab is titled "Cities" and

contains four buttons. Each button displays the name of a city. The second tab is titled

"Colors" and contains three check boxes. Each check box displays the name of a color. The

third tab is titled "Flavors" and contains one combo box. This enables the user to select one

of three flavors.

// Demonstrate JTabbedPane.
import javax.swing.*;
/*
 <applet code="JTabbedPaneDemo" width=400 height=100>
 </applet>
*/

public class JTabbedPaneDemo extends JApplet {

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 JTabbedPane jtp = new JTabbedPane();
 jtp.addTab("Cities", new CitiesPanel());
 jtp.addTab("Colors", new ColorsPanel());
 jtp.addTab("Flavors", new FlavorsPanel());
 add(jtp);
 }
}

// Make the panels that will be added to the tabbed pane.
class CitiesPanel extends JPanel {

 public CitiesPanel() {
 JButton b1 = new JButton("New York");
 add(b1);
 JButton b2 = new JButton("London");
 add(b2);
 JButton b3 = new JButton("Hong Kong");
 add(b3);
 JButton b4 = new JButton("Tokyo");
 add(b4);
 }
}

 Chapter 31 Exploring Swing 979

P
a

rt
 I

II

class ColorsPanel extends JPanel {

 public ColorsPanel() {
 JCheckBox cb1 = new JCheckBox("Red");
 add(cb1);
 JCheckBox cb2 = new JCheckBox("Green");
 add(cb2);
 JCheckBox cb3 = new JCheckBox("Blue");
 add(cb3);
 }
}

class FlavorsPanel extends JPanel {

 public FlavorsPanel() {
 JComboBox<String> jcb = new JComboBox<String>();
 jcb.addItem("Vanilla");
 jcb.addItem("Chocolate");
 jcb.addItem("Strawberry");
 add(jcb);
 }
}

Output from the tabbed pane example is shown in the following three illustrations:

JScrollPane
JScrollPane is a lightweight container that automatically handles the scrolling of another

component. The component being scrolled can be either an individual component, such as

a table, or a group of components contained within another lightweight container, such as a

JPanel. In either case, if the object being scrolled is larger than the viewable area, horizontal

and/or vertical scroll bars are automatically provided, and the component can be scrolled

through the pane. Because JScrollPane automates scrolling, it usually eliminates the need

to manage individual scroll bars.

980 PART III Software Development Using Java

The viewable area of a scroll pane is called the viewport. It is a window in which the

component being scrolled is displayed. Thus, the viewport displays the visible portion of

the component being scrolled. The scroll bars scroll the component through the viewport.

In its default behavior, a JScrollPane will dynamically add or remove a scroll bar as needed.

For example, if the component is taller than the viewport, a vertical scroll bar is added. If

the component will completely fit within the viewport, the scroll bars are removed.

JScrollPane defines several constructors. The one used in this chapter is shown here:

JScrollPane(Component comp)

The component to be scrolled is specified by comp. Scroll bars are automatically displayed

when the content of the pane exceeds the dimensions of the viewport.

Here are the steps to follow to use a scroll pane:

 1. Create the component to be scrolled.

 2. Create an instance of JScrollPane, passing to it the object to scroll.

 3. Add the scroll pane to the content pane.

The following example illustrates a scroll pane. First, a JPanel object is created, and

400 buttons are added to it, arranged into 20 columns. This panel is then added to a scroll

pane, and the scroll pane is added to the content pane. Because the panel is larger than the

viewport, vertical and horizontal scroll bars appear automatically. You can use the scroll

bars to scroll the buttons into view.

// Demonstrate JScrollPane.
import java.awt.*;
import javax.swing.*;
/*
 <applet code="JScrollPaneDemo" width=300 height=250>
 </applet>
*/

public class JScrollPaneDemo extends JApplet {

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 Chapter 31 Exploring Swing 981

P
a

rt
 I

II

 // Add 400 buttons to a panel.
 JPanel jp = new JPanel();
 jp.setLayout(new GridLayout(20, 20));
 int b = 0;

 for(int i = 0; i < 20; i++) {
 for(int j = 0; j < 20; j++) {
 jp.add(new JButton("Button " + b));
 ++b;
 }
 }

 // Create the scroll pane.
 JScrollPane jsp = new JScrollPane(jp);

 // Add the scroll pane to the content pane.
 // Because the default border layout is used,
 // the scroll pane will be added to the center.
 add(jsp, BorderLayout.CENTER);
 }
}

Output from the scroll pane example is shown here:

JList
In Swing, the basic list class is called JList. It supports the selection of one or more items

from a list. Although the list often consists of strings, it is possible to create a list of just

about any object that can be displayed. JList is so widely used in Java that it is highly

unlikely that you have not seen one before.

In the past, the items in a JList were represented as Object references. However, with

the release of JDK 7, JList was made generic and is now declared like this:

class JList<E>

Here, E represents the type of the items in the list.

982 PART III Software Development Using Java

JList provides several constructors. The one used here is

JList(E[] items)

This creates a JList that contains the items in the array specified by items.
JList is based on two models. The first is ListModel. This interface defines how access

to the list data is achieved. The second model is the ListSelectionModel interface, which

defines methods that determine what list item or items are selected.

Although a JList will work properly by itself, most of the time you will wrap a JList inside

a JScrollPane. This way, long lists will automatically be scrollable, which simplifies GUI

design. It also makes it easy to change the number of entries in a list without having to

change the size of the JList component.

A JList generates a ListSelectionEvent when the user makes or changes a selection. This

event is also generated when the user deselects an item. It is handled by implementing

ListSelectionListener. This listener specifies only one method, called valueChanged(),
which is shown here:

void valueChanged(ListSelectionEvent le)

Here, le is a reference to the object that generated the event. Although ListSelectionEvent
does provide some methods of its own, normally you will interrogate the JList object itself

to determine what has occurred. Both ListSelectionEvent and ListSelectionListener are

packaged in javax.swing.event.
By default, a JList allows the user to select multiple ranges of items within the list, but

you can change this behavior by calling setSelectionMode(), which is defined by JList. It is
shown here:

void setSelectionMode(int mode)

Here, mode specifies the selection mode. It must be one of these values defined by

ListSelectionModel:

SINGLE_SELECTION

SINGLE_INTERVAL_SELECTION

MULTIPLE_INTERVAL_SELECTION

The default, multiple-interval selection, lets the user select multiple ranges of items within

a list. With single-interval selection, the user can select one range of items. With single

selection, the user can select only a single item. Of course, a single item can be selected

in the other two modes, too. It’s just that they also allow a range to be selected.

You can obtain the index of the first item selected, which will also be the index of the

only selected item when using single-selection mode, by calling getSelectedIndex(), shown

here:

int getSelectedIndex()

Indexing begins at zero. So, if the first item is selected, this method will return 0. If no item

is selected, –1 is returned.

Instead of obtaining the index of a selection, you can obtain the value associated with

the selection by calling getSelectedValue():

E getSelectedValue()

 Chapter 31 Exploring Swing 983

P
a

rt
 I

II

It returns a reference to the first selected value. If no value has been selected, it returns null.
The following applet demonstrates a simple JList, which holds a list of cities. Each time

a city is selected in the list, a ListSelectionEvent is generated, which is handled by the

valueChanged() method defined by ListSelectionListener. It responds by obtaining the

index of the selected item and displaying the name of the selected city in a label.

// Demonstrate JList.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;

/*
 <applet code="JListDemo" width=200 height=120>
 </applet>
*/

public class JListDemo extends JApplet {
 JList<String> jlst;
 JLabel jlab;
 JScrollPane jscrlp;

 // Create an array of cities.
 String Cities[] = { "New York", "Chicago", "Houston",
 "Denver", "Los Angeles", "Seattle",
 "London", "Paris", "New Delhi",
 "Hong Kong", "Tokyo", "Sydney" };

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Create a JList.
 jlst = new JList<String>(Cities);

 // Set the list selection mode to single selection.
 jlst.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

984 PART III Software Development Using Java

 // Add the list to a scroll pane.
 jscrlp = new JScrollPane(jlst);

 // Set the preferred size of the scroll pane.
 jscrlp.setPreferredSize(new Dimension(120, 90));

 // Make a label that displays the selection.
 jlab = new JLabel("Choose a City");

 // Add selection listener for the list.
 jlst.addListSelectionListener(new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent le) {
 // Get the index of the changed item.
 int idx = jlst.getSelectedIndex();

 // Display selection, if item was selected.
 if(idx != -1)
 jlab.setText("Current selection: " + Cities[idx]);
 else // Otherwise, reprompt.
 jlab.setText("Choose a City");

 }
 });

 // Add the list and label to the content pane.
 add(jscrlp);
 add(jlab);
 }
}

Output from the list example is shown here:

JComboBox
Swing provides a combo box (a combination of a text field and a drop-down list) through the

JComboBox class. A combo box normally displays one entry, but it will also display a drop-

down list that allows a user to select a different entry. You can also create a combo box that

lets the user enter a selection into the text field.

In the past, the items in a JComboBox were represented as Object references. However,

with the release of JDK 7, JComboBox was made generic and is now declared like this:

class JComboBox<E>

 Chapter 31 Exploring Swing 985

P
a

rt
 I

II

Here, E represents the type of the items in the combo box.

The JComboBox constructor used by the example is shown here:

JComboBox(E[] items)

Here, items is an array that initializes the combo box. Other constructors are available.

JComboBox uses the ComboBoxModel. Mutable combo boxes (those whose entries can

be changed) use the MutableComboBoxModel.
In addition to passing an array of items to be displayed in the drop-down list, items can

be dynamically added to the list of choices via the addItem() method, shown here:

void addItem(E obj)

Here, obj is the object to be added to the combo box. This method must be used only with

mutable combo boxes.

JComboBox generates an action event when the user selects an item from the list.

JComboBox also generates an item event when the state of selection changes, which occurs

when an item is selected or deselected. Thus, changing a selection means that two item

events will occur: one for the deselected item and another for the selected item. Often, it is

sufficient to simply listen for action events, but both event types are available for your use.

One way to obtain the item selected in the list is to call getSelectedItem() on the

combo box. It is shown here:

Object getSelectedItem()

You will need to cast the returned value into the type of object stored in the list.

The following example demonstrates the combo box. The combo box contains entries

for “France,” “Germany,” “Italy,” and “Japan.” When a country is selected, an icon-based

label is updated to display the flag for that country. You can see how little code is required

to use this powerful component.

// Demonstrate JComboBox.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JComboBoxDemo" width=300 height=100>
 </applet>
*/

public class JComboBoxDemo extends JApplet {
 JLabel jlab;
 ImageIcon france, germany, italy, japan;
 JComboBox<String> jcb;

 String flags[] = { "France", "Germany", "Italy", "Japan" };

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {

986 PART III Software Development Using Java

 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Instantiate a combo box and add it to the content pane.
 jcb = new JComboBox<String>(flags);
 add(jcb);

 // Handle selections.
 jcb.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 String s = (String) jcb.getSelectedItem();
 jlab.setIcon(new ImageIcon(s + ".gif"));
 }
 });

 // Create a label and add it to the content pane.
 jlab = new JLabel(new ImageIcon("france.gif"));
 add(jlab);
 }
}

Output from the combo box example is shown here:

Trees
A tree is a component that presents a hierarchical view of data. The user has the ability to

expand or collapse individual subtrees in this display. Trees are implemented in Swing by

the JTree class. A sampling of its constructors is shown here:

JTree(Object obj [])

JTree(Vector<?> v)

JTree(TreeNode tn)

 Chapter 31 Exploring Swing 987

P
a

rt
 I

II

In the first form, the tree is constructed from the elements in the array obj. The second

form constructs the tree from the elements of vector v. In the third form, the tree whose

root node is specified by tn specifies the tree.

Although JTree is packaged in javax.swing, its support classes and interfaces are

packaged in javax.swing.tree. This is because the number of classes and interfaces needed

to support JTree is quite large.

JTree relies on two models: TreeModel and TreeSelectionModel. A JTree generates a

variety of events, but three relate specifically to trees: TreeExpansionEvent, TreeSelectionEvent,
and TreeModelEvent. TreeExpansionEvent events occur when a node is expanded or

collapsed. A TreeSelectionEvent is generated when the user selects or deselects a node within

the tree. A TreeModelEvent is fired when the data or structure of the tree changes. The

listeners for these events are TreeExpansionListener, TreeSelectionListener, and

TreeModelListener, respectively. The tree event classes and listener interfaces are packaged

in javax.swing.event.
The event handled by the sample program shown in this section is TreeSelectionEvent.

To listen for this event, implement TreeSelectionListener. It defines only one method,

called valueChanged(), which receives the TreeSelectionEvent object. You can obtain

the path to the selected object by calling getPath(), shown here, on the event object:

TreePath getPath()

It returns a TreePath object that describes the path to the changed node. The TreePath

class encapsulates information about a path to a particular node in a tree. It provides

several constructors and methods. In this book, only the toString() method is used. It

returns a string that describes the path.

The TreeNode interface declares methods that obtain information about a tree node.

For example, it is possible to obtain a reference to the parent node or an enumeration of

the child nodes. The MutableTreeNode interface extends TreeNode. It declares methods

that can insert and remove child nodes or change the parent node.

The DefaultMutableTreeNode class implements the MutableTreeNode interface. It

represents a node in a tree. One of its constructors is shown here:

DefaultMutableTreeNode(Object obj)

Here, obj is the object to be enclosed in this tree node. The new tree node doesn’t have a

parent or children.

To create a hierarchy of tree nodes, the add() method of DefaultMutableTreeNode can

be used. Its signature is shown here:

void add(MutableTreeNode child)

Here, child is a mutable tree node that is to be added as a child to the current node.

JTree does not provide any scrolling capabilities of its own. Instead, a JTree is typically

placed within a JScrollPane. This way, a large tree can be scrolled through a smaller viewport.

Here are the steps to follow to use a tree:

 1. Create an instance of JTree.

 2. Create a JScrollPane and specify the tree as the object to be scrolled.

 3. Add the tree to the scroll pane.

 4. Add the scroll pane to the content pane.

988 PART III Software Development Using Java

The following example illustrates how to create a tree and handle selections. The

program creates a DefaultMutableTreeNode instance labeled "Options". This is the top

node of the tree hierarchy. Additional tree nodes are then created, and the add() method

is called to connect these nodes to the tree. A reference to the top node in the tree is

provided as the argument to the JTree constructor. The tree is then provided as the

argument to the JScrollPane constructor. This scroll pane is then added to the content

pane. Next, a label is created and added to the content pane. The tree selection is displayed

in this label. To receive selection events from the tree, a TreeSelectionListener is registered

for the tree. Inside the valueChanged() method, the path to the current selection is

obtained and displayed.

// Demonstrate JTree.
import java.awt.*;
import javax.swing.event.*;
import javax.swing.*;
import javax.swing.tree.*;
/*
 <applet code="JTreeDemo" width=400 height=200>
 </applet>
*/

public class JTreeDemo extends JApplet {
 JTree tree;
 JLabel jlab;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Create top node of tree.
 DefaultMutableTreeNode top = new DefaultMutableTreeNode("Options");

 // Create subtree of "A".
 DefaultMutableTreeNode a = new DefaultMutableTreeNode("A");
 top.add(a);
 DefaultMutableTreeNode a1 = new DefaultMutableTreeNode("A1");
 a.add(a1);

 Chapter 31 Exploring Swing 989

P
a

rt
 I

II

 DefaultMutableTreeNode a2 = new DefaultMutableTreeNode("A2");
 a.add(a2);

 // Create subtree of "B"
 DefaultMutableTreeNode b = new DefaultMutableTreeNode("B");
 top.add(b);
 DefaultMutableTreeNode b1 = new DefaultMutableTreeNode("B1");
 b.add(b1);
 DefaultMutableTreeNode b2 = new DefaultMutableTreeNode("B2");
 b.add(b2);
 DefaultMutableTreeNode b3 = new DefaultMutableTreeNode("B3");
 b.add(b3);

 // Create the tree.
 tree = new JTree(top);

 // Add the tree to a scroll pane.
 JScrollPane jsp = new JScrollPane(tree);

 // Add the scroll pane to the content pane.
 add(jsp);

 // Add the label to the content pane.
 jlab = new JLabel();
 add(jlab, BorderLayout.SOUTH);

 // Handle tree selection events.
 tree.addTreeSelectionListener(new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent tse) {
 jlab.setText("Selection is " + tse.getPath());
 }
 });
 }
}

Output from the tree example is shown here:

The string presented in the text field describes the path from the top tree node to the

selected node.

990 PART III Software Development Using Java

JTable
JTable is a component that displays rows and columns of data. You can drag the cursor

on column boundaries to resize columns. You can also drag a column to a new position.

Depending on its configuration, it is also possible to select a row, column, or cell within the

table, and to change the data within a cell. JTable is a sophisticated component that offers

many more options and features than can be discussed here. (It is perhaps Swing’s most

complicated component.) However, in its default configuration, JTable still offers

substantial functionality that is easy to use—especially if you simply want to use the table

to present data in a tabular format. The brief overview presented here will give you a

general understanding of this powerful component.

Like JTree, JTable has many classes and interfaces associated with it. These are

packaged in javax.swing.table.

At its core, JTable is conceptually simple. It is a component that consists of one or more

columns of information. At the top of each column is a heading. In addition to describing

the data in a column, the heading also provides the mechanism by which the user can

change the size of a column or change the location of a column within the table. JTable

does not provide any scrolling capabilities of its own. Instead, you will normally wrap a

JTable inside a JScrollPane.

JTable supplies several constructors. The one used here is

JTable(Object data[][], Object colHeads[])

Here, data is a two-dimensional array of the information to be presented, and colHeads is a

one-dimensional array with the column headings.

JTable relies on three models. The first is the table model, which is defined by the

TableModel interface. This model defines those things related to displaying data in a

two-dimensional format. The second is the table column model, which is represented by

TableColumnModel. JTable is defined in terms of columns, and it is TableColumnModel
that specifies the characteristics of a column. These two models are packaged in

javax.swing.table. The third model determines how items are selected, and it is specified

by the ListSelectionModel, which was described when JList was discussed.

A JTable can generate several different events. The two most fundamental to a table’s

operation are ListSelectionEvent and TableModelEvent. A ListSelectionEvent is generated

when the user selects something in the table. By default, JTable allows you to select one or

more complete rows, but you can change this behavior to allow one or more columns, or

one or more individual cells to be selected. A TableModelEvent is fired when that table’s

data changes in some way. Handling these events requires a bit more work than it does to

handle the events generated by the previously described components and is beyond the

scope of this book. However, if you simply want to use JTable to display data (as the

following example does), then you don’t need to handle any events.

Here are the steps required to set up a simple JTable that can be used to display data:

 1. Create an instance of JTable.

 2. Create a JScrollPane object, specifying the table as the object to scroll.

 3. Add the table to the scroll pane.

 4. Add the scroll pane to the content pane.

 Chapter 31 Exploring Swing 991

P
a

rt
 I

II

The following example illustrates how to create and use a simple table. A one-dimensional

array of strings called colHeads is created for the column headings. A two-dimensional array

of strings called data is created for the table cells. You can see that each element in the array is

an array of three strings. These arrays are passed to the JTable constructor. The table is added

to a scroll pane, and then the scroll pane is added to the content pane. The table displays the

data in the data array. The default table configuration also allows the contents of a cell to be

edited. Changes affect the underlying array, which is data in this case.

// Demonstrate JTable.
import java.awt.*;
import javax.swing.*;
/*
 <applet code="JTableDemo" width=400 height=200>
 </applet>
*/

public class JTableDemo extends JApplet {

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Initialize column headings.
 String[] colHeads = { "Name", "Extension", "ID#" };

 // Initialize data.
 Object[][] data = {
 { "Gail", "4567", "865" },
 { "Ken", "7566", "555" },
 { "Viviane", "5634", "587" },
 { "Melanie", "7345", "922" },
 { "Anne", "1237", "333" },
 { "John", "5656", "314" },
 { "Matt", "5672", "217" },
 { "Claire", "6741", "444" },
 { "Erwin", "9023", "519" },
 { "Ellen", "1134", "532" },
 { "Jennifer", "5689", "112" },
 { "Ed", "9030", "133" },
 { "Helen", "6751", "145" }
 };

992 PART III Software Development Using Java

 // Create the table.
 JTable table = new JTable(data, colHeads);

 // Add the table to a scroll pane.
 JScrollPane jsp = new JScrollPane(table);

 // Add the scroll pane to the content pane.
 add(jsp);
 }
}

Output from this example is shown here:

Continuing Your Exploration of Swing
Swing defines a very large GUI toolkit. It has many more features that you will want to

explore on your own. For example, Swing provides toolbars, tooltips, and progress bars.

It also provides a complete menu subsystem. Swing’s pluggable look and feel lets you

substitute another appearance and behavior for an element. You can define your own

models for the various components, and you can change the way that cells are edited and

rendered when working with tables and trees. The best way to become familiar with Swing’s

capabilities is to experiment with it.

32
CHAPTER

 993

Servlets

This chapter presents an overview of servlets. Servlets are small programs that execute on

the server side of a web connection. Just as applets dynamically extend the functionality

of a web browser, servlets dynamically extend the functionality of a web server. The topic of

servlets is quite large, and it is beyond the scope of this chapter to cover it all. Instead, we

will focus on the core concepts, interfaces, and classes, and develop several examples.

Background
In order to understand the advantages of servlets, you must have a basic understanding of

how web browsers and servers cooperate to provide content to a user. Consider a request

for a static web page. A user enters a Uniform Resource Locator (URL) into a browser. The

browser generates an HTTP request to the appropriate web server. The web server maps

this request to a specific file. That file is returned in an HTTP response to the browser. The

HTTP header in the response indicates the type of the content. The Multipurpose Internet

Mail Extensions (MIME) are used for this purpose. For example, ordinary ASCII text has a

MIME type of text/plain. The Hypertext Markup Language (HTML) source code of a web

page has a MIME type of text/html.

Now consider dynamic content. Assume that an online store uses a database to store

information about its business. This would include items for sale, prices, availability, orders,

and so forth. It wishes to make this information accessible to customers via web pages. The

contents of those web pages must be dynamically generated to reflect the latest information

in the database.

In the early days of the Web, a server could dynamically construct a page by creating a

separate process to handle each client request. The process would open connections to one

or more databases in order to obtain the necessary information. It communicated with the

web server via an interface known as the Common Gateway Interface (CGI). CGI allowed

the separate process to read data from the HTTP request and write data to the HTTP

response. A variety of different languages were used to build CGI programs. These included

C, C++, and Perl.

994 PART III Software Development Using Java

However, CGI suffered serious performance problems. It was expensive in terms of

processor and memory resources to create a separate process for each client request. It was

also expensive to open and close database connections for each client request. In addition,

the CGI programs were not platform-independent. Therefore, other techniques were

introduced. Among these are servlets.

Servlets offer several advantages in comparison with CGI. First, performance is

significantly better. Servlets execute within the address space of a web server. It is not

necessary to create a separate process to handle each client request. Second, servlets are

platform-independent because they are written in Java. Third, the Java security manager on

the server enforces a set of restrictions to protect the resources on a server machine. Finally,

the full functionality of the Java class libraries is available to a servlet. It can communicate

with applets, databases, or other software via the sockets and RMI mechanisms that you

have seen already.

The Life Cycle of a Servlet
Three methods are central to the life cycle of a servlet. These are init(), service(), and

destroy(). They are implemented by every servlet and are invoked at specific times by the

server. Let us consider a typical user scenario to understand when these methods are called.

First, assume that a user enters a Uniform Resource Locator (URL) to a web browser.

The browser then generates an HTTP request for this URL. This request is then sent to the

appropriate server.

Second, this HTTP request is received by the web server. The server maps this request

to a particular servlet. The servlet is dynamically retrieved and loaded into the address

space of the server.

Third, the server invokes the init() method of the servlet. This method is invoked only

when the servlet is first loaded into memory. It is possible to pass initialization parameters

to the servlet so it may configure itself.

Fourth, the server invokes the service() method of the servlet. This method is called to

process the HTTP request. You will see that it is possible for the servlet to read data that has

been provided in the HTTP request. It may also formulate an HTTP response for the client.

The servlet remains in the server’s address space and is available to process any other

HTTP requests received from clients. The service() method is called for each HTTP request.

Finally, the server may decide to unload the servlet from its memory. The algorithms by

which this determination is made are specific to each server. The server calls the destroy()
method to relinquish any resources such as file handles that are allocated for the servlet.

Important data may be saved to a persistent store. The memory allocated for the servlet and

its objects can then be garbage collected.

Servlet Development Options
To create servlets, you will need access to a servlet container/server. Two popular ones are

Glassfish and Tomcat. Glassfish is from Oracle and is provided by the Java EE SDK. It is

supported by NetBeans. Tomcat is an open-source product maintained by the Apache

Software Foundation. It can also be used by NetBeans. Both Tomcat and Glassfish can also

be used with other IDEs, such as Eclipse. The examples and descriptions in this chapter use

Tomcat for reasons that will soon be apparent.

 Chapter 32 Servlets 995

P
a

rt
 I

II

Although IDEs such as NetBeans and Eclipse are very useful and can streamline the

creation of servlets, they are not used in this chapter. The way you develop and deploy

servlets differs among IDEs, and it is simply not possible for this book to address each

environment. Furthermore, many readers will be using the command-line tools rather

than an IDE. Therefore, if you are using an IDE, you must refer to the instructions for that

environment for information concerning the development and deployment of servlets. For

this reason, the instructions given here and elsewhere in this chapter assume that only the

command-line tools are employed. Thus, they will work for nearly any reader.

Tomcat is used in this chapter because, in the opinion of this author, it makes it

relatively easy to run the example servlets using only command-line tools and a text editor.

It is also widely available in various programming environments. Furthermore, since only

command-line tools are used, you don’t need to download and install an IDE just to

experiment with servlets. Understand, however, that even if you are developing in an

environment that uses Glassfish, the concepts presented here still apply. It is just that

the mechanics of preparing a servlet for testing will be slightly different.

REMEMBER The instructions for developing and deploying servlets in this chapter are based on Tomcat
and use only command-line tools. If you are using an IDE and different servlet container/server,
consult the documentation for your environment.

Using Tomcat
Tomcat contains the class libraries, documentation, and run time support that you will

need to create and test servlets. At the time of this writing, several versions of Tomcat are

available for use, including 5.5.x, 6.0.x, and 7.0.x. All will work with the examples in this

chapter. However, the instructions that follow use 7.0.4, which supports servlet specification

3.0. You can download Tomcat from tomcat.apache.org. Tomcat versions 6.0.x and 7.0.x

support both 32-bit and 64-bit Windows. You should choose a version appropriate to your

environment.

The examples in this chapter assume a 64-bit Windows environment. Assuming that a

64-bit version of Tomcat 7.0.4 was unpacked from the root directly, the default location is

C:\apache-tomcat-7.0.4-windows-x64\apache-tomcat-7.0.4\

This is the location assumed by the examples in this book. If you load Tomcat in a different

location (or use a different version of Tomcat), you will need to make appropriate changes

to the examples. You may need to set the environmental variable JAVA_HOME to the top-

level directory in which the Java Development Kit is installed.

NOTE All of the directories shown in this section assume Tomcat 7.0.4. If you install a different version
of Tomcat, then you will need to adjust the directory names and paths to match those used by the
version you installed.

Once installed, you start Tomcat by selecting startup.bat from the bin directly under

the apache-tomcat-7.0.4 directory. To stop Tomcat, execute shutdown.bat, also in the bin

directory.

996 PART III Software Development Using Java

The classes and interfaces needed to build servlets are contained in servlet-api.jar,

which is in the following directory:

C:\apache-tomcat-7.0.4-windows-x64\apache-tomcat-7.0.4\lib

To make servlet-api.jar accessible, update your CLASSPATH environment variable so that it

includes

C:\apache-tomcat-7.0.4-windows-x64\apache-tomcat-7.0.4\lib\servlet-api.jar

Alternatively, you can specify this file when you compile the servlets. For example, the

following command compiles the first servlet example:

javac HelloServlet.java -classpath "C:\apache-tomcat-7.0.4-windows-
x64\apache-tomcat-7.0.4\lib\servlet-api.jar"

Once you have compiled a servlet, you must enable Tomcat to find it. For our purposes,

this means putting it into a directory under Tomcat’s webapps directory and entering its

name into a web.xml file. To keep things simple, the examples in this chapter use the

directory and web.xml file that Tomcat supplies for its own example servlets. This way, you

won’t have to create any files or directories just to experiment with the sample servlets.

Here is the procedure that you will follow.

First, copy the servlet’s class file into the following directory:

C:\apache-tomcat-7.0.4-windows-x64\apache-tomcat-7.0.4\webapps\
examples\WEB-INF\classes

Next, add the servlet’s name and mapping to the web.xml file in the following directory:

C:\apache-tomcat-7.0.4-windows-x64\apache-tomcat-7.0.4\webapps\
examples\WEB-INF

For instance, assuming the first example, called HelloServlet, you will add the following

lines in the section that defines the servlets:

<servlet>
 <servlet-name>HelloServlet</servlet-name>
 <servlet-class>HelloServlet</servlet-class>
</servlet>

Next, you will add the following lines to the section that defines the servlet mappings:

<servlet-mapping>
 <servlet-name>HelloServlet</servlet-name>
 <url-pattern>/servlet/HelloServlet</url-pattern>
</servlet-mapping>

Follow this same general procedure for all of the examples.

A Simple Servlet
To become familiar with the key servlet concepts, we will begin by building and testing a

simple servlet. The basic steps are the following:

 Chapter 32 Servlets 997

P
a

rt
 I

II

 1. Create and compile the servlet source code. Then, copy the servlet’s class file

to the proper directory, and add the servlet’s name and mappings to the proper

web.xml file.

 2. Start Tomcat.

 3. Start a web browser and request the servlet.

Let us examine each of these steps in detail.

Create and Compile the Servlet Source Code

To begin, create a file named HelloServlet.java that contains the following program:

import java.io.*;
import javax.servlet.*;

public class HelloServlet extends GenericServlet {

 public void service(ServletRequest request,
 ServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.println("Hello!");
 pw.close();
 }
}

Let’s look closely at this program. First, note that it imports the javax.servlet package.

This package contains the classes and interfaces required to build servlets. You will learn

more about these later in this chapter. Next, the program defines HelloServlet as a subclass

of GenericServlet. The GenericServlet class provides functionality that simplifies the

creation of a servlet. For example, it provides versions of init() and destroy(), which may

be used as is. You need supply only the service() method.

Inside HelloServlet, the service() method (which is inherited from GenericServlet) is

overridden. This method handles requests from a client. Notice that the first argument is a

ServletRequest object. This enables the servlet to read data that is provided via the client

request. The second argument is a ServletResponse object. This enables the servlet to

formulate a response for the client.

The call to setContentType() establishes the MIME type of the HTTP response. In this

program, the MIME type is text/html. This indicates that the browser should interpret the

content as HTML source code.

Next, the getWriter() method obtains a PrintWriter. Anything written to this stream is

sent to the client as part of the HTTP response. Then println() is used to write some simple

HTML source code as the HTTP response.

Compile this source code and place the HelloServlet.class file in the proper Tomcat

directory as described in the previous section. Also, add HelloServlet to the web.xml file,

as described earlier.

998 PART III Software Development Using Java

Start Tomcat

Start Tomcat as explained earlier. Tomcat must be running before you try to execute a servlet.

Start a Web Browser and Request the Servlet

Start a web browser and enter the URL shown here:

http://localhost:8080/examples/servlets/servlet/HelloServlet

Alternatively, you may enter the URL shown here:

http://127.0.0.1:8080/examples/servlets/servlet/HelloServlet

This can be done because 127.0.0.1 is defined as the IP address of the local machine.

You will observe the output of the servlet in the browser display area. It will contain the

string Hello! in bold type.

The Servlet API
Two packages contain the classes and interfaces that are required to build the servlets

described in this chapter. These are javax.servlet and javax.servlet.http. They constitute

the Servlet API. Keep in mind that these packages are not part of the Java core packages.

Therefore, they are not included with Java SE. Instead, they are provided by Tomcat. They

are also provided by Java EE.

The Servlet API has been in a process of ongoing development and enhancement. The

current servlet specification is version 3.0, and that is the one used in this book. However,

because changes happen fast in the world of Java, you will want to check for any additions

or alterations. This chapter discusses the core of the Servlet API, which will be available to

most readers.

The javax.servlet Package
The javax.servlet package contains a number of interfaces and classes that establish the

framework in which servlets operate. The following table summarizes the core interfaces

that are provided in this package. The most significant of these is Servlet. All servlets must

implement this interface or extend a class that implements the interface. The ServletRequest
and ServletResponse interfaces are also very important.

Interface Description

Servlet Declares life cycle methods for a servlet.

ServletConfig Allows servlets to get initialization parameters.

ServletContext Enables servlets to log events and access information

about their environment.

ServletRequest Used to read data from a client request.

ServletResponse Used to write data to a client response.

http://localhost:8080/examples/servlets/servlet/HelloServlet
http://127.0.0.1:8080/examples/servlets/servlet/HelloServlet

 Chapter 32 Servlets 999

P
a

rt
 I

II

The following table summarizes the core classes that are provided in the javax.servlet
package:

Class Description

GenericServlet Implements the Servlet and ServletConfig interfaces.

ServletInputStream Provides an input stream for reading requests from a client.

ServletOutputStream Provides an output stream for writing responses to a client.

ServletException Indicates a servlet error occurred.

UnavailableException Indicates a servlet is unavailable.

Let us examine these interfaces and classes in more detail.

The Servlet Interface

All servlets must implement the Servlet interface. It declares the init(), service(), and

destroy() methods that are called by the server during the life cycle of a servlet. A method

is also provided that allows a servlet to obtain any initialization parameters. The methods

defined by Servlet are shown in Table 32-1.

The init(), service(), and destroy() methods are the life cycle methods of the servlet.

These are invoked by the server. The getServletConfig() method is called by the servlet to

obtain initialization parameters. A servlet developer overrides the getServletInfo() method

to provide a string with useful information (for example, author, version, date, copyright).

This method is also invoked by the server.

Table 32-1 The Methods Defined by Servlet

Method Description

void destroy() Called when the servlet is unloaded.

ServletConfig getServletConfig() Returns a ServletConfig object that contains any

initialization parameters.

String getServletInfo() Returns a string describing the servlet.

void init(ServletConfig sc)
 throws ServletException

Called when the servlet is initialized. Initialization

parameters for the servlet can be obtained from sc. A

ServletException should be thrown if the servlet cannot

be initialized.

void service(ServletRequest req,

 ServletResponse res)
throws ServletException,

 IOException

Called to process a request from a client. The request from

the client can be read from req. The response to the client

can be written to res. An exception is generated if a servlet

or IO problem occurs.

1000 PART III Software Development Using Java

The ServletConfig Interface

The ServletConfig interface allows a servlet to obtain configuration data when it is loaded.

The methods declared by this interface are summarized here:

Method Description

ServletContext getServletContext() Returns the context for this servlet.

String getInitParameter(String param) Returns the value of the initialization parameter

named param.

Enumeration<String>

 getInitParameterNames()

Returns an enumeration of all initialization

parameter names.

String getServletName() Returns the name of the invoking servlet.

The ServletContext Interface

The ServletContext interface enables servlets to obtain information about their

environment. Several of its methods are summarized in Table 32-2.

The ServletRequest Interface

The ServletRequest interface enables a servlet to obtain information about a client request.

Several of its methods are summarized in Table 32-3.

The ServletResponse Interface

The ServletResponse interface enables a servlet to formulate a response for a client.

Several of its methods are summarized in Table 32-4.

Table 32-2 Various Methods Defined by ServletContext

Method Description

Object getAttribute(String attr) Returns the value of the server attribute named attr.

String getMimeType(String file) Returns the MIME type of file.

String getRealPath(String vpath) Returns the real path that corresponds to the

virtual path vpath.

String getServerInfo() Returns information about the server.

void log(String s) Writes s to the servlet log.

void log(String s, Throwable e) Writes s and the stack trace for e to the servlet log.

void setAttribute(String attr, Object val) Sets the attribute specified by attr to the value

passed in val.

 Chapter 32 Servlets 1001

P
a

rt
 I

II

Table 32-3 Various Methods Defined by ServletRequest

Method Description

Object getAttribute(String attr) Returns the value of the attribute named attr.

String getCharacterEncoding() Returns the character encoding of the request.

Int getContentLength() Returns the size of the request. The value –1 is

returned if the size is unavailable.

String getContentType() Returns the type of the request. A null value is

returned if the type cannot be determined.

ServletInputStream getInputStream()

 throws IOException

Returns a ServletInputStream that can be

used to read binary data from the request. An

IllegalStateException is thrown if getReader()
has already been invoked for this request.

String getParameter(String pname) Returns the value of the parameter named pname.

Enumeration<String> getParameterNames() Returns an enumeration of the parameter names

for this request.

String[] getParameterValues(String name) Returns an array containing values associated

with the parameter specified by name.

String getProtocol() Returns a description of the protocol.

BufferedReader getReader()

 throws IOException

Returns a buffered reader that can be used to read

text from the request. An IllegalStateException

is thrown if getInputStream() has already been

invoked for this request.

String getRemoteAddr() Returns the string equivalent of the client IP

address.

String getRemoteHost() Returns the string equivalent of the client host

name.

String getScheme() Returns the transmission scheme of the URL

used for the request (for example, "http", "ftp").

String getServerName() Returns the name of the server.

int getServerPort() Returns the port number.

Table 32-4 Various Methods Defined by ServletResponse

Method Description

String getCharacterEncoding() Returns the character encoding for the response.

ServletOutputStream

 getOutputStream()

 throws IOException

Returns a ServletOutputStream that can be used to write

binary data to the response. An IllegalStateException is thrown

if getWriter() has already been invoked for this request.

PrintWriter getWriter()

 throws IOException

Returns a PrintWriter that can be used to write character

data to the response. An IllegalStateException is thrown if

getOutputStream() has already been invoked for this request.

void setContentLength(int size) Sets the content length for the response to size.

void setContentType(String type) Sets the content type for the response to type.

1002 PART III Software Development Using Java

The GenericServlet Class

The GenericServlet class provides implementations of the basic life cycle methods for a

servlet. GenericServlet implements the Servlet and ServletConfig interfaces. In addition, a

method to append a string to the server log file is available. The signatures of this method

are shown here:

void log(String s)
void log(String s, Throwable e)

Here, s is the string to be appended to the log, and e is an exception that occurred.

The ServletInputStream Class

The ServletInputStream class extends InputStream. It is implemented by the servlet

container and provides an input stream that a servlet developer can use to read the data

from a client request. It defines the default constructor. In addition, a method is provided

to read bytes from the stream. It is shown here:

int readLine(byte[] buffer, int offset, int size) throws IOException

Here, buffer is the array into which size bytes are placed starting at offset. The method returns

the actual number of bytes read or –1 if an end-of-stream condition is encountered.

The ServletOutputStream Class

The ServletOutputStream class extends OutputStream. It is implemented by the servlet

container and provides an output stream that a servlet developer can use to write data to

a client response. A default constructor is defined. It also defines the print() and println()
methods, which output data to the stream.

The Servlet Exception Classes

javax.servlet defines two exceptions. The first is ServletException, which indicates that

a servlet problem has occurred. The second is UnavailableException, which extends

ServletException. It indicates that a servlet is unavailable.

Reading Servlet Parameters
The ServletRequest interface includes methods that allow you to read the names and values

of parameters that are included in a client request. We will develop a servlet that illustrates

their use. The example contains two files. A web page is defined in PostParameters.html,
and a servlet is defined in PostParametersServlet.java.

The HTML source code for PostParameters.html is shown in the following listing. It

defines a table that contains two labels and two text fields. One of the labels is Employee

and the other is Phone. There is also a submit button. Notice that the action parameter of

the form tag specifies a URL. The URL identifies the servlet to process the HTTP POST

request.

<html>
<body>

 Chapter 32 Servlets 1003

P
a

rt
 I

II

<center>
<form name="Form1"
 method="post"
 action="http://localhost:8080/examples/servlets/
 servlet/PostParametersServlet">
<table>
<tr>
 <td>Employee</td>
 <td><input type=textbox name="e" size="25" value=""></td>
</tr>
<tr>
 <td>Phone</td>
 <td><input type=textbox name="p" size="25" value=""></td>
</tr>
</table>
<input type=submit value="Submit">
</body>
</html>

The source code for PostParametersServlet.java is shown in the following listing. The

service() method is overridden to process client requests. The getParameterNames()
method returns an enumeration of the parameter names. These are processed in a loop.

You can see that the parameter name and value are output to the client. The parameter

value is obtained via the getParameter() method.

import java.io.*;
import java.util.*;
import javax.servlet.*;

public class PostParametersServlet
extends GenericServlet {

 public void service(ServletRequest request,
 ServletResponse response)
 throws ServletException, IOException {

 // Get print writer.
 PrintWriter pw = response.getWriter();

 // Get enumeration of parameter names.
 Enumeration e = request.getParameterNames();

 // Display parameter names and values.
 while(e.hasMoreElements()) {
 String pname = (String)e.nextElement();
 pw.print(pname + " = ");
 String pvalue = request.getParameter(pname);
 pw.println(pvalue);
 }
 pw.close();
 }
}

1004 PART III Software Development Using Java

Compile the servlet. Next, copy it to the appropriate directory, and update the web.xml
file, as previously described. Then, perform these steps to test this example:

 1. Start Tomcat (if it is not already running).

 2. Display the web page in a browser.

 3. Enter an employee name and phone number in the text fields.

 4. Submit the web page.

After following these steps, the browser will display a response that is dynamically generated

by the servlet.

The javax.servlet.http Package
The preceding examples have used the classes and interfaces defined in javax.servlet, such

as ServletRequest, ServletResponse, and GenericServlet, to illustrate the basic functionality

of servlets. However, when working with HTTP, you will normally use the interfaces and

classes in javax.servlet.http. As you will see, its functionality makes it easy to build servlets

that work with HTTP requests and responses.

The following table summarizes the core interfaces that are provided in this package:

Interface Description

HttpServletRequest Enables servlets to read data from an HTTP request.

HttpServletResponse Enables servlets to write data to an HTTP response.

HttpSession Allows session data to be read and written.

HttpSessionBindingListener Informs an object that it is bound to or unbound from

a session.

The following table summarizes the core classes that are provided in this package. The

most important of these is HttpServlet. Servlet developers typically extend this class in

order to process HTTP requests.

Class Description

Cookie Allows state information to be stored on a client machine.

HttpServlet Provides methods to handle HTTP requests and responses.

HttpSessionEvent Encapsulates a session-changed event.

HttpSessionBindingEvent Indicates when a listener is bound to or unbound from a

session value, or that a session attribute changed.

The HttpServletRequest Interface

The HttpServletRequest interface enables a servlet to obtain information about a client

request. Several of its methods are shown in Table 32-5.

 Chapter 32 Servlets 1005

P
a

rt
 I

II

The HttpServletResponse Interface

The HttpServletResponse interface enables a servlet to formulate an HTTP response to a

client. Several constants are defined. These correspond to the different status codes that

can be assigned to an HTTP response. For example, SC_OK indicates that the HTTP

request succeeded, and SC_NOT_FOUND indicates that the requested resource is not

available. Several methods of this interface are summarized in Table 32-6.

Table 32-5 Various Methods Defined by HttpServletRequest

Method Description

String getAuthType() Returns authentication scheme.

Cookie[] getCookies() Returns an array of the cookies in this request.

long getDateHeader(String field) Returns the value of the date header field named field.

String getHeader(String field) Returns the value of the header field named field.

Enumeration<String>

 getHeaderNames()

Returns an enumeration of the header names.

int getIntHeader(String field) Returns the int equivalent of the header field

named field.

String getMethod() Returns the HTTP method for this request.

String getPathInfo() Returns any path information that is located after the

servlet path and before a query string of the URL.

String getPathTranslated() Returns any path information that is located after

the servlet path and before a query string of the URL

after translating it to a real path.

String getQueryString() Returns any query string in the URL.

String getRemoteUser() Returns the name of the user who issued this request.

String getRequestedSessionId() Returns the ID of the session.

String getRequestURI() Returns the URI.

StringBuffer getRequestURL() Returns the URL.

String getServletPath() Returns that part of the URL that identifies the servlet.

HttpSession getSession() Returns the session for this request. If a session does

not exist, one is created and then returned.

HttpSession getSession(boolean new) If new is true and no session exists, creates and

returns a session for this request. Otherwise, returns

the existing session for this request.

boolean

 isRequestedSessionIdFromCookie()

Returns true if a cookie contains the session ID.

Otherwise, returns false.

boolean

 isRequestedSessionIdFromURL()

Returns true if the URL contains the session ID.

Otherwise, returns false.

boolean isRequestedSessionIdValid() Returns true if the requested session ID is valid in the

current session context.

1006 PART III Software Development Using Java

The HttpSession Interface

The HttpSession interface enables a servlet to read and write the state information that is

associated with an HTTP session. Several of its methods are summarized in Table 32-7. All

of these methods throw an IllegalStateException if the session has already been invalidated.

The HttpSessionBindingListener Interface

The HttpSessionBindingListener interface is implemented by objects that need to be

notified when they are bound to or unbound from an HTTP session. The methods that

are invoked when an object is bound or unbound are

void valueBound(HttpSessionBindingEvent e)
void valueUnbound(HttpSessionBindingEvent e)

Here, e is the event object that describes the binding.

Table 32-6 Various Methods Defined by HttpServletResponse

Method Description

void addCookie(Cookie cookie) Adds cookie to the HTTP response.

boolean containsHeader(String field) Returns true if the HTTP response header

contains a field named field.

String encodeURL(String url) Determines if the session ID must be encoded

in the URL identified as url. If so, returns the

modified version of url. Otherwise, returns

url. All URLs generated by a servlet should be

processed by this method.

String encodeRedirectURL(String url) Determines if the session ID must be encoded

in the URL identified as url. If so, returns the

modified version of url. Otherwise, returns url.
All URLs passed to sendRedirect() should be

processed by this method.

void sendError(int c)
 throws IOException

Sends the error code c to the client.

void sendError(int c, String s)
 throws IOException

Sends the error code c and message s to the client.

void sendRedirect(String url)
 throws IOException

Redirects the client to url.

void setDateHeader(String field, long msec) Adds field to the header with date value equal

to msec (milliseconds since midnight, January 1,

1970, GMT).

void setHeader(String field, String value) Adds field to the header with value equal to value.

void setIntHeader(String field, int value) Adds field to the header with value equal to value.

void setStatus(int code) Sets the status code for this response to code.

 Chapter 32 Servlets 1007

P
a

rt
 I

II

The Cookie Class

The Cookie class encapsulates a cookie. A cookie is stored on a client and contains state

information. Cookies are valuable for tracking user activities. For example, assume that a

user visits an online store. A cookie can save the user’s name, address, and other information.

The user does not need to enter this data each time he or she visits the store.

A servlet can write a cookie to a user’s machine via the addCookie() method of the

HttpServletResponse interface. The data for that cookie is then included in the header

of the HTTP response that is sent to the browser.

The names and values of cookies are stored on the user’s machine. Some of the

information that is saved for each cookie includes the following:

• The name of the cookie

• The value of the cookie

• The expiration date of the cookie

• The domain and path of the cookie

The expiration date determines when this cookie is deleted from the user’s machine. If

an expiration date is not explicitly assigned to a cookie, it is deleted when the current browser

session ends.

Table 32-7 Various Methods Defined by HttpSession

Method Description

Object getAttribute(String attr) Returns the value associated with the name passed in

attr. Returns null if attr is not found.

Enumeration<String>

 getAttributeNames()

Returns an enumeration of the attribute names

associated with the session.

long getCreationTime() Returns the time (in milliseconds since midnight,

January 1, 1970, GMT) when this session was created.

String getId() Returns the session ID.

long getLastAccessedTime() Returns the time (in milliseconds since midnight,

January 1, 1970, GMT) when the client last made a

request for this session.

void invalidate() Invalidates this session and removes it from the

context.

boolean isNew() Returns true if the server created the session and it

has not yet been accessed by the client.

void removeAttribute(String attr) Removes the attribute specified by attr from the

session.

void setAttribute(String attr, Object val) Associates the value passed in val with the attribute

name passed in attr.

1008 PART III Software Development Using Java

The domain and path of the cookie determine when it is included in the header of an

HTTP request. If the user enters a URL whose domain and path match these values, the

cookie is then supplied to the web server. Otherwise, it is not.

There is one constructor for Cookie. It has the signature shown here:

Cookie(String name, String value)

Here, the name and value of the cookie are supplied as arguments to the constructor. The

methods of the Cookie class are summarized in Table 32-8.

The HttpServlet Class

The HttpServlet class extends GenericServlet. It is commonly used when developing

servlets that receive and process HTTP requests. The methods defined by the HttpServlet
class are summarized in Table 32-9.

Table 32-8 The Methods Defined by Cookie

Method Description

Object clone() Returns a copy of this object.

String getComment() Returns the comment.

String getDomain() Returns the domain.

int getMaxAge() Returns the maximum age (in seconds).

String getName() Returns the name.

String getPath() Returns the path.

boolean getSecure() Returns true if the cookie is secure. Otherwise, returns false.

String getValue() Returns the value.

int getVersion() Returns the version.

boolean isHttpOnly() Returns true if the cookie has the HttpOnly attribute.

void setComment(String c) Sets the comment to c.

void setDomain(String d) Sets the domain to d.

void setHttpOnly(boolean httpOnly) If httpOnly is true, then the HttpOnly attribute is added to

the cookie. If httpOnly is false, the HttpOnly attribute is

removed.

void setMaxAge(int secs) Sets the maximum age of the cookie to secs. This is the

number of seconds after which the cookie is deleted.

void setPath(String p) Sets the path to p.

void setSecure(boolean secure) Sets the security flag to secure.

void setValue(String v) Sets the value to v.

void setVersion(int v) Sets the version to v.

 Chapter 32 Servlets 1009

P
a

rt
 I

II
The HttpSessionEvent Class

HttpSessionEvent encapsulates session events. It extends EventObject and is generated

when a change occurs to the session. It defines this constructor:

HttpSessionEvent(HttpSession session)

Here, session is the source of the event.

HttpSessionEvent defines one method, getSession(), which is shown here:

HttpSession getSession()

It returns the session in which the event occurred.

Table 32-9 The Methods Defined by HttpServlet

Method Description

void doDelete(HttpServletRequest req,

 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP DELETE request.

void doGet(HttpServletRequest req,

 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP GET request.

void doHead(HttpServletRequest req,

 HttpServletResponse res)
 throws IOException,

 ServletException

Handles an HTTP HEAD request.

void doOptions(HttpServletRequest req,

 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP OPTIONS request.

void doPost(HttpServletRequest req,

 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP POST request.

void doPut(HttpServletRequest req,

 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP PUT request.

void doTrace(HttpServletRequest req,

 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP TRACE request.

long

 getLastModified(HttpServletRequest req)

Returns the time (in milliseconds since midnight,

January 1, 1970, GMT) when the requested

resource was last modified.

void service(HttpServletRequest req,

 HttpServletResponse res)
 throws IOException, ServletException

Called by the server when an HTTP request

arrives for this servlet. The arguments provide

access to the HTTP request and response,

respectively.

1010 PART III Software Development Using Java

The HttpSessionBindingEvent Class

The HttpSessionBindingEvent class extends HttpSessionEvent. It is generated when a

listener is bound or unbound in an HttpSession object. It is also generated when an

attribute is bound or unbound. Here are its constructors:

HttpSessionBindingEvent(HttpSession session, String name)
HttpSessionBindingEvent(HttpSession session, String name, Object val)

Here, session is the source of the event, and name is the name associated with the object that

is being bound or unbound. If an attribute is being bound or unbound, its value is passed

in val.
The getName() method obtains the name that is being bound or unbound. It is shown

here:

String getName()

The getSession() method, shown next, obtains the session to which the listener is being

bound or unbound:

HttpSession getSession()

The getValue() method obtains the value of the attribute that is being bound or

unbound. It is shown here:

Object getValue()

Handling HTTP Requests and Responses
The HttpServlet class provides specialized methods that handle the various types of HTTP

requests. A servlet developer typically overrides one of these methods. These methods are

doDelete(), doGet(), doHead(), doOptions(), doPost(), doPut(), and doTrace(). A

complete description of the different types of HTTP requests is beyond the scope of this

book. However, the GET and POST requests are commonly used when handling form

input. Therefore, this section presents examples of these cases.

Handling HTTP GET Requests

Here we will develop a servlet that handles an HTTP GET request. The servlet is invoked

when a form on a web page is submitted. The example contains two files. A web page is

defined in ColorGet.html, and a servlet is defined in ColorGetServlet.java. The HTML

source code for ColorGet.html is shown in the following listing. It defines a form that

contains a select element and a submit button. Notice that the action parameter of the

form tag specifies a URL. The URL identifies a servlet to process the HTTP GET request.

<html>
<body>
<center>
<form name="Form1"
 action="http://localhost:8080/examples/servlets/servlet/ColorGetServlet">
Color:
<select name="color" size="1">

 Chapter 32 Servlets 1011

P
a

rt
 I

II

<option value="Red">Red</option>
<option value="Green">Green</option>
<option value="Blue">Blue</option>
</select>

<input type=submit value="Submit">
</form>
</body>
</html>

The source code for ColorGetServlet.java is shown in the following listing. The doGet()
method is overridden to process any HTTP GET requests that are sent to this servlet. It uses

the getParameter() method of HttpServletRequest to obtain the selection that was made

by the user. A response is then formulated.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ColorGetServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 String color = request.getParameter("color");
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.println("The selected color is: ");
 pw.println(color);
 pw.close();
 }
}

Compile the servlet. Next, copy it to the appropriate directory, and update the web.xml
file, as previously described. Then, perform these steps to test this example:

 1. Start Tomcat, if it is not already running.

 2. Display the web page in a browser.

 3. Select a color.

 4. Submit the web page.

After completing these steps, the browser will display the response that is dynamically

generated by the servlet.

One other point: Parameters for an HTTP GET request are included as part of the URL

that is sent to the web server. Assume that the user selects the red option and submits the

form. The URL sent from the browser to the server is

http://localhost:8080/examples/servlets/servlet/ColorGetServlet?color=Red

The characters to the right of the question mark are known as the query string.

http://localhost:8080/examples/servlets/servlet/ColorGetServlet?color=Red

1012 PART III Software Development Using Java

Handling HTTP POST Requests

Here we will develop a servlet that handles an HTTP POST request. The servlet is invoked

when a form on a web page is submitted. The example contains two files. A web page is

defined in ColorPost.html, and a servlet is defined in ColorPostServlet.java.

The HTML source code for ColorPost.html is shown in the following listing. It is

identical to ColorGet.html except that the method parameter for the form tag explicitly

specifies that the POST method should be used, and the action parameter for the form

tag specifies a different servlet.

<html>
<body>
<center>
<form name="Form1"
 method="post"
 action="http://localhost:8080/examples/servlets/servlet/ColorPostServlet">
Color:
<select name="color" size="1">
<option value="Red">Red</option>
<option value="Green">Green</option>
<option value="Blue">Blue</option>
</select>

<input type=submit value="Submit">
</form>
</body>
</html>

The source code for ColorPostServlet.java is shown in the following listing. The

doPost() method is overridden to process any HTTP POST requests that are sent to this

servlet. It uses the getParameter() method of HttpServletRequest to obtain the selection

that was made by the user. A response is then formulated.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ColorPostServlet extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 String color = request.getParameter("color");
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.println("The selected color is: ");
 pw.println(color);
 pw.close();
 }
}

Compile the servlet and perform the same steps as described in the previous section to

test it.

 Chapter 32 Servlets 1013

P
a

rt
 I

II

NOTE Parameters for an HTTP POST request are not included as part of the URL that is sent to
the web server. In this example, the URL sent from the browser to the server is http://
localhost:8080/examples/servlets/servlet/ColorPostServlet.
The parameter names and values are sent in the body of the HTTP request.

Using Cookies
Now, let’s develop a servlet that illustrates how to use cookies. The servlet is invoked when a

form on a web page is submitted. The example contains three files as summarized here:

File Description

AddCookie.html Allows a user to specify a value for the cookie named MyCookie.

AddCookieServlet.java Processes the submission of AddCookie.html.

GetCookiesServlet.java Displays cookie values.

The HTML source code for AddCookie.html is shown in the following listing. This page

contains a text field in which a value can be entered. There is also a submit button on the

page. When this button is pressed, the value in the text field is sent to AddCookieServlet via

an HTTP POST request.

<html>
<body>
<center>
<form name="Form1"
 method="post"
 action="http://localhost:8080/examples/servlets/servlet/AddCookieServlet">
Enter a value for MyCookie:
<input type=textbox name="data" size=25 value="">
<input type=submit value="Submit">
</form>
</body>
</html>

The source code for AddCookieServlet.java is shown in the following listing. It gets the

value of the parameter named "data". It then creates a Cookie object that has the name

"MyCookie" and contains the value of the "data" parameter. The cookie is then added to

the header of the HTTP response via the addCookie() method. A feedback message is then

written to the browser.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AddCookieServlet extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

http://localhost:8080/examples/servlets/servlet/ColorPostServlet
http://localhost:8080/examples/servlets/servlet/ColorPostServlet

1014 PART III Software Development Using Java

 // Get parameter from HTTP request.
 String data = request.getParameter("data");

 // Create cookie.
 Cookie cookie = new Cookie("MyCookie", data);

 // Add cookie to HTTP response.
 response.addCookie(cookie);

 // Write output to browser.
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.println("MyCookie has been set to");
 pw.println(data);
 pw.close();
 }
}

The source code for GetCookiesServlet.java is shown in the following listing. It invokes

the getCookies() method to read any cookies that are included in the HTTP GET request.

The names and values of these cookies are then written to the HTTP response. Observe

that the getName() and getValue() methods are called to obtain this information.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class GetCookiesServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Get cookies from header of HTTP request.
 Cookie[] cookies = request.getCookies();

 // Display these cookies.
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.println("");
 for(int i = 0; i < cookies.length; i++) {
 String name = cookies[i].getName();
 String value = cookies[i].getValue();
 pw.println("name = " + name +
 "; value = " + value);
 }
 pw.close();
 }
}

Compile the servlets. Next, copy them to the appropriate directory, and update the

web.xml file, as previously described. Then, perform these steps to test this example:

 1. Start Tomcat, if it is not already running.

 Chapter 32 Servlets 1015

P
a

rt
 I

II

 2. Display AddCookie.html in a browser.

 3. Enter a value for MyCookie.

 4. Submit the web page.

After completing these steps, you will observe that a feedback message is displayed by the

browser.

Next, request the following URL via the browser:

http://localhost:8080/examples/servlets/servlet/GetCookiesServlet

Observe that the name and value of the cookie are displayed in the browser.

In this example, an expiration date is not explicitly assigned to the cookie via the

setMaxAge() method of Cookie. Therefore, the cookie expires when the browser session

ends. You can experiment by using setMaxAge() and observe that the cookie is then saved

to the disk on the client machine.

Session Tracking
HTTP is a stateless protocol. Each request is independent of the previous one. However,

in some applications, it is necessary to save state information so that information can be

collected from several interactions between a browser and a server. Sessions provide such

a mechanism.

A session can be created via the getSession() method of HttpServletRequest. An

HttpSession object is returned. This object can store a set of bindings that associate names

with objects. The setAttribute(), getAttribute(), getAttributeNames(), and removeAttribute()
methods of HttpSession manage these bindings. Session state is shared by all servlets that

are associated with a client.

The following servlet illustrates how to use session state. The getSession() method gets

the current session. A new session is created if one does not already exist. The getAttribute()
method is called to obtain the object that is bound to the name "date". That object is a Date

object that encapsulates the date and time when this page was last accessed. (Of course,

there is no such binding when the page is first accessed.) A Date object encapsulating the

current date and time is then created. The setAttribute() method is called to bind the

name "date" to this object.

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DateServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Get the HttpSession object.
 HttpSession hs = request.getSession(true);

http://localhost:8080/examples/servlets/servlet/GetCookiesServlet

1016 PART III Software Development Using Java

 // Get writer.
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.print("");

 // Display date/time of last access.
 Date date = (Date)hs.getAttribute("date");
 if(date != null) {
 pw.print("Last access: " + date + "
");
 }

 // Display current date/time.
 date = new Date();
 hs.setAttribute("date", date);
 pw.println("Current date: " + date);
 }
}

When you first request this servlet, the browser displays one line with the current date

and time information. On subsequent invocations, two lines are displayed. The first line

shows the date and time when the servlet was last accessed. The second line shows the

current date and time.

Applying Java

PART

IV
CHAPTER 33
Financial Applets and

Servlets

CHAPTER 34
Creating a Download

Manager in Java

APPENDIX
Using Java’s Documentation

Comments

This page intentionally left blank

33
CHAPTER

 1019

Financial Applets and
Servlets

Despite all the large, sophisticated applications, such as word processors, databases, and

accounting packages, that dominate much of the computing landscape, there has remained

a class of programs that are both popular and small. These perform various financial

calculations, such as the regular payments on a loan, the future value of an investment,

or the remaining balance on a loan. None of these calculations are very complicated or

require much code, yet they yield information that is quite useful.

As you know, Java was initially designed to support the creation of small, portable

programs. Originally, these programs took the form of applets, but a few years later, servlets

were added. (Recall that applets run on the local machine, inside the browser, and servlets
execute on the server.) Because of their small size, many of the common financial

calculations are right-sized for applets and servlets. Furthermore, including a financial

applet/servlet in a web page is an amenity that many users will appreciate. A user will

return again and again to a page that offers the calculation that he or she desires.

This chapter develops a number of applets that perform the financial calculations

shown here:

• Regular payments on a loan

• Remaining balance on a loan

• Future value of an investment

• Initial investment needed to attain a desired future value

• Annuity from an investment

• Investment necessary for a desired annuity

The chapter ends by showing how to convert the financial applets into servlets.

1020 PART IV Applying Java

Finding the Payments for a Loan
Perhaps the most popular financial calculation is the one that computes the regular

payments on a loan, such as a car or house loan. The payments on a loan are found by

using the following formula:

Payment = (intRate * (principal /payPerYear)) /

 (1 – ((intRate /payPerYear) + 1)– payPerYear * numYears)

where intRate specifies the interest rate, principal contains the starting balance, payPerYear
specifies the number of payments per year, and numYears specifies the length of the loan

in years.

The following applet called RegPay uses the preceding formula to compute the payments

on a loan given the information entered by the user. Like all of the applets in this chapter,

RegPay is a Swing-based applet. This means that it extends the JApplet class and uses the

Swing classes to provide the user interface. Notice that it also implements the ActionListener

interface.

// A simple loan calculator applet.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.text.*;
/*
 <applet code="RegPay" width=320 height=200>
 </applet>
*/

public class RegPay extends JApplet
 implements ActionListener {

 JTextField amountText, paymentText, periodText, rateText;
 JButton doIt;

 double principal; // original principal
 double intRate; // interest rate
 double numYears; // length of loan in years

 /* Number of payments per year. You could
 allow this value to be set by the user. */
 final int payPerYear = 12;

 NumberFormat nf;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(new Runnable () {
 public void run() {
 makeGUI(); // initialize the GUI
 }
 });
 } catch(Exception exc) {

 Chapter 33 Financial Applets and Servlets 1021

P
a

rt
 I

V

 System.out.println("Can't create because of "+ exc);
 }
 }

 // Set up and initialize the GUI.
 private void makeGUI() {

 // Use a grid bag layout.
 GridBagLayout gbag = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbag);

 JLabel heading = new
 JLabel("Compute Monthly Loan Payments");

 JLabel amountLab = new JLabel("Principal ");
 JLabel periodLab = new JLabel("Years ");
 JLabel rateLab = new JLabel("Interest Rate ");
 JLabel paymentLab = new JLabel("Monthly Payments ");

 amountText = new JTextField(10);
 periodText = new JTextField(10);
 paymentText = new JTextField(10);
 rateText = new JTextField(10);

 // Payment field for display only.
 paymentText.setEditable(false);

 doIt = new JButton("Compute");

 // Define the grid bag.
 gbc.weighty = 1.0; // use a row weight of 1
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbc.anchor = GridBagConstraints.NORTH;
 gbag.setConstraints(heading, gbc);

 // Anchor most components to the right.
 gbc.anchor = GridBagConstraints.EAST;

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(amountLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(amountText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(periodLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(periodText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(rateLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(rateText, gbc);

1022 PART IV Applying Java

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(paymentLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(paymentText, gbc);

 gbc.anchor = GridBagConstraints.CENTER;
 gbag.setConstraints(doIt, gbc);

 // Add all the components.
 add(heading);
 add(amountLab);
 add(amountText);
 add(periodLab);
 add(periodText);
 add(rateLab);
 add(rateText);
 add(paymentLab);
 add(paymentText);
 add(doIt);

 // Register to receive action events.
 amountText.addActionListener(this);
 periodText.addActionListener(this);
 rateText.addActionListener(this);
 doIt.addActionListener(this);

 // Create a number format.
 nf = NumberFormat.getInstance();
 nf.setMinimumFractionDigits(2);
 nf.setMaximumFractionDigits(2);
 }

 /* User pressed Enter on a text field or
 pressed Compute. Display the result if all
 fields are completed. */
 public void actionPerformed(ActionEvent ae) {
 double result = 0.0;

 String amountStr = amountText.getText();
 String periodStr = periodText.getText();
 String rateStr = rateText.getText();

 try {
 if(amountStr.length() != 0 &&
 periodStr.length() != 0 &&
 rateStr.length() != 0) {

 principal = Double.parseDouble(amountStr);
 numYears = Double.parseDouble(periodStr);
 intRate = Double.parseDouble(rateStr) / 100;

 Chapter 33 Financial Applets and Servlets 1023

P
a

rt
 I

V

 result = compute();

 paymentText.setText(nf.format(result));
 }
 showStatus(""); // erase any previous error message
 } catch (NumberFormatException exc) {
 showStatus("Invalid Data");
 paymentText.setText("");
 }
 }

 // Compute the loan payment.
 double compute() {
 double numer;
 double denom;
 double b, e;

 numer = intRate * principal / payPerYear;

 e = -(payPerYear * numYears);
 b = (intRate / payPerYear) + 1.0;

 denom = 1.0 - Math.pow(b, e);

 return numer / denom;
 }
}

The applet produced by this program is shown in Figure 33-1. To use the applet, simply

enter the loan principal, the length of the loan in years, and the interest rate. The payments

are assumed to be monthly. Once the information is entered, press Compute to calculate

the monthly payment.

The following sections examine the code to RegPay in detail. Because all the applets in

this chapter use the same basic framework, much of the explanation presented here also

applies to the other applets.

Figure 33-1 The RegPay applet

1024 PART IV Applying Java

The RegPay Fields

RegPay begins by declaring a number of instance variables that hold references to the text

fields into which the user will enter the loan information. Next, it declares the doIt variable

that will hold a reference to the Compute button.

RegPay then declares three double variables that hold the loan values. The original

principal is stored in principal, the interest rate is stored in intRate, and the length of the

loan in years is stored in numYears. These values are entered by the user through the text

fields. Next, the final integer variable payPerYear is declared and initialized to 12. Thus, the

number of payments per year is hard-coded to monthly because this is the way that most

loans are paid. As the comments suggest, you could allow the user to enter this value, but

doing so will require another text field.

The last instance variable declared by RegPay is nf, a reference to an object of type

NumberFormat, which will describe the number format used for output. NumberFormat
is stored in the java.text package. Although there are other ways to format numeric output,

such as by using the Formatter class, NumberFormat is a good choice in this case, because

the same format is used repeatedly, and this format can be set once, at the start of the

program. The financial applets also offer a good opportunity to demonstrate its use.

The init() Method

Like all applets, the init() method is called when the applet first starts execution. This

method simply invokes the makeGUI() method on the event-dispatching thread. As

explained in Chapter 30, Swing-based applets must construct and interact with GUI

components only through the event-dispatching thread.

The makeGUI() Method

The makeGUI() method sets up the user interface for the applet. It performs the

following jobs:

 1. It changes the layout manager to GridBagLayout.

 2. It instantiates the various GUI components.

 3. It adds the components to the grid bag.

 4. It adds action listeners for the components.

Let’s now look at makeGUI() line by line. The method begins with these lines of code:

// Use a grid bag layout.
GridBagLayout gbag = new GridBagLayout();
GridBagConstraints gbc = new GridBagConstraints();
setLayout(gbag);

This sequence creates a GridBagLayout layout manager that will be used by the applet. (For

details on using GridBagLayout, see Chapter 25.) GrigBagLayout is used because it allows

detailed control over the placement of controls within an applet.

Next, makeGUI() creates the label components, text fields, and Compute button, as

shown here:

 Chapter 33 Financial Applets and Servlets 1025

P
a

rt
 I

V

JLabel heading = new
 JLabel("Compute Monthly Loan Payments");

JLabel amountLab = new JLabel("Principal ");
JLabel periodLab = new JLabel("Years ");
JLabel rateLab = new JLabel("Interest Rate ");
JLabel paymentLab = new JLabel("Monthly Payments ");

amountText = new JTextField(10);
periodText = new JTextField(10);
paymentText = new JTextField(10);
rateText = new JTextField(10);

// Payment field for display only.
paymentText.setEditable(false);

doIt = new JButton("Compute");

Notice that the text field that displays the monthly payment is set to read-only by calling

setEditable(false). This causes the field to be grayed and no text can be entered into the

field by the user. However, the contents of the text field can still be set by calling setText().
Thus, when editing is disabled in a JTextField, the field can be used to display text, but the

text cannot be changed by the user.

Next, the grid bag constraints for each component are set by the following code

sequence:

// Define the grid bag.
gbc.weighty = 1.0; // use a row weight of 1
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbc.anchor = GridBagConstraints.NORTH;
gbag.setConstraints(heading, gbc);

// Anchor most components to the right.
gbc.anchor = GridBagConstraints.EAST;

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(amountLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(amountText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(periodLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(periodText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(rateLab, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(rateText, gbc);

gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(paymentLab, gbc);

1026 PART IV Applying Java

gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(paymentText, gbc);

gbc.anchor = GridBagConstraints.CENTER;
gbag.setConstraints(doIt, gbc);

Although this seems a bit complicated at first glance, it really isn’t. Just remember

that each row in the grid is specified separately. Here is how the sequence works. First, the

weight of each row, contained in gbc.weighty, is set to 1. This tells the grid bag to distribute

extra space evenly when there is more vertical space than needed to hold the components.

Next, the gbc.gridwidth is set to REMAINDER, and gbc.anchor is set to NORTH. The label

referred to by heading is added by calling setConstraints() on gbag. This sequence sets the

location of heading to the top of the grid (north) and gives it the remainder of the row.

Thus, after this sequence executes, the heading will be at the top of the window and on a

row by itself.

Next, the four text fields and their labels are added. First, gbc.anchor is set to EAST.

This causes each component to be aligned to the right. Next, gbc.gridWidth is set to

RELATIVE, and the label is added. Then, gbc.gridWidth is set to REMAINDER, and the

text field is added. Thus, each text field and label pair occupies one row. This process

repeats until all four text field and label pairs have been added. Finally, the Compute

button is added in the center.

After the grid bag constraints have been set, the components are actually added to the

window by the following code:

// Add all the components.
add(heading);
add(amountLab);
add(amountText);
add(periodLab);
add(periodText);
add(rateLab);
add(rateText);
add(paymentLab);
add(paymentText);
add(doIt);

Next, action listeners are registered for the three input text fields and the Compute

button, as shown here:

// Register to receive action events.
amountText.addActionListener(this);
periodText.addActionListener(this);
rateText.addActionListener(this);
doIt.addActionListener(this);

Finally, a NumberFormat object is obtained and the format is set to two decimal digits:

// Create a number format.
nf = NumberFormat.getInstance();

 Chapter 33 Financial Applets and Servlets 1027

P
a

rt
 I

V

nf.setMinimumFractionDigits(2);
nf.setMaximumFractionDigits(2);

The call to the factory method getInstance() obtains a NumberFormat object suitable for

the default locale. The calls to setMinimumFractionDigits() and setMaximumFractionDigits()
set the minimum and maximum number of decimal digits to be displayed. Because both

are set to two, this ensures that two decimal places will always be visible.

The actionPerformed() Method

The actionPerformed() method is called whenever the user presses enter when in a text

field or clicks the Compute button. This method performs three main functions: it obtains

the loan information entered by the user, it calls compute() to find the loan payments, and

it displays the result. Let’s now examine actionPerformed() line by line.

After declaring the result variable, actionPerformed() begins by obtaining the strings

from the three user-input text fields using the following sequence:

String amountStr = amountText.getText();
String periodStr = periodText.getText();
String rateStr = rateText.getText();

Next, it begins a try block and then verifies that all three fields actually contain

information, as shown here:

try {
 if(amountStr.length() != 0 &&
 periodStr.length() != 0 &&
 rateStr.length() != 0) {

Recall that the user must enter the original loan amount, the number of years for the

loan, and the interest rate. If all three text fields contain information, then the length of

each string will be greater than zero.

If the user has entered all the loan data, then the numeric values corresponding to

those strings are obtained and stored in the appropriate instance variable. Next, compute()
is called to compute the loan payment, and the result is displayed in the read-only text field

referred to by paymentText, as shown here:

principal = Double.parseDouble(amountStr);
numYears = Double.parseDouble(periodStr);
intRate = Double.parseDouble(rateStr) / 100;

result = compute();

paymentText.setText(nf.format(result));

Notice the call to nf.format(result). This causes the value in result to be formatted as

previously specified (with two decimal digits) and the resulting string is returned. This

string is then used to set the text in the JTextField specified by paymentText.

1028 PART IV Applying Java

If the user has entered a nonnumeric value into one of the text fields, then

Double.parseDouble() will throw a NumberFormatException. If this happens, an

error message will be displayed on the status line and the Payment text field will be

emptied, as shown here:

 showStatus(""); // erase any previous error message
} catch (NumberFormatException exc) {
 showStatus("Invalid Data");
 paymentText.setText("");
}

Otherwise, any previously reported error is removed.

The compute() Method

The calculation of the loan payment takes place in compute(). It implements the formula

shown earlier and operates on the values in principal, intRate, numYears, and payPerYear.

It returns the result.

NOTE The basic skeleton used by RegPay is used by all the applets shown in this chapter.

Finding the Future Value of an Investment
Another popular financial calculation finds the future value of an investment given the

initial investment, the rate of return, the number of compounding periods per year, and

the number of years the investment is held. For example, you might want to know what

your retirement account will be worth in 12 years if it currently contains $98,000 and has

an average annual rate of return of 6 percent. The FutVal applet developed here will supply

the answer.

To compute the future value, use the following formula:

Future Value = principal * ((rateOfRet / compPerYear) + 1)compPerYear * numYears

where rateOfRet specifies the rate of return, principal contains the initial value of the

investment, compPerYear specifies the number of compounding periods per year, and

numYears specifies the length of the investment in years. If you use an annualized rate

of return for rateOfRet, then the number of compounding periods is 1.

The following applet called FutVal uses the preceding formula to compute the future

value of an investment. The applet produced by this program is shown in Figure 33-2. Aside

from the computational differences within the compute() method, the applet is similar in

operation to the RegPay applet described in the preceding section.

// Compute the future value of an investment.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.text.*;
/*
 <applet code="FutVal" width=380 height=240>
 </applet>
*/

 Chapter 33 Financial Applets and Servlets 1029

P
a

rt
 I

V

public class FutVal extends JApplet
 implements ActionListener {

 JTextField amountText, futvalText, periodText,
 rateText, compText;
 JButton doIt;

 double principal; // original principal
 double rateOfRet; // rate of return
 double numYears; // length of investment in years
 int compPerYear; // number of compoundings per year

 NumberFormat nf;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(new Runnable () {
 public void run() {
 makeGUI(); // initialize the GUI
 }
 });
 } catch(Exception exc) {
 System.out.println("Can't create because of "+ exc);
 }
 }

 // Set up and initialize the GUI.
 private void makeGUI() {

 // Use a grid bag layout.
 GridBagLayout gbag = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbag);

 JLabel heading = new
 JLabel("Future Value of an Investment");

 JLabel amountLab = new JLabel("Principal ");
 JLabel periodLab = new JLabel("Years ");
 JLabel rateLab = new JLabel("Rate of Return ");
 JLabel futvalLab =
 new JLabel("Future Value of Investment ");
 JLabel compLab =
 new JLabel("Compounding Periods per Year ");

 amountText = new JTextField(10);
 periodText = new JTextField(10);
 futvalText = new JTextField(10);
 rateText = new JTextField(10);
 compText = new JTextField(10);

 // Future value field for display only.
 futvalText.setEditable(false);

1030 PART IV Applying Java

 doIt = new JButton("Compute");

 // Define the grid bag.
 gbc.weighty = 1.0; // use a row weight of 1
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbc.anchor = GridBagConstraints.NORTH;
 gbag.setConstraints(heading, gbc);

 // Anchor most components to the right.
 gbc.anchor = GridBagConstraints.EAST;

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(amountLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(amountText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(periodLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(periodText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(rateLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(rateText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(compLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(compText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(futvalLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(futvalText, gbc);

 gbc.anchor = GridBagConstraints.CENTER;
 gbag.setConstraints(doIt, gbc);

 add(heading);
 add(amountLab);
 add(amountText);
 add(periodLab);
 add(periodText);
 add(rateLab);
 add(rateText);
 add(compLab);
 add(compText);
 add(futvalLab);
 add(futvalText);
 add(doIt);

 // Register to receive action events.
 amountText.addActionListener(this);

 Chapter 33 Financial Applets and Servlets 1031

P
a

rt
 I

V

 periodText.addActionListener(this);
 rateText.addActionListener(this);
 compText.addActionListener(this);
 doIt.addActionListener(this);

 // Create a number format.
 nf = NumberFormat.getInstance();
 nf.setMinimumFractionDigits(2);
 nf.setMaximumFractionDigits(2);
 }

 /* User pressed Enter on a text field or
 pressed Compute. Display the result if all
 fields are completed. */
 public void actionPerformed(ActionEvent ae) {
 double result = 0.0;

 String amountStr = amountText.getText();
 String periodStr = periodText.getText();
 String rateStr = rateText.getText();
 String compStr = compText.getText();

 try {
 if(amountStr.length() != 0 &&
 periodStr.length() != 0 &&
 rateStr.length() != 0 &&
 compStr.length() != 0) {

 principal = Double.parseDouble(amountStr);
 numYears = Double.parseDouble(periodStr);
 rateOfRet = Double.parseDouble(rateStr) / 100;
 compPerYear = Integer.parseInt(compStr);

 result = compute();

 futvalText.setText(nf.format(result));
 }
 showStatus(""); // erase any previous error message
 } catch (NumberFormatException exc) {
 showStatus("Invalid Data");
 futvalText.setText("");
 }
 }

 // Compute the future value.
 double compute() {
 double b, e;

 b = (1 + rateOfRet/compPerYear);
 e = compPerYear * numYears;

 return principal * Math.pow(b, e);
 }
}

1032 PART IV Applying Java

Finding the Initial Investment Required to Achieve

a Future Value
Sometimes you will want to know how large an initial investment is required to achieve

some future value. For example, if you are saving for your child’s college education and you

know that you will need $75,000 in five years, how much money do you need to invest at 7

percent to reach that goal? The InitInv applet developed here can answer that question.

The formula to compute an initial investment is shown here:

Initial Investment = targetValue / (((rateOfRet /compPerYear) + 1) compPerYear * numYears)

where rateOfRet specifies the rate of return, targetValue contains the starting balance,

compPerYear specifies the number of compounding periods per year, and numYears specifies

the length of the investment in years. If you use an annualized rate of return for rateOfRet,
then the number of compounding periods is 1.

The following applet called InitInv uses the preceding formula to compute the initial

investment required to reach a desired future value. The applet produced by this program

is shown in Figure 33-3.

/* Compute the initial investment necessary for
 a specified future value. */
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.text.*;
/*
 <applet code="InitInv" width=340 height=240>
 </applet>
*/

public class InitInv extends JApplet
 implements ActionListener {

Figure 33-2 The FutVal applet

 Chapter 33 Financial Applets and Servlets 1033

P
a

rt
 I

V

 JTextField targetText, initialText, periodText,
 rateText, compText;
 JButton doIt;

 double targetValue; // original targetValue
 double rateOfRet; // rate of return
 double numYears; // length of loan in years
 int compPerYear; // number of compoundings per year

 NumberFormat nf;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(new Runnable () {
 public void run() {
 makeGUI(); // initialize the GUI
 }
 });
 } catch(Exception exc) {
 System.out.println("Can't create because of "+ exc);
 }
 }

 // Set up and initialize the GUI.
 private void makeGUI() {

 // Use a grid bag layout.
 GridBagLayout gbag = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbag);

 JLabel heading = new
 JLabel("Initial Investment Needed for " +
 "Future Value");

 JLabel targetLab = new JLabel("Desired Future Value ");
 JLabel periodLab = new JLabel("Years ");
 JLabel rateLab = new JLabel("Rate of Return ");
 JLabel compLab =
 new JLabel("Compounding Periods per Year ");
 JLabel initialLab =
 new JLabel("Initial Investment Required ");

 targetText = new JTextField(10);
 periodText = new JTextField(10);
 initialText = new JTextField(10);
 rateText = new JTextField(10);
 compText = new JTextField(10);

 // Initial value field for display only.
 initialText.setEditable(false);

 doIt = new JButton("Compute");

1034 PART IV Applying Java

 // Define the grid bag.
 gbc.weighty = 1.0; // use a row weight of 1

 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbc.anchor = GridBagConstraints.NORTH;
 gbag.setConstraints(heading, gbc);

 // Anchor most components to the right.
 gbc.anchor = GridBagConstraints.EAST;

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(targetLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(targetText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(periodLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(periodText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(rateLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(rateText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(compLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(compText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(initialLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(initialText, gbc);

 gbc.anchor = GridBagConstraints.CENTER;
 gbag.setConstraints(doIt, gbc);

 // Add all the components.
 add(heading);
 add(targetLab);
 add(targetText);
 add(periodLab);
 add(periodText);
 add(rateLab);
 add(rateText);
 add(compLab);
 add(compText);
 add(initialLab);
 add(initialText);
 add(doIt);

 // Register to receive action events.
 targetText.addActionListener(this);

 Chapter 33 Financial Applets and Servlets 1035

P
a

rt
 I

V

 periodText.addActionListener(this);
 rateText.addActionListener(this);
 compText.addActionListener(this);
 doIt.addActionListener(this);

 // Create a number format.
 nf = NumberFormat.getInstance();
 nf.setMinimumFractionDigits(2);
 nf.setMaximumFractionDigits(2);
 }

 /* User pressed Enter on a text field
 or pressed Compute. Display the result if all
 fields are completed. */
 public void actionPerformed(ActionEvent ae) {
 double result = 0.0;

 String targetStr = targetText.getText();
 String periodStr = periodText.getText();
 String rateStr = rateText.getText();
 String compStr = compText.getText();

 try {
 if(targetStr.length() != 0 &&
 periodStr.length() != 0 &&
 rateStr.length() != 0 &&
 compStr.length() != 0) {

 targetValue = Double.parseDouble(targetStr);
 numYears = Double.parseDouble(periodStr);
 rateOfRet = Double.parseDouble(rateStr) / 100;
 compPerYear = Integer.parseInt(compStr);

 result = compute();

 initialText.setText(nf.format(result));
 }
 showStatus(""); // erase any previous error message
 } catch (NumberFormatException exc) {
 showStatus("Invalid Data");
 initialText.setText("");
 }
 }

 // Compute the required initial investment.
 double compute() {
 double b, e;

 b = (1 + rateOfRet/compPerYear);
 e = compPerYear * numYears;

 return targetValue / Math.pow(b, e);
 }
}

1036 PART IV Applying Java

Finding the Initial Investment Needed for a Desired Annuity
Another common financial calculation computes the amount of money that you must

invest so that a desired annuity, in terms of a regular withdrawal, can be paid. For example,

you might decide that you need $5,000 per month at retirement and that you will need that

amount for 20 years. The question is how much will you need to invest to secure that

annuity? The answer can be found using the following formula:

Initial Investment = ((regWD * wdPerYear) / rateOfRet) *

 (1 – (1 / (rateOfRet / wdPerYear + 1) wdPerYear * numYears))

where rateOfRet specifies the rate of return, regWD contains the desired regular withdrawal,

wdPerYear specifies the number of withdrawals per year, and numYears specifies the length of

the annuity in years.

The Annuity applet shown here computes the initial investment required to produce

the desired annuity. The applet produced by this program is shown in Figure 33-4.

/* Compute the initial investment necessary for
 a desired annuity. In other words, it finds
 the initial amount needed to allow the regular
 withdrawals of a desired amount over a period
 of time. */
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.text.*;
/*
 <applet code="Annuity" width=340 height=260>
 </applet>
*/

public class Annuity extends JApplet
 implements ActionListener {

 JTextField regWDText, initialText, periodText,
 rateText, numWDText;
 JButton doIt;

Figure 33-3 The InitInv applet

 Chapter 33 Financial Applets and Servlets 1037

P
a

rt
 I

V

 double regWDAmount; // amount of each withdrawal
 double rateOfRet; // rate of return
 double numYears; // length of time in years
 int numPerYear; // number of withdrawals per year

 NumberFormat nf;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(new Runnable () {
 public void run() {
 makeGUI(); // initialize the GUI
 }
 });
 } catch(Exception exc) {
 System.out.println("Can't create because of "+ exc);
 }
 }

 // Set up and initialize the GUI.
 private void makeGUI() {

 // Use a grid bag layout.
 GridBagLayout gbag = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbag);

 JLabel heading = new
 JLabel("Initial Investment Needed for " +
 "Regular Withdrawals");

 JLabel regWDLab = new JLabel("Desired Withdrawal ");
 JLabel periodLab = new JLabel("Years ");
 JLabel rateLab = new JLabel("Rate of Return ");
 JLabel numWDLab =
 new JLabel("Number of Withdrawals per Year ");
 JLabel initialLab =
 new JLabel("Initial Investment Required ");

 regWDText = new JTextField(10);
 periodText = new JTextField(10);
 initialText = new JTextField(10);
 rateText = new JTextField(10);
 numWDText = new JTextField(10);

 // Initial investment field for display only.
 initialText.setEditable(false);

 doIt = new JButton("Compute");

 // Define the grid bag.

 gbc.weighty = 1.0; // use a row weight of 1

 gbc.gridwidth = GridBagConstraints.REMAINDER;

1038 PART IV Applying Java

 gbc.anchor = GridBagConstraints.NORTH;
 gbag.setConstraints(heading, gbc);

 // Anchor most components to the right.
 gbc.anchor = GridBagConstraints.EAST;

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(regWDLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(regWDText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(periodLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(periodText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(rateLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(rateText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(numWDLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(numWDText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(initialLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(initialText, gbc);

 gbc.anchor = GridBagConstraints.CENTER;
 gbag.setConstraints(doIt, gbc);

 // Add all the components.
 add(heading);
 add(regWDLab);
 add(regWDText);
 add(periodLab);
 add(periodText);
 add(rateLab);
 add(rateText);
 add(numWDLab);
 add(numWDText);
 add(initialLab);
 add(initialText);
 add(doIt);

 // Register to receive text field action events.
 regWDText.addActionListener(this);
 periodText.addActionListener(this);
 rateText.addActionListener(this);
 numWDText.addActionListener(this);
 doIt.addActionListener(this);

 Chapter 33 Financial Applets and Servlets 1039

P
a

rt
 I

V

 // Create a number format.
 nf = NumberFormat.getInstance();
 nf.setMinimumFractionDigits(2);
 nf.setMaximumFractionDigits(2);
 }

 /* User pressed Enter on a text field or
 pressed Compute. Display the result if all
 fields are completed. */
 public void actionPerformed(ActionEvent ae) {
 double result = 0.0;

 String regWDStr = regWDText.getText();
 String periodStr = periodText.getText();
 String rateStr = rateText.getText();
 String numWDStr = numWDText.getText();

 try {
 if(regWDStr.length() != 0 &&
 periodStr.length() != 0 &&
 rateStr.length() != 0 &&
 numWDStr.length() != 0) {

 regWDAmount = Double.parseDouble(regWDStr);
 numYears = Double.parseDouble(periodStr);
 rateOfRet = Double.parseDouble(rateStr) / 100;
 numPerYear = Integer.parseInt(numWDStr);

 result = compute();

 initialText.setText(nf.format(result));
 }
 showStatus(""); // erase any previous error message
 } catch (NumberFormatException exc) {
 showStatus("Invalid Data");
 initialText.setText("");
 }
 }

 // Compute the required initial investment.
 double compute() {
 double b, e;
 double t1, t2;

 t1 = (regWDAmount * numPerYear) / rateOfRet;

 b = (1 + rateOfRet/numPerYear);
 e = numPerYear * numYears;

 t2 = 1 - (1 / Math.pow(b, e));

 return t1 * t2;
 }
}

1040 PART IV Applying Java

Finding the Maximum Annuity for a Given Investment
Another annuity calculation computes the maximum annuity (in terms of a regular

withdrawal) available from a given investment over a specified period of time. For example,

if you have $500,000 in a retirement account, how much can you take out each month for

20 years, assuming a 6 percent rate of return? The formula that computes the maximum

withdrawal is shown here:

Maximum Withdrawal = principal * (((rateOfRet / wdPerYear) /

 (–1 + ((rateOfRet / wdPerYear) + 1)wdPerYear * numYears)) +

 (rateOfRet / wdPerYear))

where rateOfRet specifies the rate of return, principal contains the value of the initial

investment, wdPerYear specifies the number of withdrawals per year, and numYears specifies

the length of the annuity in years.

The MaxWD applet shown next computes the maximum periodic withdrawals that can

be made over a specified length of time for an assumed rate of return. The applet produced

by this program is shown in Figure 33-5.

/* Compute the maximum annuity that can
 be withdrawn from an investment over
 a period of time. */
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.text.*;
/*
 <applet code="MaxWD" width=340 height=260>
 </applet>
*/

public class MaxWD extends JApplet
 implements ActionListener {

 JTextField maxWDText, orgPText, periodText,
 rateText, numWDText;
 JButton doIt;

Figure 33-4 The Annuity applet

 Chapter 33 Financial Applets and Servlets 1041

P
a

rt
 I

V

 double principal; // initial principal
 double rateOfRet; // annual rate of return
 double numYears; // length of time in years
 int numPerYear; // number of withdrawals per year

 NumberFormat nf;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(new Runnable () {
 public void run() {
 makeGUI(); // initialize the GUI
 }
 });
 } catch(Exception exc) {
 System.out.println("Can't create because of "+ exc);
 }
 }

 // Set up and initialize the GUI.
 private void makeGUI() {

 // Use a grid bag layout.
 GridBagLayout gbag = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbag);

 JLabel heading = new
 JLabel("Maximum Regular Withdrawals");

 JLabel orgPLab = new JLabel("Original Principal ");
 JLabel periodLab = new JLabel("Years ");
 JLabel rateLab = new JLabel("Rate of Return ");
 JLabel numWDLab =
 new JLabel("Number of Withdrawals per Year ");
 JLabel maxWDLab = new JLabel("Maximum Withdrawal ");

 maxWDText = new JTextField(10);
 periodText = new JTextField(10);
 orgPText = new JTextField(10);
 rateText = new JTextField(10);
 numWDText = new JTextField(10);

 // Max withdrawal field for display only.
 maxWDText.setEditable(false);

 doIt = new JButton("Compute");

 // Define the grid bag.
 gbc.weighty = 1.0; // use a row weight of 1

 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbc.anchor = GridBagConstraints.NORTH;
 gbag.setConstraints(heading, gbc);

1042 PART IV Applying Java

 // Anchor most components to the right.
 gbc.anchor = GridBagConstraints.EAST;

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(orgPLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(orgPText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(periodLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(periodText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(rateLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(rateText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(numWDLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(numWDText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(maxWDLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(maxWDText, gbc);

 gbc.anchor = GridBagConstraints.CENTER;
 gbag.setConstraints(doIt, gbc);

 // Add all the components.
 add(heading);
 add(orgPLab);
 add(orgPText);
 add(periodLab);
 add(periodText);
 add(rateLab);
 add(rateText);
 add(numWDLab);
 add(numWDText);
 add(maxWDLab);
 add(maxWDText);
 add(doIt);

 // Register to receive action events.
 orgPText.addActionListener(this);
 periodText.addActionListener(this);
 rateText.addActionListener(this);
 numWDText.addActionListener(this);
 doIt.addActionListener(this);

 // Create a number format.
 nf = NumberFormat.getInstance();

 Chapter 33 Financial Applets and Servlets 1043

P
a

rt
 I

V

 nf.setMinimumFractionDigits(2);
 nf.setMaximumFractionDigits(2);
 }

 /* User pressed Enter on a text field or
 pressed Compute. Display the result if all
 fields are completed. */
 public void actionPerformed(ActionEvent ae) {
 double result = 0.0;

 String orgPStr = orgPText.getText();
 String periodStr = periodText.getText();
 String rateStr = rateText.getText();
 String numWDStr = numWDText.getText();

 try {
 if(orgPStr.length() != 0 &&
 periodStr.length() != 0 &&
 rateStr.length() != 0 &&
 numWDStr.length() != 0) {

 principal = Double.parseDouble(orgPStr);
 numYears = Double.parseDouble(periodStr);
 rateOfRet = Double.parseDouble(rateStr) / 100;
 numPerYear = Integer.parseInt(numWDStr);

 result = compute();

 maxWDText.setText(nf.format(result));
 }

 showStatus(""); // erase any previous error message
 } catch (NumberFormatException exc) {
 showStatus("Invalid Data");
 maxWDText.setText("");
 }
 }

 // Compute the maximum regular withdrawals.
 double compute() {
 double b, e;
 double t1, t2;

 t1 = rateOfRet / numPerYear;

 b = (1 + t1);
 e = numPerYear * numYears;

 t2 = Math.pow(b, e) - 1;

 return principal * (t1/t2 + t1);
 }
}

1044 PART IV Applying Java

Finding the Remaining Balance on a Loan
Often, you will want to know the remaining balance on a loan. This is easily calculated if

you know the original principal, the interest rate, and the number of payments made. To

find the remaining balance, you must sum the payments, subtracting from each payment

the amount allocated to interest, and then subtract that result from the principal.

The RemBal applet, shown next, finds the remaining balance of a loan. The applet

produced by this program is shown in Figure 33-6.

// Find the remaining balance on a loan.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.text.*;
/*
 <applet code="RemBal" width=340 height=260>
 </applet>
*/

public class RemBal extends JApplet
 implements ActionListener {

 JTextField orgPText, paymentText, remBalText,
 rateText, numPayText;
 JButton doIt;

 double orgPrincipal; // original principal
 double intRate; // interest rate
 double payment; // amount of each payment
 double numPayments; // number of payments made

 /* Number of payments per year. You could
 allow this value to be set by the user. */
 final int payPerYear = 12;

Figure 33-5 The MaxWD applet

 Chapter 33 Financial Applets and Servlets 1045

P
a

rt
 I

V

 NumberFormat nf;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(new Runnable () {
 public void run() {
 makeGUI(); // initialize the GUI
 }
 });
 } catch(Exception exc) {
 System.out.println("Can't create because of "+ exc);
 }
 }

 // Set up and initialize the GUI
 private void makeGUI() {

 // Use a grid bag layout.
 GridBagLayout gbag = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbag);

 JLabel heading = new
 JLabel("Find Loan Balance ");

 JLabel orgPLab = new JLabel("Original Principal ");
 JLabel paymentLab = new JLabel("Amount of Payment ");
 JLabel numPayLab = new JLabel("Number of Payments Made ");
 JLabel rateLab = new JLabel("Interest Rate ");
 JLabel remBalLab = new JLabel("Remaining Balance ");

 orgPText = new JTextField(10);
 paymentText = new JTextField(10);
 remBalText = new JTextField(10);
 rateText = new JTextField(10);
 numPayText = new JTextField(10);

 // Payment field for display only.
 remBalText.setEditable(false);

 doIt = new JButton("Compute");

 // Define the grid bag.
 gbc.weighty = 1.0; // use a row weight of 1

 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbc.anchor = GridBagConstraints.NORTH;
 gbag.setConstraints(heading, gbc);

 // Anchor most components to the right.
 gbc.anchor = GridBagConstraints.EAST;

1046 PART IV Applying Java

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(orgPLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(orgPText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(paymentLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(paymentText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(rateLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(rateText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(numPayLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(numPayText, gbc);

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(remBalLab, gbc);
 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(remBalText, gbc);

 gbc.anchor = GridBagConstraints.CENTER;
 gbag.setConstraints(doIt, gbc);

 // Add all the components.
 add(heading);
 add(orgPLab);
 add(orgPText);
 add(paymentLab);
 add(paymentText);
 add(numPayLab);
 add(numPayText);
 add(rateLab);
 add(rateText);
 add(remBalLab);
 add(remBalText);
 add(doIt);

 // Register to receive action events.
 orgPText.addActionListener(this);
 numPayText.addActionListener(this);
 rateText.addActionListener(this);
 paymentText.addActionListener(this);
 doIt.addActionListener(this);

 Chapter 33 Financial Applets and Servlets 1047

P
a

rt
 I

V

 // Create a number format.
 nf = NumberFormat.getInstance();
 nf.setMinimumFractionDigits(2);
 nf.setMaximumFractionDigits(2);
 }

 /* User pressed Enter on a text field
 or pressed Compute. Display the result if all
 fields are completed. */
 public void actionPerformed(ActionEvent ae) {
 double result = 0.0;

 String orgPStr = orgPText.getText();
 String numPayStr = numPayText.getText();
 String rateStr = rateText.getText();
 String payStr = paymentText.getText();

 try {
 if(orgPStr.length() != 0 &&
 numPayStr.length() != 0 &&
 rateStr.length() != 0 &&
 payStr.length() != 0) {

 orgPrincipal = Double.parseDouble(orgPStr);
 numPayments = Double.parseDouble(numPayStr);
 intRate = Double.parseDouble(rateStr) / 100;
 payment = Double.parseDouble(payStr);

 result = compute();

 remBalText.setText(nf.format(result));
 }
 showStatus(""); // erase any previous error message
 } catch (NumberFormatException exc) {
 showStatus("Invalid Data");
 remBalText.setText("");
 }
 }

 // Compute the loan balance.
 double compute() {
 double bal = orgPrincipal;
 double rate = intRate / payPerYear;

 for(int i = 0; i < numPayments; i++)
 bal -= payment - (bal * rate);

 return bal;
 }
}

1048 PART IV Applying Java

Creating Financial Servlets
Although applets are easy to create and use, they are only one half of the Java Internet

equation. The other half is servlets. Servlets execute on the server side of the connection,

and they are more appropriate for some applications. Because many readers may want to

use servlets rather than applets in their commercial applications, the remainder of this

chapter shows how to convert the financial applets into servlets.

Because all the financial applets use the same basic skeleton, we will walk through the

conversion of only one applet: RegPay. You can then apply the same basic process to convert

any of the other applets into servlets on your own. As you will see, it’s not hard to do.

NOTE For information on creating, testing, and running servlets, see Chapter 32.

Converting the RegPay Applet into a Servlet

It is fairly easy to convert the RegPay loan calculating applet into a servlet. First, the servlet

must import the javax.servlet and javax.servlet.http packages. It must also extend HttpServlet,
not JApplet. Next, you must remove all the GUI code. Then, you must add the code that

obtains the parameters passed to the servlet by the HTML that calls the servlet. Finally,

the servlet must send the HTML that displays the results. The basic financial calculations

remain the same. It is only the way data is obtained and displayed that changes.

The RegPayS Servlet

The following RegPayS class is the servlet version of the RegPay applet. As the code is

written, it assumes that RegPayS.class will be stored in Tomcat’s example servlets directory,

as described in Chapter 32. Remember to enter its name into the web.xml file, also as

described in Chapter 32.

// A simple loan calculator servlet.
import javax.servlet.*;
import javax.servlet.http.*;

Figure 33-6 The RemBal applet

 Chapter 33 Financial Applets and Servlets 1049

P
a

rt
 I

V

import java.io.*;
import java.text.*;

public class RegPayS extends HttpServlet {
 double principal; // original principal
 double intRate; // interest rate
 double numYears; // length of loan in years

 /* Number of payments per year. You could
 allow this value to be set by the user. */
 final int payPerYear = 12;

 NumberFormat nf;

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String payStr = "";

 // Create a number format.
 nf = NumberFormat.getInstance();
 nf.setMinimumFractionDigits(2);
 nf.setMaximumFractionDigits(2);

 // Get the parameters.
 String amountStr = request.getParameter("amount");
 String periodStr = request.getParameter("period");
 String rateStr = request.getParameter("rate");

 try {
 if(amountStr != null && periodStr != null &&
 rateStr != null) {
 principal = Double.parseDouble(amountStr);

 numYears = Double.parseDouble(periodStr);
 intRate = Double.parseDouble(rateStr) / 100;

 payStr = nf.format(compute());
 }
 else { // one or more parameters missing
 amountStr = "";
 periodStr = "";
 rateStr = "";
 }
 } catch (NumberFormatException exc) {
 // Take appropriate action here.
 }

 // Set the content type.
 response.setContentType("text/html");

 // Get the output stream.
 PrintWriter pw = response.getWriter();

1050 PART IV Applying Java

 // Display the necessary HTML.
 pw.print("<html><body> <left>" +
 "<form name=\"Form1\"" +
 " action=\"http://localhost:8080/" +
 "examples/servlets/servlet/RegPayS\">" +
 "Enter amount to finance:" +
 " <input type=textbox name=\"amount\"" +
 " size=12 value=\"");
 pw.print(amountStr + "\">");
 pw.print("
Enter term in years:" +
 " <input type=textbox name=\"period\"" +
 " size=12 value=\"");
 pw.println(periodStr + "\">");
 pw.print("
Enter interest rate:" +
 " <input type=textbox name=\"rate\"" +
 " size=12 value=\"");
 pw.print(rateStr + "\">");
 pw.print("
Monthly Payment:" +
 " <input READONLY type=textbox" +
 " name=\"payment\" size=12 value=\"");
 pw.print(payStr + "\">");
 pw.print("
<P><input type=submit value=\"Submit\">");
 pw.println("</form> </body> </html>");
 }

 // Compute the loan payment.
 double compute() {
 double numer;
 double denom;
 double b, e;

 numer = intRate * principal / payPerYear;

 e = -(payPerYear * numYears);
 b = (intRate / payPerYear) + 1.0;

 denom = 1.0 - Math.pow(b, e);

 return numer / denom;
 }
}

The first thing to notice about RegPayS is that it has only two methods: doGet() and

compute(). The compute() method is the same as that used by the applet. The doGet()
method is defined by the HttpServlet class, which RegPayS extends. This method is called

by the server when the servlet must respond to a GET request. Notice that it is passed a

reference to the HttpServletRequest and HttpServletResponse objects associated with the

request.

 Chapter 33 Financial Applets and Servlets 1051

P
a

rt
 I

V

From the request parameter, the servlet obtains the arguments associated with the

request. It does this by calling getParameter(). The parameter is returned in its string form.

Thus, a numeric value must be manually converted into its binary format. If no parameter

is available, a null is returned.

From the response object, the servlet obtains a stream to which response information

can be written. The response is then returned to the browser by outputting to that stream.

Prior to obtaining a PrintWriter to the response stream, the output type should be set to

text/html by calling setContentType().
RegPayS can be called with or without parameters. If called without parameters, the

servlet responds with the necessary HTML to display an empty loan calculator form.

Otherwise, if called with all needed parameters, RegPayS calculates the loan payment

and redisplays the form, with the payment field filled in.

The simplest way to invoke RegPayS is to link to its URL without passing any

parameters. For example, assuming that you are using Tomcat, you can use this line

to execute it:

Loan Calculator

This displays a link called Loan Calculator that links to the RegPayS servlet in the Tomcat

example servlets directory. Notice that no parameters are passed. This causes RegPayS to

return the complete HTML that displays an empty loan calculator page.

You can also invoke RegPayS by first displaying an empty form manually, if you like.

This approach is shown here, again using Tomcat’s example servlets directory:

<html>
<body>
<form name="Form1"
 action="http://localhost:8080/examples/servlets/servlet/RegPayS">
Enter amount to finance:
<input type=textbox name="amount" size=12 value="">

Enter term in years:
<input type=textbox name="period" size=12 value="">

Enter interest rate:
<input type=textbox name="rate" size=12 value="">

Monthly Payment:
<input READONLY type=textbox name="payment"
 size=12 value="">

<P>
<input type=submit value="Submit">
</form>
</body>
</html>

1052 PART IV Applying Java

Some Things to Try
The first thing you might want to try is converting the other financial applets into servlets.

Because all the financial applets are built on the same skeleton, simply follow the same

approach as used by RegPayS. There are many other financial calculations that you might

find useful to implement as applets or servlets, such as the rate of return of an investment

or the amount of a regular deposit needed over time to reach a future value. You could also

print a loan amortization chart. You might want to try creating a larger application that

offers all the calculations presented in this chapter, allowing the user to select the desired

calculation from a menu.

34
CHAPTER

 1053

Creating a Download
Manager in Java

Have you ever had an Internet download interrupted, putting you back at square one? If

you have ever connected to the Internet with a dialup connection, it’s very likely that you’ve

run into this all too common nuisance. Everything from call-waiting disconnects to computer

crashes can leave a download dead in its tracks. However, even with a high-speed connection,

transmission disruptions can still occur. To say the least, restarting a download from scratch

over and over can be a very time-consuming and frustrating experience.

A sometimes overlooked fact is that many interrupted downloads can be resumed. This

allows you to recommence downloading from the point at which a download terminates

instead of having to begin anew. In this chapter, a tool called Download Manager is developed

that manages Internet downloads for you and makes simple work of resuming interrupted

downloads. It also lets you pause and then resume a download, and manage multiple

downloads, simultaneously.

At the core of the Download Manager’s usefulness is its ability to take advantage of

downloading only specific portions of a file. In a classic download scenario, a whole file is

downloaded from beginning to end. If the transmission of the file is interrupted for any

reason, the progress made toward completing the downloading of the file is lost. The

Download Manager, however, can pick up from where an interruption occurs and then

download only the file’s remaining fragment. Not all downloads are created equal, though,

and there are some that simply cannot be restarted. Details on which files are and aren’t

resumable are explained in the following section.

Not only is the Download Manager a useful utility, it is an excellent illustration of the

power and succinctness of Java’s built-in APIs—especially as they apply to interfacing to the

Internet. Because the Internet was a driving force behind the creation of Java, it should

come as no surprise that Java’s networking capabilities are unsurpassed. For example,

attempting to create the Download Manager in another language, such as C++, would

entail significantly more trouble and effort.

Understanding Internet Downloads
To understand and appreciate the Download Manager, it’s necessary to shed some light on

how Internet downloads really work.

1054 PART IV Applying Java

Internet downloads in their simplest form are merely client/server transactions. The

client, your browser, requests to download a file from a server on the Internet. The server

then responds by sending the requested file to your browser. In order for clients to

communicate with servers, they must have an established protocol for doing so. The most

common protocols for downloading files are File Transfer Protocol (FTP) and Hypertext

Transfer Protocol (HTTP). FTP is usually associated generically with exchanging files

between computers, whereas HTTP is usually associated specifically with transferring web

pages and their related files (that is, graphics, sounds, and so on). Over time, as the World

Wide Web has grown in popularity, HTTP has become the dominant protocol for downloading

files from the Internet. FTP is definitely not extinct, though.

For brevity’s sake, the Download Manager developed in this chapter will only support

HTTP downloads. Nonetheless, adding support for FTP would be an excellent exercise for

extending the code. HTTP downloads come in two forms: resumable (HTTP 1.1) and

nonresumable (HTTP 1.0). The difference between these two forms lies in the way files can be

requested from servers. With the antiquated HTTP 1.0, a client can only request that a server

send it a file, whereas with HTTP 1.1, a client can request that a server send it a complete file

or only a specific portion of a file. This is the feature the Download Manager is built on.

An Overview of the Download Manager
The Download Manager uses a simple yet effective GUI interface built with Java’s Swing

libraries. The Download Manager window is shown in Figure 34-1. The use of Swing gives

the interface a crisp, modern look and feel.

The GUI maintains a list of downloads that are currently being managed. Each download

in the list reports its URL, size of the file in bytes, progress as a percentage toward completion,

and current status. The downloads can each be in one of the following different states:

Downloading, Paused, Complete, Error, or Cancelled. The GUI also has controls for adding

downloads to the list and for changing the state of each download in the list. When

a download in the list is selected, depending on its current state, it can be paused, resumed,

cancelled, or removed from the list altogether.

The Download Manager is broken into a few classes for natural separation of functional

components. These are the Download, DownloadsTableModel, ProgressRenderer, and

DownloadManager classes, respectively. The DownloadManager class is responsible for the

GUI interface and makes use of the DownloadsTableModel and ProgressRenderer classes

Figure 34-1 The Download Manager GUI interface

 Chapter 34 Creating a Download Manager in Java 1055

P
a

rt
 I

V

for displaying the current list of downloads. The Download class represents a “managed”

download and is responsible for performing the actual downloading of a file. In the

following sections, we’ll walk through each of these classes in detail, highlighting their

inner workings and explaining how they relate to each other.

The Download Class
The Download class is the workhorse of the Download Manager. Its primary purpose is to

download a file and save that file’s contents to disk. Each time a new download is added

to the Download Manager, a new Download object is instantiated to handle the download.

The Download Manager has the ability to download multiple files at once. To achieve

this, it’s necessary for each of the simultaneous downloads to run independently. It’s also

necessary for each individual download to manage its own state so that it can be reflected

in the GUI. This is accomplished with the Download class.

The entire code for Download is shown here. Notice that it extends Observable and

implements Runnable. Each part is examined in detail in the sections that follow.

import java.io.*;
import java.net.*;
import java.util.*;

// This class downloads a file from a URL.
class Download extends Observable implements Runnable {
 // Max size of download buffer.
 private static final int MAX_BUFFER_SIZE = 1024;

 // These are the status names.
 public static final String STATUSES[] = {"Downloading",
 "Paused", "Complete", "Cancelled", "Error"};

 // These are the status codes.
 public static final int DOWNLOADING = 0;
 public static final int PAUSED = 1;
 public static final int COMPLETE = 2;
 public static final int CANCELLED = 3;
 public static final int ERROR = 4;
 private URL url; // download URL
 private int size; // size of download in bytes
 private int downloaded; // number of bytes downloaded
 private int status; // current status of download

 // Constructor for Download.
 public Download(URL url) {
 this.url = url;
 size = -1;
 downloaded = 0;
 status = DOWNLOADING;

 // Begin the download.
 download();
 }

1056 PART IV Applying Java

 // Get this download's URL.
 public String getUrl() {
 return url.toString();
 }

 // Get this download's size.
 public int getSize() {
 return size;
 }

 // Get this download's progress.
 public float getProgress() {
 return ((float) downloaded / size) * 100;
 }

 // Get this download's status.
 public int getStatus() {
 return status;
 }

 // Pause this download.
 public void pause() {
 status = PAUSED;
 stateChanged();
 }

 // Resume this download.
 public void resume() {
 status = DOWNLOADING;
 stateChanged();
 download();
 }

 // Cancel this download.
 public void cancel() {
 status = CANCELLED;
 stateChanged();
 }

 // Mark this download as having an error.
 private void error() {
 status = ERROR;
 stateChanged();
 }

 // Start or resume downloading.
 private void download() {
 Thread thread = new Thread(this);
 thread.start();
 }

 // Get file name portion of URL.
 private String getFileName(URL url) {

 Chapter 34 Creating a Download Manager in Java 1057

P
a

rt
 I

V

 String fileName = url.getFile();
 return fileName.substring(fileName.lastIndexOf('/') + 1);
 }

 // Download file.
 public void run() {
 RandomAccessFile file = null;
 InputStream stream = null;

 try {
 // Open connection to URL.
 HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();

 // Specify what portion of file to download.
 connection.setRequestProperty("Range",
 "bytes=" + downloaded + "-");

 // Connect to server.
 connection.connect();

 // Make sure response code is in the 200 range.
 if (connection.getResponseCode() / 100 != 2) {
 error();
 }

 // Check for valid content length.
 int contentLength = connection.getContentLength();
 if (contentLength < 1) {
 error();
 }

 /* Set the size for this download if it
 hasn't been already set. */
 if (size == -1) {
 size = contentLength;
 stateChanged();
 }

 // Open file and seek to the end of it.
 file = new RandomAccessFile(getFileName(url), "rw");
 file.seek(downloaded);

 stream = connection.getInputStream();
 while (status == DOWNLOADING) {
 /* Size buffer according to how much of the
 file is left to download. */
 byte buffer[];
 if (size - downloaded > MAX_BUFFER_SIZE) {
 buffer = new byte[MAX_BUFFER_SIZE];
 } else {
 buffer = new byte[size - downloaded];
 }

1058 PART IV Applying Java

 // Read from server into buffer.
 int read = stream.read(buffer);
 if (read == -1)
 break;

 // Write buffer to file.
 file.write(buffer, 0, read);
 downloaded += read;
 stateChanged();
 }

 /* Change status to complete if this point was
 reached because downloading has finished. */
 if (status == DOWNLOADING) {
 status = COMPLETE;
 stateChanged();
 }
 } catch (Exception e) {
 error();
 } finally {
 // Close file.
 if (file != null) {
 try {
 file.close();
 } catch (Exception e) {}
 }

 // Close connection to server.
 if (stream != null) {
 try {
 stream.close();
 } catch (Exception e) {}
 }
 }
 }

 // Notify observers that this download's status has changed.
 private void stateChanged() {
 setChanged();
 notifyObservers();
 }
}

The Download Variables

Download begins by declaring several static final variables that specify the various constants

used by the class. Next, four instance variables are declared. The url variable holds the

Internet URL for the file being downloaded; the size variable holds the size of the download

file in bytes; the downloaded variable holds the number of bytes that have been

downloaded thus far; and the status variable indicates the download’s current status.

 Chapter 34 Creating a Download Manager in Java 1059

P
a

rt
 I

V

The Download Constructor

Download’s constructor is passed a reference to the URL to download in the form of a URL

object, which is assigned to the url instance variable. It then sets the remaining instance

variables to their initial states and calls the download() method. Notice that size is set to –1

to indicate there is no size yet.

The download() Method

The download() method creates a new Thread object, passing it a reference to the

invoking Download instance. As mentioned before, it’s necessary for each download to

run independently. In order for the Download class to act alone, it must execute in its own

thread. Java has excellent built-in support for threads and makes using them a snap. To use

threads, the Download class simply implements the Runnable interface by overriding the

run() method. After the download() method has instantiated a new Thread instance,

passing its constructor the Runnable Download class, it calls the thread’s start() method.

Invoking the start() method causes the Runnable instance’s (the Download class’) run()
method to be executed.

The run() Method

When the run() method executes, the actual downloading gets under way. Because of its

size and importance, we will examine it closely, line by line. The run() method begins with

these lines:

RandomAccessFile file = null;
InputStream stream = null;
try {
 // Open connection to URL.
 HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();

First, run() sets up variables for the network stream that the download’s contents will

be read from and sets up the file that the download’s contents will be written to. Next, a

connection to the download’s URL is opened by calling url.openConnection(). Since we

know that the Download Manager supports only HTTP downloads, the connection is cast to

the HttpURLConnection type. Casting the connection as an HttpURLConnection allows us

to take advantage of HTTP-specific connection features such as the getResponseCode()
method. Note that calling url.openConnection() does not actually create a connection to

the URL’s server. It simply creates a new URLConnection instance associated with the URL

that later will be used to connect to the server.

After the HttpURLConnection has been created, the connection request property is set

by calling connection.setRequestProperty(), as shown here:

// Specify what portion of file to download.
connection.setRequestProperty("Range",
 "bytes=" + downloaded + "-");

1060 PART IV Applying Java

Setting request properties allows extra request information to be sent to the server the

download will be coming from. In this case, the "Range" property is set. This is critically

important, as the "Range" property specifies the range of bytes that is being requested for

download from the server. Normally, all of a file’s bytes are downloaded at once. However,

if a download has been interrupted or paused, only the download’s remaining bytes should

be retrieved. Setting the "Range" property is the foundation for the Download Manager’s

operation.

The "Range" property is specified in this form:

start-byte – end-byte

For example, "0 – 12345". However, the end byte of the range is optional. If the end byte

is absent, the range ends at the end of the file. The run() method never specifies the end

byte because downloads must run until the entire range is downloaded, unless paused or

interrupted.

The next few lines are shown here:

// Connect to server.
connection.connect();

// Make sure response code is in the 200 range.
if (connection.getResponseCode() / 100 != 2) {
 error();
}

// Check for valid content length.
int contentLength = connection.getContentLength();
if (contentLength < 1) {
 error();
}

The connection.connect() method is called to make the actual connection to the

download’s server. Next, the response code returned by the server is checked. The HTTP

protocol has a list of response codes that indicate a server’s response to a request. HTTP

response codes are organized into numeric ranges of 100, and the 200 range indicates

success. The server’s response code is validated for being in the 200 range by calling

connection.getResponseCode() and dividing by 100. If the value of this division is 2,

then the connection was successful.

Next, run() gets the content length by calling connection.getContentLength(). The

content length represents the number of bytes in the requested file. If the content length

is less than 1, the error() method is called. The error() method updates the download’s

status to ERROR, and then calls stateChanged(). The stateChanged() method will be

described in detail later.

After getting the content length, the following code checks to see if it has already been

assigned to the size variable:

/* Set the size for this download if it
 hasn't been already set. */
if (size == -1) {
 size = contentLength;
 stateChanged();
}

 Chapter 34 Creating a Download Manager in Java 1061

P
a

rt
 I

V

As you can see, instead of assigning the content length to the size variable unconditionally,

it only gets assigned if it hasn’t already been given a value. The reason for this is because

the content length reflects how many bytes the server will be sending. If anything other

than a 0-based start range is specified, the content length will represent only a portion of

the file’s size. The size variable has to be set to the complete size of the download’s file.

The next few lines of code shown here create a new RandomAccessFile using the

filename portion of the download’s URL that is retrieved with a call to the getFileName()
method:

// Open file and seek to the end of it.
file = new RandomAccessFile(getFileName(url), "rw");
file.seek(downloaded);

The RandomAccessFile is opened in "rw" mode, which specifies that the file can be

written to and read from. Once the file is open, run() seeks to the end of the file by calling

the file.seek() method, passing in the downloaded variable. This tells the file to position

itself at the number of bytes that have been downloaded—in other words, at the end. It’s

necessary to position the file at the end in case a download has been resumed. If a download

is resumed, the newly downloaded bytes are appended to the file and they don’t overwrite

any previously downloaded bytes. After preparing the output file, a network stream handle

to the open server connection is obtained by calling connection.getInputStream(), as

shown here:

stream = connection.getInputStream();

The heart of all the action begins next with a while loop:

while (status == DOWNLOADING) {
 /* Size buffer according to how much of the
 file is left to download. */
 byte buffer[];
 if (size - downloaded > MAX_BUFFER_SIZE) {
 buffer = new byte[MAX_BUFFER_SIZE];
 } else {
 buffer = new byte[size - downloaded];
 }

 // Read from server into buffer.
 int read = stream.read(buffer);
 if (read == -1)
 break;

 // Write buffer to file.
 file.write(buffer, 0, read);
 downloaded += read;
 stateChanged();
}

This loop is set up to run until the download’s status variable changes from

DOWNLOADING. Inside the loop, a byte buffer array is created to hold the bytes that

will be downloaded. The buffer is sized according to how much of the download is left

to complete. If there is more left to download than the MAX_BUFFER_SIZE, the

1062 PART IV Applying Java

MAX_BUFFER_SIZE is used to size the buffer. Otherwise, the buffer is sized exactly at the

number of bytes left to download. Once the buffer is sized appropriately, the downloading

takes place with a stream.read() call. This call reads bytes from the server and places them

into the buffer, returning the count of how many bytes were actually read. If the number of

bytes read equals –1, then downloading has completed and the loop is exited. Otherwise,

downloading is not finished and the bytes that have been read are written to disk with a call

to file.write(). Then the downloaded variable is updated, reflecting the number of bytes

downloaded thus far. Finally, inside the loop, the stateChanged() method is invoked. More

on this later.

After the loop has exited, the following code checks to see why the loop was exited:

/* Change status to complete if this point was
 reached because downloading has finished. */
if (status == DOWNLOADING) {
 status = COMPLETE;
 stateChanged();
}

If the download’s status is still DOWNLOADING, this means that the loop exited

because downloading has been completed. Otherwise, the loop was exited because the

download’s status changed to something other than DOWNLOADING.

The run() method wraps up with the catch and finally blocks shown here:

} catch (Exception e) {
 error();
} finally {
 // Close file.
 if (file != null) {
 try {
 file.close();
 } catch (Exception e) {}
 }
 // Close connection to server.
 if (stream != null) {
 try {
 stream.close();
 } catch (Exception e) {}
 }
}

If an exception is thrown during the download process, the catch block captures the

exception and calls the error() method. The finally block ensures that if the file and

stream connections have been opened, they get closed whether an exception has been

thrown or not. As an exercise, you might try changing this code to use the new try-with-

resources statement to manage these resources.

The stateChanged() Method

In order for the Download Manager to display up-to-date information on each of the

downloads it’s managing, it has to know each time a download’s information changes. To

handle this, the Observer software design pattern is used. The Observer pattern is analogous

 Chapter 34 Creating a Download Manager in Java 1063

P
a

rt
 I

V

to an announcement’s mailing list where several people register to receive announcements.

Each time there’s a new announcement, each person on the list receives a message with the

announcement. In the Observer pattern’s case, there’s an observed class with which observer

classes can register themselves to receive change notifications.

The Download class employs the Observer pattern by extending Java’s built-in Observable

utility class. Extending the Observable class allows classes that implement Java’s Observer

interface to register themselves with the Download class to receive change notifications.

Each time the Download class needs to notify its registered Observers of a change, the

stateChanged() method is invoked. The stateChanged() method first calls the Observable

class’ setChanged() method to flag the class as having been changed. Next, the stateChanged()
method calls Observable’s notifyObservers() method, which broadcasts the change

notification to the registered Observers.

Action and Accessor Methods

The Download class has numerous action and accessor methods for controlling a download

and getting data from it. Each of the pause(), resume(), and cancel() action methods

simply does as its name implies: pauses, resumes, or cancels the download, respectively.

Similarly, the error() method marks the download as having an error. The getUrl(),
getSize(), getProgress(), and getStatus() accessor methods each return their current

respective values.

The ProgressRenderer Class
The ProgressRenderer class is a small utility class that is used to render the current progress

of a download listed in the GUI’s "Downloads" JTable instance. Normally, a JTable instance

renders each cell’s data as text. However, often it’s particularly useful to render a cell’s data

as something other than text. In the Download Manager’s case, we want to render each of

the table’s Progress column cells as progress bars. The ProgressRenderer class shown here

makes that possible. Notice that it extends JProgressBar and implements TableCellRenderer:

import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;

// This class renders a JProgressBar in a table cell.
class ProgressRenderer extends JProgressBar
 implements TableCellRenderer
{
 // Constructor for ProgressRenderer.
 public ProgressRenderer(int min, int max) {
 super(min, max);
 }

 /* Returns this JProgressBar as the renderer
 for the given table cell. */
 public Component getTableCellRendererComponent(
 JTable table, Object value, boolean isSelected,
 boolean hasFocus, int row, int column)
 {
 // Set JProgressBar's percent complete value.

1064 PART IV Applying Java

 setValue((int) ((Float) value).floatValue());
 return this;
 }
}

The ProgressRenderer class takes advantage of the fact that Swing’s JTable class has

a rendering system that can accept “plug-ins” for rendering table cells. To plug into

this rendering system, first, the ProgressRenderer class has to implement Swing’s

TableCellRenderer interface. Second, a ProgressRenderer instance has to be registered

with a JTable instance; doing so instructs the JTable instance as to which cells should be

rendered with the “plug-in.”

Implementing the TableCellRenderer interface requires the class to override the

getTableCellRendererComponent() method. The getTableCellRendererComponent()
method is invoked each time a JTable instance goes to render a cell for which this class has

been registered. This method is passed several variables, but in this case, only the value

variable is used. The value variable holds the data for the cell being rendered and is passed

to JProgressBar’s setValue() method. The getTableCellRendererComponent() method

wraps up by returning a reference to its class. This works because the ProgressRenderer

class is a subclass of JProgressBar, which is a descendent of the AWT Component class.

The DownloadsTableModel Class
The DownloadsTableModel class houses the Download Manager’s list of downloads and is

the backing data source for the GUI’s "Downloads" JTable instance.

The DownloadsTableModel class is shown here. Notice that it extends

AbstractTableModel and implements the Observer interface:

import java.util.*;
import javax.swing.*;
import javax.swing.table.*;

// This class manages the download table's data.
class DownloadsTableModel extends AbstractTableModel
 implements Observer
{

 // These are the names for the table's columns.
 private static final String[] columnNames = {"URL", "Size",
 "Progress", "Status"};

 // These are the classes for each column's values.
 private static final Class[] columnClasses = {String.class,
 String.class, JProgressBar.class, String.class};

 // The table's list of downloads.
 private ArrayList<Download> downloadList = new ArrayList<Download>();

 // Add a new download to the table.
 public void addDownload(Download download) {
 // Register to be notified when the download changes.
 download.addObserver(this);

 Chapter 34 Creating a Download Manager in Java 1065

P
a

rt
 I

V

 downloadList.add(download);

 // Fire table row insertion notification to table.
 fireTableRowsInserted(getRowCount() - 1, getRowCount()- 1);
 }

 // Get a download for the specified row.
 public Download getDownload(int row) {
 return downloadList.get(row);
 }

 // Remove a download from the list.
 public void clearDownload(int row) {
 downloadList.remove(row);

 // Fire table row deletion notification to table.
 fireTableRowsDeleted(row, row);
 }

 // Get table's column count.
 public int getColumnCount() {
 return columnNames.length;
 }

 // Get a column's name.
 public String getColumnName(int col) {
 return columnNames[col];
 }

 // Get a column's class.
 public Class<?> getColumnClass(int col) {
 return columnClasses[col];
 }

 // Get table's row count.
 public int getRowCount() {
 return downloadList.size();
 }

 // Get value for a specific row and column combination.
 public Object getValueAt(int row, int col) {
 Download download = downloadList.get(row);
 switch (col) {
 case 0: // URL
 return download.getUrl();
 case 1: // Size
 int size = download.getSize();
 return (size == -1) ? "" : Integer.toString(size);
 case 2: // Progress
 return new Float(download.getProgress());
 case 3: // Status
 return Download.STATUSES[download.getStatus()];
 }
 return "";
 }

1066 PART IV Applying Java

 /* Update is called when a Download notifies its
 observers of any changes */
 public void update(Observable o, Object arg) {
 int index = downloadList.indexOf(o);

 // Fire table row update notification to table.
 fireTableRowsUpdated(index, index);
 }
}

The DownloadsTableModel class essentially is a utility class utilized by the "Downloads"

JTable instance for managing data in the table. When the JTable instance is initialized, it is

passed a DownloadsTableModel instance. The JTable then proceeds to call several methods

on the DownloadsTableModel instance to populate itself. The getColumnCount() method

is called to retrieve the number of columns in the table. Similarly, getRowCount() is used

to retrieve the number of rows in the table. The getColumnName() method returns a

column’s name given its ID. The getDownload() method takes a row ID and returns the

associated Download object from the list. The rest of the DownloadsTableModel class’

methods, which are more involved, are detailed in the following sections.

The addDownload() Method

The addDownload() method, shown here, adds a new Download object to the list of

managed downloads and consequently a row to the table:

// Add a new download to the table.
public void addDownload(Download download) {
 // Register to be notified when the download changes.
 download.addObserver(this);

 downloadList.add(download);

 // Fire table row insertion notification to table.
 fireTableRowsInserted(getRowCount() - 1, getRowCount() - 1);
}

This method first registers itself with the new Download as an Observer interested in

receiving change notifications. Next, the Download is added to the internal list of

downloads being managed. Finally, a table row insertion event notification is fired to

alert the table that a new row has been added.

The clearDownload() Method

The clearDownload() method, shown next, removes a Download from the list of managed

downloads:

// Remove a download from the list.
public void clearDownload(int row) {
 downloadList.remove(row);

 // Fire table row deletion notification to table.
 fireTableRowsDeleted(row, row);
}

 Chapter 34 Creating a Download Manager in Java 1067

P
a

rt
 I

V

After removing the Download from the internal list, a table row deleted event notification is

fired to alert the table that a row has been deleted.

The getColumnClass() Method

The getColumnClass() method, shown here, returns the class type for the data displayed in

the specified column:

// Get a column's class.
public Class<?> getColumnClass(int col) {
 return columnClasses[col];
}

All columns are displayed as text (that is, String objects) except for the Progress column,

which is displayed as a progress bar (which is an object of type JProgressBar).

The getValueAt() Method

The getValueAt() method, shown next, is called to get the current value that should be

displayed for each of the table’s cells:

// Get value for a specific row and column combination.
public Object getValueAt(int row, int col) {
 Download download = downloadList.get(row);
 switch (col) {
 case 0: // URL
 return download.getUrl();
 case 1: // Size
 int size = download.getSize();
 return (size == -1) ? "" : Integer.toString(size);
 case 2: // Progress
 return new Float(download.getProgress());
 case 3: // Status
 return Download.STATUSES[download.getStatus()];
 }
 return "";
}

This method first looks up the Download corresponding to the row specified. Next, the

column specified is used to determine which one of the Download’s property values to

return.

The update() Method

The update() method is shown here. It fulfills the Observer interface contract allowing the

DownloadsTableModel class to receive notifications from Download objects when they

change.

/* Update is called when a Download notifies its
 observers of any changes. */
public void update(Observable o, Object arg) {
 int index = downloadList.indexOf(o);

1068 PART IV Applying Java

 // Fire table row update notification to table.
 fireTableRowsUpdated(index, index);
}

This method is passed a reference to the Download that has changed, in the form of an

Observable object. Next, an index to that download is looked up in the list of downloads,

and that index is then used to fire a table row update event notification, which alerts the

table that the given row has been updated. The table will then rerender the row with the

given index, reflecting its new values.

The DownloadManager Class
Now that the foundation has been laid by explaining each of the Download Manager’s

helper classes, we can look closely at the DownloadManager class. The DownloadManager

class is responsible for creating and running the Download Manager’s GUI. This class has

a main() method declared, so on execution it will be invoked first. The main() method

instantiates a new DownloadManager class instance and then calls its show() method, which

causes it to be displayed.

The DownloadManager class is shown here. Notice that it extends JFrame and

implements Observer. The following sections examine it in detail.

import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.util.*;
import javax.swing.*;
import javax.swing.event.*;

// The Download Manager.
public class DownloadManager extends JFrame
 implements Observer
{

 // Add download text field.
 private JTextField addTextField;

 // Download table's data model.
 private DownloadsTableModel tableModel;

 // Table listing downloads.
 private JTable table;

 // These are the buttons for managing the selected download.
 private JButton pauseButton, resumeButton;
 private JButton cancelButton, clearButton;

 // Currently selected download.
 private Download selectedDownload;

 // Flag for whether or not table selection is being cleared.
 private boolean clearing;

 Chapter 34 Creating a Download Manager in Java 1069

P
a

rt
 I

V

 // Constructor for Download Manager.
 public DownloadManager()
 {
 // Set application title.
 setTitle("Download Manager");

 // Set window size.
 setSize(640, 480);

 // Handle window closing events.
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 actionExit();
 }
 });

 // Set up file menu.
 JMenuBar menuBar = new JMenuBar();
 JMenu fileMenu = new JMenu("File");
 fileMenu.setMnemonic(KeyEvent.VK_F);
 JMenuItem fileExitMenuItem = new JMenuItem("Exit",
 KeyEvent.VK_X);
 fileExitMenuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 actionExit();
 }
 });
 fileMenu.add(fileExitMenuItem);
 menuBar.add(fileMenu);
 setJMenuBar(menuBar);

 // Set up add panel.
 JPanel addPanel = new JPanel();
 addTextField = new JTextField(30);
 addPanel.add(addTextField);
 JButton addButton = new JButton("Add Download");
 addButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 actionAdd();
 }
 });
 addPanel.add(addButton);

 // Set up Downloads table.
 tableModel = new DownloadsTableModel();
 table = new JTable(tableModel);
 table.getSelectionModel().addListSelectionListener(new
 ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 tableSelectionChanged();
 }
 });
 // Allow only one row at a time to be selected.
 table.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

1070 PART IV Applying Java

 // Set up ProgressBar as renderer for progress column.
 ProgressRenderer renderer = new ProgressRenderer(0, 100);
 renderer.setStringPainted(true); // show progress text
 table.setDefaultRenderer(JProgressBar.class, renderer);

 // Set table's row height large enough to fit JProgressBar.
 table.setRowHeight(
 (int) renderer.getPreferredSize().getHeight());

 // Set up downloads panel.
 JPanel downloadsPanel = new JPanel();
 downloadsPanel.setBorder(
 BorderFactory.createTitledBorder("Downloads"));
 downloadsPanel.setLayout(new BorderLayout());
 downloadsPanel.add(new JScrollPane(table),
 BorderLayout.CENTER);

 // Set up buttons panel.
 JPanel buttonsPanel = new JPanel();
 pauseButton = new JButton("Pause");
 pauseButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 actionPause();
 }
 });
 pauseButton.setEnabled(false);
 buttonsPanel.add(pauseButton);
 resumeButton = new JButton("Resume");
 resumeButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 actionResume();
 }
 });
 resumeButton.setEnabled(false);
 buttonsPanel.add(resumeButton);
 cancelButton = new JButton("Cancel");
 cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 actionCancel();
 }
 });
 cancelButton.setEnabled(false);
 buttonsPanel.add(cancelButton);
 clearButton = new JButton("Clear");
 clearButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 actionClear();
 }
 });
 clearButton.setEnabled(false);
 buttonsPanel.add(clearButton);

 Chapter 34 Creating a Download Manager in Java 1071

P
a

rt
 I

V

 // Add panels to display.
 getContentPane().setLayout(new BorderLayout());
 getContentPane().add(addPanel, BorderLayout.NORTH);
 getContentPane().add(downloadsPanel, BorderLayout.CENTER);
 getContentPane().add(buttonsPanel, BorderLayout.SOUTH);
 }

 // Exit this program.
 private void actionExit() {
 System.exit(0);
 }

 // Add a new download.
 private void actionAdd() {
 URL verifiedUrl = verifyUrl(addTextField.getText());
 if (verifiedUrl != null) {
 tableModel.addDownload(new Download(verifiedUrl));
 addTextField.setText(""); // reset add text field
 } else {
 JOptionPane.showMessageDialog(this,
 "Invalid Download URL", "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }

 // Verify download URL.
 private URL verifyUrl(String url) {
 // Only allow HTTP URLs.
 if (!url.toLowerCase().startsWith("http://"))
 return null;

 // Verify format of URL.
 URL verifiedUrl = null;
 try {
 verifiedUrl = new URL(url);
 } catch (Exception e) {
 return null;
 }

 // Make sure URL specifies a file.
 if (verifiedUrl.getFile().length() < 2)
 return null;

 return verifiedUrl;
 }

 // Called when table row selection changes.
 private void tableSelectionChanged() {
 /* Unregister from receiving notifications
 from the last selected download. */
 if (selectedDownload != null)
 selectedDownload.deleteObserver(DownloadManager.this);

1072 PART IV Applying Java

 /* If not in the middle of clearing a download,
 set the selected download and register to
 receive notifications from it. */
 if (!clearing && table.getSelectedRow() > -1) {
 selectedDownload =
 tableModel.getDownload(table.getSelectedRow());
 selectedDownload.addObserver(DownloadManager.this);
 updateButtons();
 }
 }

 // Pause the selected download.
 private void actionPause() {
 selectedDownload.pause();
 updateButtons();
 }

 // Resume the selected download.
 private void actionResume() {
 selectedDownload.resume();
 updateButtons();
 }

 // Cancel the selected download.
 private void actionCancel() {
 selectedDownload.cancel();
 updateButtons();
 }

 // Clear the selected download.
 private void actionClear() {
 clearing = true;
 tableModel.clearDownload(table.getSelectedRow());
 clearing = false;
 selectedDownload = null;
 updateButtons();
 }

 /* Update each button's state based off of the
 currently selected download's status. */
 private void updateButtons() {
 if (selectedDownload != null) {
 int status = selectedDownload.getStatus();
 switch (status) {
 case Download.DOWNLOADING:
 pauseButton.setEnabled(true);
 resumeButton.setEnabled(false);
 cancelButton.setEnabled(true);
 clearButton.setEnabled(false);
 break;
 case Download.PAUSED:
 pauseButton.setEnabled(false);
 resumeButton.setEnabled(true);
 cancelButton.setEnabled(true);

 Chapter 34 Creating a Download Manager in Java 1073

P
a

rt
 I

V

 clearButton.setEnabled(false);
 break;
 case Download.ERROR:
 pauseButton.setEnabled(false);
 resumeButton.setEnabled(true);
 cancelButton.setEnabled(false);
 clearButton.setEnabled(true);
 break;
 default: // COMPLETE or CANCELLED
 pauseButton.setEnabled(false);
 resumeButton.setEnabled(false);
 cancelButton.setEnabled(false);
 clearButton.setEnabled(true);
 }
 } else {
 // No download is selected in table.
 pauseButton.setEnabled(false);
 resumeButton.setEnabled(false);
 cancelButton.setEnabled(false);
 clearButton.setEnabled(false);
 }
 }

 /* Update is called when a Download notifies its
 observers of any changes. */
 public void update(Observable o, Object arg) {
 // Update buttons if the selected download has changed.
 if (selectedDownload != null && selectedDownload.equals(o))
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 updateButtons();
 }
 });
 }

 // Run the Download Manager.
 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 DownloadManager manager = new DownloadManager();
 manager.setVisible(true);
 }
 });
 }
}

The DownloadManager Variables

DownloadManager starts off by declaring several instance variables, most of which hold

references to the GUI controls. The selectedDownload variable holds a reference to the

Download object represented by the selected row in the table. Finally, the clearing instance

variable is a boolean flag that tracks whether or not a download is currently being cleared

from the Downloads table.

1074 PART IV Applying Java

The DownloadManager Constructor

When the DownloadManager is instantiated, all of the GUI’s controls are initialized inside

its constructor. The constructor contains a lot of code, but most of it is straightforward. The

following discussion gives an overview.

First, the window’s title is set with a call to setTitle(). Next, the setSize() call establishes

the window’s width and height in pixels. After that, a window listener is added by calling

addWindowListener(), passing a WindowAdapter object that overrides the windowClosing()
event handler. This handler calls the actionExit() method when the application’s window is

closed. Next, a menu bar with a "File" menu is added to the application’s window. Then the

"add" panel, which has the text field and button, is set up. An ActionListener is added to

the "Add Download" button so that the actionAdd() method is called each time the button

is clicked.

The downloads table is constructed next. A ListSelectionListener is added to the table so

that each time a row is selected in the table, the tableSelectionChanged() method is invoked.

The table’s selection mode is also updated to ListSelectionModel.SINGLE_SELECTION so

that only one row at a time can be selected in the table. Limiting row selection to only one

row at a time simplifies the logic for determining which buttons should be enabled in the

GUI when a row in the download table is selected. Next, a ProgressRenderer class is

instantiated and registered with the table to handle the "Progress" column. The table’s row

height is updated to the ProgressRenderer’s height by calling table.setRowHeight(). After

the table has been assembled and tweaked, it is wrapped in a JScrollPane to make it scrollable

and then added to a panel.

Finally, the buttons panel is created. The buttons panel has Pause, Resume, Cancel, and

Clear buttons. Each of the buttons adds an ActionListener that invokes its respective action

method when it is clicked. After creating the buttons panel, all of the panels that have been

created are added to the window.

The verifyUrl() Method

The verifyUrl() method is called by the actionAdd() method each time a download is

added to the Download Manager. The verifyUrl() method is shown here:

// Verify download URL.
private URL verifyUrl(String url) {
 // Only allow HTTP URLs.
 if (!url.toLowerCase().startsWith("http://"))
 return null;

 // Verify format of URL.
 URL verifiedUrl = null;
 try {
 verifiedUrl = new URL(url);
 } catch (Exception e) {
 return null;
 }

 // Make sure URL specifies a file.
 if (verifiedUrl.getFile().length() < 2)
 return null;

 Chapter 34 Creating a Download Manager in Java 1075

P
a

rt
 I

V

 return verifiedUrl;
}

This method first verifies that the URL entered is an HTTP URL since only HTTP is

supported. Next, the URL being verified is used to construct a new URL class instance.

If the URL is malformed, the URL class constructor will throw an exception. Finally, this

method verifies that a file is actually specified in the URL.

The tableSelectionChanged() Method

The tableSelectionChanged() method, shown here, is called each time a row is selected in

the downloads table:

// Called when table row selection changes.
private void tableSelectionChanged() {
 /* Unregister from receiving notifications
 from the last selected download. */
 if (selectedDownload != null)
 selectedDownload.deleteObserver(DownloadManager.this);

 /* If not in the middle of clearing a download,
 set the selected download and register to
 receive notifications from it. */
 if (!clearing && table.getSelectedRow() > -1) {
 selectedDownload =
 tableModel.getDownload(table.getSelectedRow());
 selectedDownload.addObserver(DownloadManager.this);
 updateButtons();
 }
}

This method starts by seeing if there is already a row currently selected by checking

if the selectedDownload variable is null. If the selectedDownload variable is not null,
DownloadManager removes itself as an observer of the download so that it no longer

receives change notifications. Next the clearing flag is checked. If the table is not empty

and the clearing flag is false, then first the selectedDownload variable is updated with the

Download corresponding to the row selected. Second, the DownloadManager is registered

as an Observer with the newly selected Download. Finally, updateButtons() is called to

update the button states based on the selected Download’s state.

The updateButtons() Method

The updateButtons() method updates the state of all the buttons on the button panel

based on the state of the selected download. The updateButtons() method is shown here:

/* Update each button's state based on the
 currently selected download's status. */
private void updateButtons() {
 if (selectedDownload != null) {
 int status = selectedDownload.getStatus();
 switch (status) {
 case Download.DOWNLOADING:
 pauseButton.setEnabled(true);

1076 PART IV Applying Java

 resumeButton.setEnabled(false);
 cancelButton.setEnabled(true);
 clearButton.setEnabled(false);
 break;
 case Download.PAUSED:
 pauseButton.setEnabled(false);
 resumeButton.setEnabled(true);
 cancelButton.setEnabled(true);
 clearButton.setEnabled(false);
 break;
 case Download.ERROR:
 pauseButton.setEnabled(false);
 resumeButton.setEnabled(true);
 cancelButton.setEnabled(false);
 clearButton.setEnabled(true);
 break;
 default: // COMPLETE or CANCELLED
 pauseButton.setEnabled(false);
 resumeButton.setEnabled(false);
 cancelButton.setEnabled(false);
 clearButton.setEnabled(true);
 }
 } else {
 // No download is selected in table.
 pauseButton.setEnabled(false);
 resumeButton.setEnabled(false);
 cancelButton.setEnabled(false);
 clearButton.setEnabled(false);
 }
}

If no download is selected in the downloads table, all of the buttons are disabled, giving

them a grayed-out appearance. However, if there is a selected download, each button’s state

will be set based on whether the Download object has a status of DOWNLOADING, PAUSED,

ERROR, COMPLETE, or CANCELLED.

Handling Action Events

Each of DownloadManager’s GUI controls registers an ActionListener that invokes its

respective action method. ActionListeners are triggered each time an action event takes

place on a GUI control. For example, when a button is clicked, an ActionEvent is generated

and each of the button’s registered ActionListeners is notified. You may have noticed a

similarity between the way ActionListeners work and the Observer pattern discussed earlier.

That is because they are the same pattern with two different naming schemes.

Compiling and Running the Download Manager
Compile DownloadManager like this:

javac DownloadManager.java DownloadsTableModel.java ProgressRenderer.java
Download.java

Run DownloadManager like this:

javaw DownloadManager

 Chapter 34 Creating a Download Manager in Java 1077

P
a

rt
 I

V

The Download Manager is easy to use. First, enter the URL of a file that you want to

download in the text field at the top of the screen. For example, to download a file called

0072229713_code.zip from the McGraw-Hill web site enter

http://www.mhprofessional.com/downloads/products/0072229713/0072229713_code.zip

This is the file that contains the code for my book The Art of Java, which I co-authored with

James Holmes.

After adding a download to the Download Manager, you can manage it by selecting it in

the table. Once selected, you can pause, cancel, resume, and clear a download. Figure 34-2

shows the Download Manager in action.

Enhancing the Download Manager
The Download Manager as it stands is fully functional, with the ability to pause and resume

downloads as well as download multiple files at once; however, there are several

enhancements that you may want to try on your own. Here are some ideas: proxy server

support, FTP and HTTPS support, and drag-and-drop support. A particularly appealing

enhancement is a scheduling feature that lets you schedule a download at a specific time,

perhaps in the middle of the night when system resources are plentiful.

Note that the techniques illustrated in this chapter are not limited to downloading files

in the typical sense. There are many other practical uses for the code. For example, many

software programs distributed over the Internet come in two pieces. The first piece is a

small, compact application that can be downloaded quickly. This small application contains

a mini download manager for downloading the second piece, which is generally much

larger. This concept is quite useful, especially as the size of applications increases, which

typically leads to an increase in the potential for download interruptions. You might want

to try adapting the Download Manager for this purpose.

Figure 34-2 The Download Manager in action

http://www.mhprofessional.com/downloads/products/0072229713/0072229713_code.zip

This page intentionally left blank

APPENDIX

 1079

Using Java’s
Documentation Comments

As explained in Part I, Java supports three types of comments. The first two are the // and

the /* */. The third type is called a documentation comment. It begins with the character

sequence /**. It ends with */. Documentation comments allow you to embed information

about your program into the program itself. You can then use the javadoc utility program

(supplied with the JDK) to extract the information and put it into an HTML file.

Documentation comments make it convenient to document your programs. You have

almost certainly seen documentation generated with javadoc, because that is the way

the Java API library was documented.

The javadoc Tags
The javadoc utility recognizes the following tags:

Tag Meaning

@author Identifies the author.

{@code} Displays information as-is, without processing HTML styles, in

code font.

@deprecated Specifies that a program element is deprecated.

{@docRoot} Specifies the path to the root directory of the current documentation.

@exception Identifies an exception thrown by a method or constructor.

{@inheritDoc} Inherits a comment from the immediate superclass.

{@link} Inserts an in-line link to another topic.

{@linkplain} Inserts an in-line link to another topic, but the link is displayed in a plain-

text font.

{@literal} Displays information as is, without processing HTML styles.

@param Documents a parameter.

@return Documents a method’s return value.

@see Specifies a link to another topic.

1080 PART IV Applying Java

Tag Meaning

@serial Documents a default serializable field.

@serialData Documents the data written by the writeObject() or writeExternal() methods.

@serialField Documents an ObjectStreamField component.

@since States the release when a specific change was introduced.

@throws Same as @exception.

{@value} Displays the value of a constant, which must be a static field.

@version Specifies the version of a class.

Document tags that begin with an “at” sign (@) are called stand-alone tags (also called

block tags), and they must be used on their own line. Tags that begin with a brace, such as

{@code}, are called in-line tags, and they can be used within a larger description. You may

also use other, standard HTML tags in a documentation comment. However, some tags,

such as headings, should not be used because they disrupt the look of the HTML file

produced by javadoc.

As it relates to documenting source code, you can use documentation comments to

document classes, interfaces, fields, constructors, and methods. In all cases, the documentation

comment must immediately precede the item being documented. Some tags, such as @see,

@since, and @deprecated, can be used to document any element. Other tags apply only to the

relevant elements. Each tag is examined next.

NOTE Documentation comments can also be used for documenting a package and preparing an
overview, but the procedures differ from those used to document source code. See the javadoc
documentation for details on these uses.

@author

The @author tag documents the author of a class or interface. It has the following syntax:

@author description

Here, description will usually be the name of the author. You will need to specify the -author

option when executing javadoc in order for the @author field to be included in the HTML

documentation.

{@code}

The {@code} tag enables you to embed text, such as a snippet of code, into a comment.

That text is then displayed as is in code font, without any further processing, such as HTML

rendering. It has the following syntax:

{@code code-snippet}

@deprecated

The @deprecated tag specifies that a program element is deprecated. It is recommended

that you include @see or {@link} tags to inform the programmer about available

alternatives. The syntax is the following:

@deprecated description

 Appendix Using Java’s Documentation Comments 1081

P
a

rt
 I

V

Here, description is the message that describes the deprecation. The @deprecated tag can be

used in documentation for fields, methods, constructors, classes, and interfaces.

{@docRoot}

{@docRoot} specifies the path to the root directory of the current documentation.

@exception

The @exception tag describes an exception to a method. It has the following syntax:

@exception exception-name explanation

Here, the fully qualified name of the exception is specified by exception-name, and explanation

is a string that describes how the exception can occur. The @exception tag can only be

used in documentation for a method or constructor.

{@inheritDoc}

This tag inherits a comment from the immediate superclass.

{@link}

The {@link} tag provides an in-line link to additional information. It has the following

syntax:

{@link pkg.class#member text}

Here, pkg.class#member specifies the name of a class or method to which a link is added, and

text is the string that is displayed.

{@linkplain}

Inserts an in-line link to another topic. The link is displayed in plain-text font. Otherwise, it

is similar to {@link}.

{@literal}

The {@literal} tag enables you to embed text into a comment. That text is then displayed as

is, without any further processing, such as HTML rendering. It has the following syntax:

{@literal description}

Here, description is the text that is embedded.

@param

The @param tag documents a parameter. It has the following syntax:

@param parameter-name explanation

Here, parameter-name specifies the name of a parameter. The meaning of that parameter is

described by explanation. The @param tag can be used only in documentation for a method

or constructor, or a generic class or interface.

1082 PART IV Applying Java

@return

The @return tag describes the return value of a method. It has the following syntax:

@return explanation

Here, explanation describes the type and meaning of the value returned by a method. The

@return tag can be used only in documentation for a method.

@see

The @see tag provides a reference to additional information. Its most commonly used

forms are shown here:

@see anchor
@see pkg.class#member text

In the first form, anchor is a link to an absolute or relative URL. In the second form,

pkg.class#member specifies the name of the item, and text is the text displayed for that item.

The text parameter is optional, and if not used, then the item specified by pkg.class#member
is displayed. The member name, too, is optional. Thus, you can specify a reference to a

package, class, or interface in addition to a reference to a specific method or field. The

name can be fully qualified or partially qualified. However, the dot that precedes the

member name (if it exists) must be replaced by a hash character.

@serial

The @serial tag defines the comment for a default serializable field. It has the following syntax:

@serial description

Here, description is the comment for that field.

@serialData

The @serialData tag documents the data written by the writeObject() and writeExternal()
methods. It has the following syntax:

@serialData description

Here, description is the comment for that data.

@serialField

For a class that implements Serializable, the @serialField tag provides comments for an

ObjectStreamField component. It has the following syntax:

@serialField name type description

Here, name is the name of the field, type is its type, and description is the comment for that field.

@since

The @since tag states that an element was introduced in a specific release. It has the

following syntax:

@since release

 Appendix Using Java’s Documentation Comments 1083

P
a

rt
 I

V

Here, release is a string that designates the release or version in which this feature became

available.

@throws

The @throws tag has the same meaning as the @exception tag.

{@value}

{@value} has two forms. The first displays the value of the constant that it precedes, which

must be a static field. It has this form:

{@value}

The second form displays the value of a specified static field. It has this form:

{@value pkg.class#field}

Here, pkg.class#field specifies the name of the static field.

@version

The @version tag specifies the version of a class or interface. It has the following syntax:

@version info

Here, info is a string that contains version information, typically a version number, such as

2.2. You will need to specify the -version option when executing javadoc in order for the

@version field to be included in the HTML documentation.

The General Form of a Documentation Comment
After the beginning /**, the first line or lines become the main description of your class,

interface, field, constructor, or method. After that, you can include one or more of the

various @ tags. Each @ tag must start at the beginning of a new line or follow one or more

asterisks (*) that are at the start of a line. Multiple tags of the same type should be grouped

together. For example, if you have three @see tags, put them one after the other. In-line

tags (those that begin with a brace) can be used within any description.

Here is an example of a documentation comment for a class:

/**
 * This class draws a bar chart.
 * @author Herbert Schildt
 * @version 3.2
*/

What javadoc Outputs
The javadoc program takes as input your Java program’s source file and outputs several

HTML files that contain the program’s documentation. Information about each class will

be in its own HTML file. javadoc will also output an index and a hierarchy tree. Other

HTML files can be generated.

1084 PART IV Applying Java

An Example that Uses Documentation Comments
Following is a sample program that uses documentation comments. Notice the way each

comment immediately precedes the item that it describes. After being processed by

javadoc, the documentation about the SquareNum class will be found in SquareNum.html.

import java.io.*;
/**
 * This class demonstrates documentation comments.
 * @author Herbert Schildt
 * @version 1.2
*/
public class SquareNum {
 /**
 * This method returns the square of num.
 * This is a multiline description. You can use
 * as many lines as you like.
 * @param num The value to be squared.
 * @return num squared.
 */
 public double square(double num) {
 return num * num;
 }

 /**
 * This method inputs a number from the user.
 * @return The value input as a double.
 * @exception IOException On input error.
 * @see IOException
 */
 public double getNumber() throws IOException {
 // create a BufferedReader using System.in
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader inData = new BufferedReader(isr);
 String str;

 str = inData.readLine();
 return (new Double(str)).doubleValue();
 }
 /**
 * This method demonstrates square().
 * @param args Unused.
 * @exception IOException On input error.
 * @see IOException
 */

 public static void main(String args[])
 throws IOException
 {
 SquareNum ob = new SquareNum();
 double val;

 Appendix Using Java’s Documentation Comments 1085

P
a

rt
 I

V

 System.out.println("Enter value to be squared: ");
 val = ob.getNumber();
 val = ob.square(val);

 System.out.println("Squared value is " + val);
 }
}

This page intentionally left blank

Introduction

 1087

&

bitwise AND, 66, 67, 68–69

Boolean logical AND, 75–76

and bounded type declarations, 336

&& (short-circuit AND), 75, 76–77

*

multiplication operator, 28, 61–62

regular expression quantifier, 913

used in import statement, 194, 321

@

annotation syntax, 276

used with tags (javadoc), 1080, 1083

|

bitwise OR, 66, 67, 68–69

Boolean logical OR, 75–76

|| (short-circuit OR), 75, 76–77

[], 33, 51, 52, 54, 56, 58

character class specification, 913, 917

^

bitwise exclusive OR, 66, 67, 68–69

Boolean logical exclusive OR, 75–76

: (used with a label), 105

, (comma), 33, 95

format flag, 557, 559

{ }, 24, 25, 26, 30, 33, 45, 53, 56, 81, 82, 89, 211

used with javadoc tags, 1080

=, 27, 74, 77

= = (Boolean logical operator), 75

= = (relational operator), 28, 74, 260, 266

versus equals(), 380–381

!, 75–76

!=, 74, 75

/, 61–62

/* */, 24

/** */, 32, 1079

//, 25

<, 28, 74

< >

diamond operator (type inference), 359–360

and generic type parameter, 328, 334, 346

<?>, 277, 279

<<, 66, 69–70

<=, 74

–, 61, 62

format flag, 557, 558

– –, 30, 61, 64–65

%

used in format conversion specifier syntax, 550

modulus operator, 61, 63

(format flag, 557, 559

(), 25, 33, 79, 114, 123

used to raise the precedence of operations, 33, 79,

376

.

dot operator, 111, 117–118, 146, 170

in multileveled package statement, 188

in import statement, 194

regular expression wildcard character, 913, 916

separator, 33

... (variable-length argument syntax), 156, 159

+

addition operator, 61–62

concatenation operator, 27, 152–153, 374–376

regular expression quantifier, 913, 915–916

unary plus, 61, 62

++, 30, 61, 64–66

format flag, 557, 559

?

regular expression quantifier, 913, 916

wildcard argument specifier, 338, 341, 344, 367

?: (ternary if-then-else operator), 75, 77–78

>, 28, 74

>>, 66, 70–72

>>>, 66, 72–73

>=, 74

; (semicolon), 26, 33, 90

used in try-with-resources statement, 305, 589

~ (bitwise unary NOT operator), 66, 67, 68–69

_ (underscore), 42, 43

1088 Index

A
abs(), 131–132, 434

abstract type modifier, 182, 185, 199

Abstract Window Toolkit. See AWT (Abstract Window

Toolkit)

AbstractButton class, 969, 971, 972

AbstractCollection class, 465, 467, 474

AbstractList class, 465, 466, 509

AbstractMap class, 487, 488, 489, 491

AbstractQueue class, 465, 473

AbstractSequentialList class, 465, 469

AbstractSet class, 465, 470, 472, 475

accept(), 586, 587, 656, 682

Access control, 141–144

example program, 191–194

and inheritance, 142, 144, 163–164

and packages, 187, 190–194

Access modifiers, 25, 142, 190–191

acos(), 433

acquire(), 864–867

ActionEvent class, 710, 711, 776, 777, 787, 812, 956,

967, 969, 975

ActionListener interface, 720, 721, 776, 787, 812, 956,

969, 975

actionPerformed(), 721, 776, 777, 779, 956, 957, 969,

975, 976

adapt(), 907

Adapter classes, 729–731

add(), 457, 458, 459, 460, 470, 471, 477, 739, 774, 779,

784, 786, 799, 803, 811, 952–953, 975, 987, 988

addActionListener(), 956

addAll(), 457, 458, 459, 460, 495

addCookie(), 1006, 1007, 1013

addElement(), 510, 511

addFirst(), 464, 465, 469

addImage(), 836, 837

addItem(), 985

addKeyListener(), 709

addLast(), 464, 465, 469, 470

addMouseListener(), 726

addMouseMotionListener(), 709, 726

Address, Internet, 668

addSuppressed(), 222

addTab(), 977

addTListener() 936

addTypeListener(), 708, 709

AdjustmentEvent class, 710, 711–712, 790

AdjustmentListener interface, 720, 721, 790

adjustmentValueChanged(), 721

Algorithms, collection, 454–455, 495–500, 508

ALIGN, 700

allocate(), 631, 641, 660, 663

ALT, 700

anchor constraint field, 806, 807–808

AND operator

bitwise (&), 66, 67, 68–69

Boolean logical (&), 75–76

and bounded type declarations, 336

short-circuit (&&), 75, 76–77

Android programming, 16

Animation, cell, 857–860

AnnotatedElement interface, 282, 284, 451

Annotation interface, 276, 282, 450

Annotation(s), 13, 14, 275–288

built-in, 286–288

declaration example, 276

marker, 284–285

member, default value for, 282–284

obtaining all, 281–282

reflection to obtain, using, 277–282

restrictions on, 288

retention policy for, specifying, 276–277

single-member, 285–286

annotationType(), 276

Annuity for a given investment, maximum

applet for finding, 1040–1044

formula to compute, 1040

Annuity, initial investment needed for desired

applet for finding, 1036–1040

formula to compute, 1036

Apache Software Foundation, 994

API packages, table of core Java, 909–911

APPEND, 421

append(), 391–392, 449, 611, 795

Appendable interface, 449, 551, 605, 610, 619

appendCodePoint(), 394

appendTo(), 421

Applet, 8, 16, 307–309, 1019

architecture, 690–691, 696

basics, 687–690

colors, setting and obtaining, 694–695

examples for financial calculations,

1020–1047

executing, 308–309, 687–688, 699–701

and the Internet, 8–9

and main(), 26, 110, 308, 309, 688

outputting to console, 706

passing parameters to, 701–703

request for repaint, 695–698

skeleton, 691–693

and socket connections, 671

as source and listener for events, 726

string output to, 308, 688, 694, 696

Swing, 687, 688, 949, 957–959

viewer, 308–309, 687, 699, 739

Applet class, 307, 687–706, 719, 726, 739, 830, 832,

957, 959

methods, table of, 689–690

applet package, 289, 307, 687

 Index 1089

APPLET tag, HTML, 308, 309, 688

full syntax for, 699–701

AppletContext interface, 687, 700, 704–706

methods, table of, 705

AppletStub interface, 687, 706

appletviewer, 308, 687

status window, using, 699

Application launcher (java), 24, 188, 189

and main(), 25

ARCHIVE, 701

AreaAveragingScaleFilter class, 844

areFieldsSet, 531

Argument(s), 116, 120

command-line, 25, 154–155

index, 560–563

passing, 136–138

type. See Type argument(s)

variable-length. See Varargs

wildcard. See Wildcard arguments

Arithmetic operators, 61–66

ArithmeticException, 209, 210, 220

Array class, 451

Array(s), 25, 51–58, 147, 185

boundary checks, 53

converting collections into, 459, 468–469

copying with arraycopy(), 423, 425–426

declaration syntax, alternative, 58

dynamic, 451, 466–469, 474, 509

and the for-each loop, 97–101

and generics, 366–367

implemented as objects, 147

indexes, 52

initializing, 53, 56–57

length instance variable of, 147–149

multidimensional, 54–57

one-dimensional, 51–53

of strings, 154

and valueOf(), 386–387

and varargs, 156

ArrayBlockingQueue class, 889

arraycopy(), 423, 425–426

ArrayDeque class, 465, 474–475, 515

ArrayIndexOutOfBoundsException, 213, 220, 502,

503, 504

ArrayList class, 465, 466–469, 482, 509, 511

pre-generics versus generics version of the,

505–507

Arrays class, 501–505

ArrayStoreException, 220, 501, 502, 503

arrive(), 876

arriveAndAwaitAdvance(), 876, 879, 882

arriveAndDeregister(), 876, 879

ASCII character set, 39, 40, 43

and strings on the Internet, 373, 378

asin(), 433

asList(), 501

Assembly language, 4, 5

assert statement, 13, 316–319

Assertion, 316–319

AssertionError, 316

Assignment operator(s)

=, 27, 74, 77

arithmetic compound (op=), 61, 63–64

bitwise compound, 66, 73–74

Boolean logical, 75

atan(), 433

atan2(), 433

Atomic operations, 892–893

AtomicInteger class, 863, 892–893

AtomicLong class, 863, 892

AttributeView interface, 639

AudioClip interface, 687, 706

Autoboxing/unboxing, 14, 268, 270–275, 329, 330

Boolean and Character values, 274

and the Collections Framework, 456, 469

definition of, 270

and error prevention, 274–275

and expressions, 272–273

and methods, 271–272

when to use, 275

Autocloseable interface, 298, 304, 449–450, 562, 569,

588, 589, 591, 594, 605, 607, 608, 609, 610, 619, 623,

625, 631, 641, 654, 672, 683

Automatic resource management (ARM), 208, 303–306,

449, 562, 674

available(), 591, 592–594, 625, 626

availableProcessors(), 903

await(), 869–871, 872, 890

awaitAdvance(), 882

awaitInterruptibly(), 882

AWT (Abstract Window Toolkit), 289, 307, 309, 687,

688, 773

and applet architectural constraints, 696

classes, table of some, 736–737

color system, 755

controls. See Controls, AWT

creating stand-alone windows with, 747–748

layout managers. See Layout manager(s)

support for imaging, 829

support for text and graphics, 749

and Swing, 735, 945, 946

AWTEvent class, 710, 736

bit mask constants, 822–823

B
B, 4

BASIC, 4

BasicFileAttributes class, 638–639, 652

methods, table of, 638

1090 Index

BasicFileAttributeView interface, 639

Basic multilingual plane (BMP), 414

BCP 47, 539

BCPL, 4

BeanInfo interface, 934, 936–937

Beans, Java. See Java Beans

Bell curve, 540

Bell Laboratories, 6

Berkeley UNIX, 667

Berners-Lee, Tim, 675

Beyond Photography, The Digital Darkroom

(Holzmann), 840

Binary

literals, 42

numbers and integers, 66–67

binarySearch(), 495, 496, 501

BitSet class, 527–530

methods, table of, 527–528

Bitwise operators, 66–74

BLOCKED, 256

Blocks of code. See Code blocks

Boolean, 35

literals, 43

logical operators, 75–77

Boolean class, 269, 274, 414–416

methods, table of, 416

boolean data type, 35, 40–41, 43, 48

and relational operators, 74–75

booleanValue(), 269, 416

Border interface, 964

BorderFactory class, 964

BorderLayout class, 736, 798–800, 956

Boxing, 270

break statement, 84–87, 102–106

and the for-each loop, 98–99

as form of goto, 104–106

Buffer class, 630–631

methods, table of, 630–631

Buffer, NIO, 630–631

BufferedInputStream class, 291, 599–601, 651

BufferedOutputStream class, 291, 599, 601–602, 651

BufferedReader class, 292, 293, 294–295, 616–618

BufferedWriter class, 292, 619

Buffering, double, 833–836

bulkRegister(), 882

Button class, 736, 776

extending, 823–824

ButtonGroup class, 965, 975

ButtonModel interface, 948, 969

Buttons, 720

push. See Push buttons

radio. See Radio buttons

Swing, 956–957, 969–977

ButtonUI, 948

Byte class, 269, 403, 410

methods defined by, table of, 404

byte data type, 35, 36–37, 41

ByteArrayInputStream class, 291, 596–597

ByteArrayOutputStream class, 291, 598–599

ByteBuffer class, 631, 640, 641, 644, 660

get() and put() methods, table of, 632

Bytecode, 9–10, 12, 13, 16, 23–24, 312–313, 323, 436

byteValue(), 269, 398, 399, 400, 404, 405, 406, 408

C
C

history of, 4–5

and Java, 3, 5, 7, 11

C Programming Language, The (Kernighan

and Ritchie), 4

C++

history of, 5–6

and Java, 3, 7, 11

C# and Java, 8

Calendar class, 530, 531–534, 535, 539

constants, 533

methods defined by, table of commonly used,

532–533

Call-by-reference, 136, 137–138

Call-by-value, 136–137, 138

call(), 885, 907

Callable interface, 863, 885, 886–887, 907

CallSite class, 451

cancel(), 545, 546, 906

Canvas class, 736, 739, 830

capacity(), 389–390, 510, 630

capacityIncrement Vector data member, 509

Card layouts, 802–805

CardLayout class, 736, 802–803

CaretEvent class, 967

Case sensitivity and Java, 23, 25, 32

case statement, 84–87, 88–89

Casts, 48–49, 50, 326, 328, 329, 330, 331, 332

and casting one instance of a generic class into

another, 357–358

and erasure, 328–329, 361–362

using instanceof with, 310–312

catch block(s), 207, 208, 210–213, 218

displaying exception description within, 212

and the more precise (final) rethrow feature,

225, 226

multi-catch feature of, 225–226

using multiple, 212–213

and nested try statements, 211, 214

cbrt(), 434

ceil(), 434

CGI (Common Gateway Interface), 10, 993–994

 Index 1091

Channel interface, 631–632

Channel(s), NIO, 630, 631–633

char data type, 35, 39–40, 48, 61

Character class, 269, 274, 411–414

methods, table of various, 413, 415

support for 32–bit Unicode, 414

Character(s), 35, 39–40

basic multilingual plane (BMP), 414

changing case of, 387

classes (regular expressions), 913, 917

code point, 414

escape sequences, 43, 44

extraction from String objects, 377–378

formatting an individual, 551

literals, 43

supplemental, 414

Character.Subset class, 397, 414

Character.UnicodeBlock class, 397, 414

CharArrayReader class, 292, 614–615

CharArrayWriter class, 292, 615–616

charAt(), 153, 377, 390–391, 448

CharBuffer class, 631

CharSequence interface, 371, 392, 395, 448, 912

Charsets, 633

charValue(), 269, 411

Check boxes, 691, 720, 779–783

Swing, 973–975

checkAll(), 836

Checkbox class, 736, 779–780

extending, 824–825

CheckboxGroup class, 736, 782–783

extending, 825–826

CheckboxMenuItem class, 736, 810, 811, 812

checked... methods, 496, 499

checkedCollection(), 496, 499

checkedList(), 496, 499

checkedMap(), 496, 499

checkedSet(), 496, 499

checkID(), 836

Choice class, 736, 783–784

extending, 826

Choice controls, 720, 783–786

Class class, 277–278, 281, 282, 429–433, 639, 919

methods, table of some, 430–431

.class filename extension, 24, 112

class keyword, 24, 109

CLASS retention policy, 276–277

Class(es), 109–128

abstract, 181–184, 185, 199

access levels of, 190–191

adapter, 729–731

character, regular expression, 913, 917

and code, 23, 109, 190

in collections, storing user-defined, 480–481

constructor. See Constructor

controlling access to. See Access control

as a data type, 109, 111, 113, 114, 126

definition of, 19

encapsulation achieved through, 126–127

final, 185

general form of, 109–110

generic. See Generic class

inner. See Inner classes

and interfaces, 196, 197–200

libraries, 23, 34

literal, 279

member. See Member, class

name and source file name, 23, 24

nested, 149, 151

packages as containers for, 187, 190

public, 191

scope defined by a, 45–46

type for bounded types, using a, 335–336

ClassCastException, 220, 457, 459, 461, 463, 483, 484,

485, 492, 499, 501, 503, 504

ClassDefinition class, 450

ClassFileTransformer interface, 450

ClassLoader class, 433

classModifiers(), 922

ClassNotFoundException, 221, 625

CLASSPATH, 188, 189, 926

–classpath option, 188, 189

ClassValue class, 448

clear(), 457, 458, 483, 517, 527, 532, 630

Client/server model, 8, 10, 667

and sockets, 671–675

clone(), 185, 427–429, 447, 510, 517, 527, 530, 532,

536, 1008

Cloneable interface, 427–429

CloneNotSupportedException, 221, 427, 447

Cloning, potential dangers of, 427–429

close(), 298, 303–306, 450, 549, 562, 564, 569, 573,

588, 589, 591, 592, 596, 598, 608, 609, 611, 614, 623,

624, 625, 626, 672, 674, 683

within a finally block, calling, 300

Closeable interface, 298, 304, 569, 588, 591, 594, 605,

607, 608, 610, 619, 631

COBOL, 4

CODE, 700, 701

Code base, 704

Code blocks, 28, 30–31, 45, 82–83

and the break statement, 104–106

and scopes, 45, 46

static, 145, 313

Code point, definition of, 414

Code, unreachable, 213

CODEBASE, 700

codePointAt(), 388, 394, 414, 415

1092 Index

codePointBefore(), 388, 394, 415

codePointCount(), 388, 394

Collection interface, 456, 457–459

methods defined by, table of, 458

Collection-view, 455, 482, 483–484

Collection(s), 325, 453–524

algorithms, 454–455, 495–500, 508

into arrays, converting, 459, 468–469

and autoboxing, 456, 469

classes, 465–476

concurrent, 862, 889

dynamically typesafe view of a, 499

and the for-each version of the for loop, 97, 101,

456, 479–480

Framework. See Collections Framework

generic nature of, 455

interfaces, 454, 456–465

and iterators, 455, 456, 476–480

and legacy classes and interfaces, 508–524

modifiable versus unmodifiable, 457

pre-generics, problems with, 505–506

and primitive types, 456, 469

storing user-defined classes in, 480–481

and synchronization, 465, 499, 508

and type safety, 455, 499, 505

when to use, 524

Collections class, 454, 495, 499, 508

algorithms defined by, table of, 495–499

Collections Framework, 13, 97, 101, 270, 453–524

advantages of generics as applied to the, 455,

505–508

JDK 5 changes to, 325, 455–456

overview, 454–455

Color class, 736, 755–757

constants 694

Combo boxes, Swing, 984–986

ComboBoxModel interface, 985

Comment, 24–25

documentation, 32, 1079–1085

Common Gateway interface (CGI), 10, 993–994

Comparable interface, 348, 381, 448, 530, 585

Comparable<Path> interface, 634

Comparator interface, 457, 489, 492

comparator(), 461, 474, 484

Comparators, 472, 474, 489, 490, 492–495

compare(), 399, 400, 404, 405, 406, 408, 416, 492–493

compareAndSet(), 863, 892

compareTo(), 265, 266, 381–382, 399, 400, 404, 405,

406, 408, 412, 416, 447, 448, 493, 530, 585

compareToIgnoreCase(), 382

Compilation unit, 23

compile(), 911

Compiler class, 436

Compiler, Java, 23–24

and main(), 25

Component class, 688, 691, 694, 696, 709, 719, 726,

736, 738, 739, 742, 749, 774, 796, 828, 830, 948,

949, 960

ComponentAdapter class, 730

componentAdded(), 721

ComponentEvent class, 710, 712, 713, 719

componentHidden(), 721

ComponentListener interface, 720, 721, 730

componentMoved(), 721

componentRemoved(), 721

componentResized(), 721

Components, AWT, 945–946, 948

and overriding paint(), 828

Components, Swing, 948–949

architecture, 947–948

class names for, table of, 948–949

heavyweight, 949

lightweight, 946, 965

painting, 959–964

componentShown(), 721

ComponentUI, 948

compute(), 895, 896, 900, 903, 905, 908

concat(), 385

Concurrency utilities, 14, 861–908

versus traditional multithreading and

synchronization, 908

Concurrent API, 861–862

packages, 862–863

Concurrent collection classes, 862, 889

Concurrent program, definition of, 861

ConcurrentHashMap class, 863, 889

ConcurrentLinkedDeque, 889

ConcurrentLinkedQueue class, 863, 889

ConcurrentSkipListMap class, 889

ConcurrentSkipListSet class, 889

Condition class, 890

connect(), 672

Console class, 620–622

methods, table of, 621

console(), 423, 620

const keyword, 33

Constants, 32

Constructor class, 278, 281, 282, 451, 920

Constructor(s), 114, 121–124

in class hierarchy, order of calling, 174–175

default, 114, 123

enumeration, 263–265

factory methods versus overloaded, 669

generic, 346–347

object parameters for, 135–136

overloading, 132–134

parameterized, 123–124

and super(), 167–170, 174, 323

this() and overloaded, 321–323

constructorModifiers(), 922

 Index 1093

Container class, 688, 736, 739, 774, 796, 799, 800, 948,

949, 961

ContainerAdapter class, 730

ContainerEvent class, 710, 712–713

ContainerListener interface, 720, 721, 730

Container(s), Swing, 948, 949

lightweight versus heavyweight, 949

panes, 949

Containment hierarchy, 948, 949

contains(), 388, 457, 458, 471, 510, 517

containsAll(), 457, 458

Content pane, 949, 952–953, 957, 963, 977, 980, 987, 991

default layout manager of JFrame, 953, 956

contentEquals(), 388

Context switching, 227, 257

rules for, 229

continue statement, 106–107

Control statements. See Statements, control

Controls, AWT, 773–795

fundamentals, 773–774

convert(), 888

Convolution filters, 846, 852

Cookie class, 1004, 1007–1008

methods, table of, 1008

CookieHandler class, 681

CookieManager class, 681

CookiePolicy interface, 681

Cookies, 1007–1008

example servlet using, 1013–1015

CookieStore interface, 681

copy(), 636, 648–649

copyOf(), 475, 476, 501

copyOfRange(), 502

CopyOnWriteArrayList class, 863, 889

CopyOnWriteArraySet class, 889

copySign(), 435

cos(), 38, 433

cosh(), 433

countDown(), 869–871

CountDownLatch class, 862, 869–871

countStackFrames(), 437

createImage(), 830, 839, 844

createLineBorder(), 964

CropImageFilter class, 844–845

Currency class, 547–548

methods, table of, 547–548

currentThread(), 231, 438

currentTimeMillis(), 423, 425

CyclicBarrier class, 862, 871–873

D
Data types, 27. See also Type(s); Types, primitive

DatagramPacket class, 682, 683–684

Datagrams, 668, 682–685

server/client example, 684–685

DatagramSocket class, 632, 682–683

DataInput interface, 607, 608, 609, 625

DataInputStream class, 291, 607, 608–609

DataOutput interface, 607, 608, 609, 623

DataOutputStream class, 291, 607–608

Date class, 530–531, 927, 928

methods, table of, 530

DateFormat class, 530, 539, 927–929

Deadlock, 249–251, 253, 437

Decrement operator (– –), 30, 61, 64–65

decrementAndGet(), 863, 892

deepEquals(), 502

deepHashCode(), 504

deepToString(), 504

default

clause for annotation member, 282–283

statement, 84–85

DefaultMutableTreeNode class, 987, 988

DelayQueue class, 889

Delegation event model, 708–709, 710

and Beans, 936

and event listeners, 708, 709, 720–723

and event sources, 708–709, 719–720

and Swing, 954

using, 723–729

delete operator, 125

delete(), 393, 584, 636

deleteCharAt(), 393

deleteOnExit(), 585

delimiter(), 572

Delimiters, 525

Scanner class, 564, 570–572

@Deprecated built-in annotation, 286, 287

Deque interface, 456, 463–465, 469, 474

methods, table of, 464

descendingIterator(), 462, 464, 465

destroy(), 417, 420, 437, 440, 689, 691, 692, 693, 695,

957, 994, 997, 999

Destructors versus finalize(), 126

Dialog boxes, 816–822

file, 820–822

Dialog class, 736, 816

Diamond operator (<>), 359–360

Dictionary class, 454, 508, 515–516

abstract methods, table of, 515

digit(), 412

Dimension class, 736, 740, 754

Directories as File objects, 583, 585–586

creating, 588

Directory, listing the contens of a

using list(), 585–587

using listFiles(), 587

using NIO, 654–657

1094 Index

Directory tree, obtaining a list of files in a, 657–659

DirectoryStream class, 654

DirectoryStream.Filter interface, 656

dispose(), 816

DLL (dynamic link library), 314, 315, 316

do-while loop, 90–93

Document base, 704

Document interface, 967

Document/view methodology, 544

@Documented built-in annotation, 286

doDelete(), 1009, 1010

doGet(), 1009, 1010, 1011

doHead(), 1009, 1010

Domain name, 668, 669

Domain Naming Service (DNS), 668

doOptions(), 1009, 1010

doPost(), 1009, 1010, 1012

doPut(), 1009, 1010

DosFileAttributes class, 639, 654

DosFileAttributeView interface, 639

Dot operator (.), 111, 117–118, 146, 170, 188, 194

doTrace(), 1009, 1010

Double buffering, 833–836

Double class, 269, 398–402

methods, table of, 400–402

double data type, 35, 38–39, 42

DoubleBuffer class, 631

doubleValue(), 269, 398, 399, 401, 404, 405, 406, 408

Download Manager, 1053–1077

compiling and running, 1076–1077

enhancing, suggestions for, 1077

overview of, 1054

Downloads, Internet

operation of, 1054

resuming interrupted, 1053

drawArc(), 752–753

drawImage(), 831, 834, 835

drawLine(), 749–750, 960

drawOval(), 751–752

drawPolygon(), 753–754

drawRect(), 750–751, 960

drawRoundRect(), 750–751

drawString(), 308, 688, 694, 696, 765

Dynamic link library (DLL), 313–314, 315, 316

Dynamic method

dispatch, 178–181

lookup, 198

resolution, 196

E
E (Math constant), 433

Early binding, 184

echoCharIsSet(), 793

Eclipse IDE, 994, 995

Edit control, 792

element(), 463

elementAt(), 510, 511

elementCount Vector data member, 509

elementData[] Vector data member, 509

elements(), 510, 515, 517

ElementType enumeration, 286–287, 450

else, 81–84

empty(), 513

EMPTY_LIST static variable, 499

EMPTY_MAP static variable, 499

EMPTY_SET static variable, 499

EmptyStackException, 512, 513

enableEvents(), 822–823, 824, 826, 827

Encapsulation, 5, 18–19, 20, 22–23, 126–127, 167

and access control, 141

and scope rules, 46

end(), 912

endsWith(), 380, 634

ensureCapacity(), 390, 467, 510

entrySet(), 483–484, 486, 489, 518

enum, 259, 447, 476, 491

Enum class, 265, 447

methods, table of, 447

EnumConstantNotPresentException, 220

enumerate(), 438, 440, 443

Enumeration interface, 508–509, 511–512, 513, 525,

526, 603

Enumeration(s), 14, 259–268, 447, 513

= = relational operator and, 260, 266

as a class type in Java, 259, 263–265

constants, 259, 260, 263, 264, 265–266

constructor, 263–265

restrictions, 265

values in switch statements, using, 260–261

variable, declaring an, 260

EnumMap class, 487, 491–492

EnumSet class, 465, 475–476

factory methods, table of, 476

Environment properties, list of, 427

equals(), 153, 185, 186, 265–266, 276, 378–379, 399,

401, 404, 405, 406, 408, 414, 416, 427, 446, 447, 458,

459, 483, 487, 492, 493, 502, 516, 527, 530, 532,

670, 760

versus = =, 380–381

equalsIgnoreCase(), 379

Erasure, 329, 361–365, 366

and ambiguity errors, 364–365

bridge methods and, 362–364

err, 292, 293, 423

Error class, 208–209, 217, 224, 620

Errors

ambiguity, 364–365

 Index 1095

assertions to check for, using, 316–318

autoboxing/unboxing and prevention of, 274–275

automatic type promotions and compile-time, 50

compile-time versus run-time, 331–332

generics and prevention of, 330–332, 506

raw types and run-time, 351

run-time, 12, 207, 310. See also Exception

handling

unreachable code, 108

Event

and applets, 690–691

definition of an, 708

design patterns for an, 936

dispatching thread and Swing, 953–954, 957, 959

driven programs, 707, 953

loop with polling, 228

model, delegation. See Delegation event model

multicasting and unicasting, 936

Event handling, 690, 707–733

and adapter classes, 729–731

event classes, 709–719

by extending AWT components, 708,

822–828

and inner classes, 731–733

keyboard, 726–729

mouse, 723–726

and Swing, 946, 953–957

See also Delegation event model

Event listener interfaces, 720–723

and adapter classes, 729–731

table of commonly used, 720

EventListener interface, 578

EventListenerProxy class, 577

EventObject class, 577, 709–710, 1009

EventSetDescriptor class, 936, 938, 940

Exception class, 208–209, 221, 223, 224

Exception classes and generics, 367

Exception handling, 12, 93, 102, 207–226,

299–300, 301–302, 303

block, general form of, 208

and chained exceptions, 13, 224–225

and creating custom exceptions, 221–223

and the default exception handler,

209–210, 216

and the more precise (final) rethrow feature,

225, 226

and suppressed exceptions, 222, 306

and uncaught exceptions, 450

Exceptions, built-in run-time, 208–209, 220

checked, table of, 221

constructors for, 217

unchecked RuntimeException, table of, 220

Exceptions, I/O, 588–589

exchange(), 873–875

Exchanger class, 862, 873–875

exec(), 416, 417–418, 420, 421

execute(), 882, 896, 905

Executor interface, 863, 882, 883

Executors, 863

using, 882–887

Executors class, 863, 883

ExecutorService interface, 863, 882–883, 885

exists(), 583, 636, 652

exitValue(), 417, 420

exp(), 434

expm1(), 434

Expressions

and autoboxing/unboxing, 272–273

automatic type promotion in, 49–51

regular. See Regular expressions

extends, 161, 163, 205, 335, 339

and bounded wildcard arguments, 341, 344

Externalizable interface, 623

F
false, 34, 40, 41, 43, 75, 76

FALSE, 414

FAT file system, 639, 654

Field class, 278, 281, 282, 451, 920

Field, final, 146–147

fieldModifiers(), 922

fields array, 531

File attribute(s)

File to access, using, 582–585

interfaces, 648–639

NIO to access, using, 639, 652–654

view interfaces, 639

File class, 563, 582–588, 605, 619, 652

instance into a Path instance, converting a, 585,

635, 652

methods, 583–585, 592

file(), 421

File(s)

to a buffer, map a, 633, 644, 647, 661–663, 664

close() to close a, using, 300–302, 306

I/O, 297–306, 582–588. See also NIO

pointer, 609, 610

source, 23–24, 110

system, accessing the, 640

try-with-resources to automatically close a, using,

303–306

FileChannel class, 632, 633, 641, 644,

645–646, 660

FileDialog class, 736, 820–822

FileFilter interface, 587

FileInputStream class, 291, 297–298, 592–594, 632, 660,

661, 662, 663

1096 Index

FilenameFilter interface, 586–587

FileNotFoundException, 298, 301, 588, 592, 594, 612

FileOutputStream class, 291, 297–298, 302, 594–596,

632, 663

FileReader class, 292, 564, 612

Files class, 582, 633, 635–637, 639, 648, 649, 652,

654, 657

methods, table of a sampling of, 636–637

FileStore class, 630

FileSystem class, 640

FileSystems class, 640

FileVisitor interface, 657–658

FileVisitResult enumeration, 658

FileWriter class, 292, 613–614

fill(), 497, 503

fillArc(), 752–753

fillInStackTrace(), 222

fillOval(), 751–752

fillPolygon(), 753–754

fillRect(), 750–751

fillRoundRect(), 750–751

FilteredImageSource class, 839, 844

FilterInputStream class, 291, 599, 608

FilterOutputStream class, 291, 599, 607

FilterReader class, 292

FilterWriter class, 292

final, 146–147

to prevent class inheritance, 185

to prevent method overriding, 184

finalize(), 125–126, 185, 427

finally block, 207, 208, 218–220, 300–301, 589

Financial calculations, applets and servlets for,

1019–1052

find(), 912, 914–915, 916

findInLine(), 572

findWithinHorizon(), 572–573

Finger protocol, 675

first(), 461, 803

firstElement(), 510, 511

firstKey(), 484

flip(), 630, 647

Float class, 269, 398–400, 402

methods, table of, 399–400

float data type, 35, 38, 42

Floating-point(s), 35, 38–39

literals, 42–43

FloatBuffer class, 631

floatValue(), 269, 398, 399, 401, 404, 405, 406, 408

floor(), 434, 462

FlowLayout class, 736, 797–798, 956

flush(), 549, 588, 592, 601, 611, 621, 623, 624

Flushable interface, 588, 591, 594, 605, 607, 610,

619, 620

FocusAdapter class, 730

FocusEvent class, 710, 712, 713

focusGained(), 721

FocusListener interface, 720, 721, 730

focusLost(), 721

Font class, 736, 759–760, 761, 762, 764

methods, table of some, 760

Font(s), 759–772

creating and selecting, 762–763

determining available, 760–761

information, obtaining, 764

metrics to manage text output, using, 764–772

terminology used to describe, 765

FontMetrics class, 736, 764–766

methods, table of some, 765–766

for loop, 29–31, 93–102

enhanced. See For-each version of the for loop

variations, 96–97

For-each version of the for loop, 14, 93, 97–101

and arrays, 97–101

and the break statement, 98–99

and collections, 97, 101, 456, 479–480

general form, 97

and the Iterable interface, 449, 456, 479

and maps, 482

forceTermination(), 882

forDigit(), 412

Fork/Join Framework, 15, 229, 257, 578, 861–862, 863,

883, 893–908

advantages to using the, 893–894

classes, main, 894–897

tips for using the 908

Fork/Join Framework divide-and-conquer strategy, 895,

896, 897, 898–900, 908

and the sequential processing threshold

interaction with the level of parallelism,

900–903

Fork/Join Framework tasks, 894

asynchronous execution of, 905

cancelling, 906

completion status of, 906

and the parallelism level, 896

restarting, 906

starting, 896, 905

and subtasks, 897

that do not return a result, 894, 895, 903

that return a result, 894, 895–896, 903

fork(), 894–895, 903, 905, 907

ForkJoinPool class, 863, 883, 894, 895, 896–897, 900,

903, 905, 907–908

and work stealing, 897, 907

ForkJoinTask class, 863, 894–895, 896, 897, 907

Format flags, 557–560

Format specifiers, 548, 549–562

argument index with, using an, 560–562

 Index 1097

and format flags, 557–560

and specifying minimum field width, 555–556

and specifying precision, 556–557

suffixes for the time and date, table of, 553

table of, 551

uppercase versions of, 560

format(), 388, 549–550, 607, 619, 621, 927

Formattable interface, 578

FormattableFlags class, 577

Formatter class, 548–562, 606

closing an instance of the, 562

constructors, 548–549

methods, table of, 549

See also Format specifiers

forName(), 430, 919

FORTRAN, 4, 5

Frame class, 736, 738, 739–740, 741, 742

Frame window (s), 739–748

creating stand-alone, 747–748

handling events in, 742–747

within applet, creating, 741–742

Frank, Ed, 6

freeMemory(), 418–419

from(), 421

FTP (File Transfer Protocol), 668, 675, 1054

Future interface, 863, 885–887

G
Garbage collection, 12, 125, 126, 139, 418–419, 451, 837

gc(), 418, 419, 423

Generic class

example program with one type parameter,

326–329

example program with two type parameters,

332–334

general form, 334

hierarchies, 352–359

and instanceof, 355–357

overriding methods in a, 358–359

and raw types, 349–352

and type inference, 359–361

Generic constructors, 346–347

Generic interfaces, 326, 347–349

and classes, 348–349

Generic method, 326, 338, 344–346, 366

Generics, 13, 14, 270, 325–367

and ambiguity errors, 364–365

and arrays, 366–367

and casts, 326, 328, 329

and the Collections Framework, 325, 455, 505–508

and compatibility with pre-generics code,

349–352, 361

and exception classes, 367

restrictions on using, 365–367

type checking and, 329, 330–332, 351

GenericServlet class, 997, 999, 1002, 1008

get(), 459, 460, 470, 483, 488, 515, 517, 527, 532, 638,

640, 681, 886, 888, 892

and buffers, 631, 632, 643, 661

getActionCommand(), 711, 777, 787, 969, 975, 976

getActiveThreadCount(), 908

getAddListenerMethod(), 940

getAddress(), 670, 684

getAdjustable(), 712

getAdjustmentType(), 712, 790

getAlignment(), 775

getAllByName(), 669, 670

getAllFonts(), 761

getAndSet(), 863, 892, 893

getAnnotation(), 278, 282, 430, 444

getAnnotations(), 281–282, 430, 444

getApplet(), 700, 705

getAppletContext(), 689, 705

getApplets(), 705

getArrivedParties(), 882

getAscent(), 765, 766

getAttribute, 1000, 1001, 1007, 1015

getAttributeNames(), 1007, 1015

getAudioClip(), 689, 705, 706

getAvailableFontFamilyNames(), 760–761

getBackground(), 694

getBeanInfo(), 940

getBlue(), 756

getButton(), 717

getByAddress(), 670

getByName(), 669

getBytes(), 378, 594

getCause(), 222, 224

getChannel(), 632, 660, 662, 663

getChars(), 377–378, 391, 613

getChild(), 713

getClass(), 185, 186, 277, 427, 429, 432, 921

getClickCount(), 717

getCodeBase(), 689, 704

getColor(), 756

getComponent(), 712

getConstructor(), 278, 430

getConstructors(), 430, 920

getContainer(), 733

getContentLength(), 677

getContentLengthLong(), 677

getContentPane(), 953, 956

getContents(), 575

getContentType(), 677, 1001

getCookies(), 1005, 1014

getData(), 684

getDate(), 677

1098 Index

getDateInstance(), 927

getDateTimeInstance(), 929

getDeclaredAnnotations(), 282, 430, 444

getDeclaredMethods(), 430, 921

getDefault(), 536, 538

getDescent(), 765, 766

getDirectionality(), 414

getDirectory(), 821

getDisplayCountry(), 538

getDisplayLanguage(), 538

getDisplayName(), 538

getDocumentBase(), 689, 704

getEchoChar(), 793

getErrorStream(), 417

getEventSetDescriptors(), 936, 943

getExpiration(), 677

getExponent(), 435

GetField inner class, 625

getField(), 278, 431

GetFieldID(), 315

getFields(), 431, 920

getFile(), 821

getFileAttributeView(), 639

getFiles(), 822

getFirst(), 464, 469

getFollowRedirects(), 679

getFont(), 760, 764, 765

getForeground(), 694

getFreeSpace(), 585

getGraphics(), 696, 749, 834

getGreen(), 756

getHeaderField(), 677

getHeaderFieldKey(), 677

getHeaderFields(), 677, 681

getHeight(), 765, 766, 961

getHostAddress(), 670

getHostName(), 671

getIcon(), 966

getID(), 438, 536, 710

getImage(), 689, 705, 830–831

getInetAddress(), 672, 683

getInitParameter(), 1000

getInitParameterNames(), 1000

getInputStream(), 417, 420, 672, 677, 1001

getInsets(), 800, 961

getInstance(), 532, 534, 547

GetIntField(), 315

getItem(), 715, 784, 787, 812, 972, 973–974

getItemCount(), 784, 787

getItemSelectable(), 715, 787

getKey(), 487, 489

getKeyChar(), 716

getKeyCode(), 716

getLabel(), 776, 780, 811

getLast(), 464, 469

getLastModified(), 677

getLeading(), 765, 766

getLength(), 684

getListenerType(), 940

getLocale(), 574, 689

getLocalGraphicsEnvironment(), 761

getLocalHost(), 669

getLocalizedMessage(), 222

getLocalPort(), 672, 683

getLocationOnScreen(), 717

getMaximum(), 790

getMessage(), 217, 222

getMethod(), 278, 280, 431, 940, 1005

getMethodDescriptors(), 936

getMethods(), 431, 920

getMinimum(), 790

getMinimumSize(), 796–797

getModifiers(), 711, 714, 921

getModifiersEx(), 714

getName(), 230, 232, 431, 438, 440, 445, 583, 634, 652,

760, 921, 940, 1008, 1010, 1014

getNameCount(), 634

getNewState(), 719

GetObjectClass(), 315

getOffset(), 536, 684

getOldState(), 719

getOppositeComponent(), 713

getOppositeWindow(), 719

getOutputStream(), 417, 420, 672, 1001

getParallelism(), 903

getParameter(), 689, 701, 702, 1001, 1003,

1011, 1012

getParameterNames(), 1001, 1003

getParent(), 440, 583, 634, 652, 882

getPath(), 987, 1008

getPhase(), 877

getPoint(), 716–717

getPoolSize(), 908

getPort(), 672, 683, 684

getPreciseWheelRotation(), 718

getPreferredSize(), 796–797

getPriority(), 230, 240, 438

getProperties(), 424, 519

getProperty(), 424, 426, 520–521, 522

getPropertyDescriptors(), 936, 937, 943

getQueuedTaskCount(), 907

getRed(), 756

getRegisteredParties(), 882

getRemoveListenerMethod(), 940

getRequestMethod(), 679

getResponseCode(), 679

getResponseMessage(), 679

getRGB(), 756

getRuntime(), 417, 418

getScript(), 539

 Index 1099

getScrollAmount(), 718

getScrollType(), 718

getSelectedCheckbox(), 782

getSelectedIndex(), 784, 786, 982

getSelectedIndexes(), 787

getSelectedItem(), 784, 786, 985

getSelectedItems(), 787

getSelectedText(), 792, 795

getSelectedValue(), 982–983

getServletConfig(), 999

getServletContext(), 1000

getServletInfo(), 999

getServletName(), 1000

getSession(), 1005, 1009, 1010, 1015

getSize(), 740, 754, 760

getSource(), 710, 778, 975

getStackTrace(), 222, 438, 446

getState(), 256–257, 438, 780, 811

getStateChange(), 715, 787

getStream(), 705

getSuperclass(), 431, 432

getSuppressed(), 222, 306

getSurplusQueuedTaskCount(), 907

getText(), 775, 792, 795, 966, 967, 969

getTimeInstance(), 928

getUnarrivedParties(), 882

getTotalSpace(), 585

getUsableSpace(), 585

getValue(), 487, 489, 712, 789, 1008, 1010, 1014

getWheelRotation(), 718

getWhen(), 711

getWidth(), 961

getWindow(), 719

getWriter(), 997, 1001

getX(), 716

getXOnScreen(), 717

getY(), 716

getYOnScreen(), 717

GIF image format, 829–830

Glass pane, 949

Glassfish, 994, 995

Glob, 655–656

Gosling, James, 6

goto keyword, 33

Goto statement

using labeled break as form of, 104–106

using labeled continue as form of, 107

grabPixels(), 841–842

Graphics

 context, 307, 693, 749

 sizing, 754–755

Graphics class, 307, 308, 693, 694, 737, 749, 756, 764,

831, 834

drawing methods, 749–753

GraphicsEnvironment class, 737, 760, 761

GregorianCalendar class, 531, 534–536, 539

Grid bag layouts, 805–810

GridBagConstraints class, 737, 806–808

constraint fields, table of, 806–807

GridBagLayout class, 737, 805–806, 808, 810

GridLayout class, 737, 801–802

gridwidth constraint field, 806, 808

group(), 639, 874

GZIP file format, 579

H
Hash code, 471

Hash table, 470–471

hashCode(), 185, 276, 399, 401, 404, 405, 406, 408,

414, 416, 427, 445, 446, 447, 458, 483, 487, 504, 516,

527, 530, 760

Hashing, 471

HashMap class, 487, 488–489, 490, 491, 516

HashSet class, 465, 470–472

Hashtable class, 466, 508, 516–519

and iterators, 518

legacy methods, table of, 517

hasMoreElements(), 508, 526

hasMoreTokens(), 526

hasNext(), 477, 478

hasNextX() Scanner methods, 564, 566

table of, 565

Headers, 677

HeadlessException, 740, 774

headMap(), 484, 485

headSet(), 461, 462

HEIGHT, 700

Hexadecimals, 41, 42

as character values, 43

Hierarchical abstraction and classification, 18

and inheritance, 19, 161

High surrogate char, 414

Histogram, 842

Hoare, C.A.R., 230

Holzmann, Gerard J., 840

HotSpot technology, 10

HSB (hue-saturation-brightness) color model, 756

HSBtoRGB(), 756

HSPACE, 700, 701

HTML (Hypertext Markup Language), 993

file for an applet, 308, 688, 699–701

HTTP, 668, 675, 993

downloads, 1054

GET requests, handling, 1010–1011

and HttpURLConnection class, 679

port, 668

POST requests, handling, 1010, 1012–1013

requests, 993, 994, 1004–1005, 1010

response, 993, 994, 997, 1004, 1005–1006

1100 Index

HTTP (continued)
and URLConnection class, 677

HTTP session

stateful, 681

tracking, 1015–1016

HttpCookie class, 681

HttpServlet class, 1004, 1008

methods, table of, 1009

HttpServletRequest interface, 1004, 1015

methods, table of several, 1005

HttpServletResponse interface, 1004, 1005

methods, table of, 1006

HttpSession interface, 1004, 1006, 1010, 1015

methods, table of several, 1007

HttpSessionBindingEvent class, 1004, 1010

HttpSessionBindingListener interface, 1004, 1006

HttpSessionEvent class, 1004, 1009, 1010

HttpURLConnection class, 679–681

hypot(), 435

I
Icon interface, 966

Icons, Swing button, 969

Identifiers, 24, 32, 33, 44

IdentityHashMap class, 487, 491

IEEEremainder(), 435

if statement, 28–29, 30, 81–84

boolean variable used to control the, 82, 274

nested, 83

and recursive methods, 140

switch statement versus, 88–89

if-else-if ladder, 83–84

IllegalAccessException, 218, 221

IllegalArgumentException, 220, 457, 459, 461, 463, 475,

483, 484, 485, 502, 503, 504

IllegalFormatException, 550

IllegalMonitorStateException, 220

IllegalStateException, 220, 457, 463, 465, 912, 1006

IllegalThreadStateException, 220

Image class, 737, 829, 830–831

ImageConsumer interface, 841–843, 844

ImageFilter class, 844–857

ImageIcon class, 965, 966

ImageObserver interface, 831, 832–833, 835

ImageProducer interface, 830, 839–840, 841, 844

imageUpdate(), 832–833

bit flags, table of, 833

Images, 829–860

animation of, 857–860

creating, loading, displaying, 830–832

double buffering and, 833–836

stream model for, 844

Imaging, 829

IMG tag, 701

implements clause, 197

and generic interfaces, 348–349

import statement, 194–195

and static import, 319–321

in, 292, 293, 420, 423

Increment operator (++), 30, 61, 64–66

indexOf(), 382–383, 394, 395, 459, 460, 510, 511

IndexOutOfBoundsException, 220, 459

Inet4Address class, 671

Inet6Address class, 671

InetAddress class, 669–671, 683

InetSocketAddress class, 683

infinity (IEEE floating-point specification value), 402

inForkJoinPool(), 907

INHERIT, 421

InheritableThreadLocal class, 444

Inheritance, 5, 19–21, 22–23, 142, 145, 161–186

and annotations, 288

and enumerations, 265

final and, 184–185

and interfaces, 187, 197, 206

multilevel, 171–174

and multiple superclasses, 163, 187

@Inherited built-in annotation, 286, 287

init(), 689, 691, 692, 693, 695, 741, 994, 997, 999

and Swing, 957, 959

initCause(), 222, 224

Inline method calls, 184

Inner classes, 149–152, 731–733

anonymous, 732–733

InputEvent class, 710, 713–714, 715, 716

InputMismatchException, 566

InputStream class, 290, 291, 293, 563, 564, 590, 591,

592, 596, 599, 600, 602, 608, 628, 650

methods, table of, 591

objects, concatenating, 603–605

InputStreamReader class, 292, 293

insert(), 392, 795

Insets class, 737, 800–801, 961

Instance of a class, 19, 109

See also Object(s)

Instance variables

accessing, 111, 116, 117–118, 120

definition of, 19, 110

hiding, 125

static, 145–146

as unique to their object, 111, 112–113

using super to access hidden, 170–171

instanceof operator, 310–312, 482

and generic classes, 355–357

InstantiationException, 221

 Index 1101

Instrumentation interface, 450

int, 27, 35, 36, 37

and integer literals, 41

IntBuffer class, 631

Integer class, 269, 403, 410–411

constructors, 269

methods, table of, 406–407

Integer(s), 35, 36–38, 66–67

literals, 41–42

interface keyword, 187, 196

and annotations, 276

interfaceModifiers(), 922

Interface(s), 187, 196–206

general form of, 196–197

generic. See Generic interfaces

implementing, 197–199

and the inheritance hierarchy, 196

inheritance of, 205–206

member, 200

methods, 196, 197–198

nested, 200

reference variables, 198–199, 204

types for bounded types, using, 336

variables, 197, 204–205

Internet, 3, 6, 7, 8, 12, 16, 667

addresses, obtaining, 671

addressing scheme, 668

downloads, 1053–1054

and portability, 7, 8, 9

and security, 8–9

Internet Engineering Task Force (IETF)

BCP 47, 539

Internet Protocol (IP)

addresses, 668

definition of, 667

InterNIC, 672, 674

InterruptedException, 221, 232, 842

Introspection, 934–937, 940, 943

Introspector class, 939, 940

intValue(), 269, 398, 400, 401, 404, 405, 406, 408

InvalidPathException, 638

Investment, future value of an

applet for finding, 1028–1031

formula to compute, 1028

Investment required to achieve a future value

applet for finding, 1032–1036

formula to compute, 1032

invoke(), 895, 896, 905

invokeAll(), 895, 900, 907

invokeAndWait(), 954, 959

invokeLater(), 954, 959

I/O, 26, 289–307, 581–628

and applets, 307, 309

channel-based, 13, 290, 629. See also NIO; NIO

and channel-based I/O

classes, list of, 581–582

console, 26, 93, 289, 293–297

error handling, 299–300

exceptions, 588–589

file, 297–306, 582–588

formatted. See I/O, formatted

interfaces, list of, 582

new. See NIO

redirection, 421

streams. See Streams

I/O, formatted, 14, 548–573

format specifiers. See Format specifiers

using Formatter, 548–562. See also Formatter class

using printf(), 155, 620

using Scanner, 563–573. See also Scanner class

io package. See java.io package

IOError, 620

IOException, 93, 293, 298, 301, 302, 588, 591, 592, 596,

602, 610, 613, 623, 624, 625, 635, 654, 657, 672, 682

ipadx constraint field, 806, 808

ipady constraint field, 806, 808

IPv4 (Internet Protocol, version 4), 668, 669, 670, 671

IPv6 (Internet Protocol, version 6), 668, 669, 670, 671

isAbsolute(), 584, 635

isAlive(), 230, 238–240, 438

isAltDown(), 714

isAltGraphDown(), 714

isAnnotationPresent(), 282, 284, 445

isBound(), 672, 684, 940

isCancelled(), 906

isClosed(), 672

isCompletedAbnormally(), 906

isCompletedNormally(), 906

isConnected(), 672, 684

isConstrained(), 940

isControlDown(), 714

isDigit(), 412, 413, 414

isDirectory(), 585, 636, 638

isEditable(), 793, 795

isEmpty(), 388, 457, 458, 483, 510, 515, 517, 527

isEnabled(), 811

isExecutable(), 636, 652

isFile(), 584

isHidden(), 585, 636, 639

isInfinite(), 400, 401, 402–403

isLeapYear(), 535

isLetter(), 412, 413, 414

isLowercase(), 412, 413

isMetaDown(), 714

isMulticastAddress(), 671

isMultipleMode(), 822

1102 Index

isNaN(), 400, 401, 402–403

ISO-Latin-1 character set, 39, 43

isPopupTrigger(), 717

isPublic(), 921

isQuiescent(), 907

isReadable(), 636, 652

isSelected(), 972, 973, 974, 975

isSet array, 531

isSet(), 532

isShiftDown(), 714

isShutdown(), 908

isTemporary(), 713

isTerminated(), 908

isTimeSet, 531

isUppercase(), 412, 413

isWhitespace(), 412 413

isWritable(), 636, 639, 652

ItemEvent class, 710, 714–715, 780, 784, 787, 812,

972, 973

ItemListener interface, 720, 721, 780, 784, 812, 972, 973

ItemSelectable interface, 715

itemStateChanged(), 721, 780, 784, 972, 973

Iterable interface, 449, 456, 457, 479, 482, 509

Iterable<Path> interface, 634, 654

Iteration statements, 81, 89–102

Iterator, 455, 456, 476–480

and maps, 482

and PriorityQueue, 474

and synchronized collections, 499

Iterator interface, 455, 457, 476–477, 478–479, 507, 508

methods, table of, 477

iterator(), 449, 458, 459, 477–478, 654

J
J2SE 5, new features of, 13–14

JApplet class, 687, 949, 957, 959

Java

API packages, table of core, 909–911

and C, 3, 5, 7, 11

and C++, 3, 7, 11

and C#, 8

design features (buzzwords), 10–13

history of, 3, 6–8, 13–16

and the Internet, 3, 6, 7–9, 12, 16, 667, 1053

as interpreted language, 9, 10, 12

keywords, 33–34

as strongly typed language, 10, 11, 35, 41

versions of, 13–14

and the World Wide Web, 6, 7, 11

Java Archive (JAR) files, 578

Java Beans, 432, 451, 909, 919, 933–943

advantages of, 934

API, 938–940

customizers, 937

demonstration program, 940–943

introspection, 934–937, 940, 943

properties. See Property, Java Bean

serialization, 937

.java filename extension, 23

Java Community Process (JCP), 16

Java EE SDK, 994, 998

Java Foundation Classes (JFC), 946

java (Java application launcher). See Application

launcher (java)

Java Native Interface (JNI), 313

Java Network Launch Protocol (JNLP), 688, 699

java package, 194

Java SE 7, 14–16

Java Virtual Machine (JVM), 9–10, 12, 13, 16, 24, 25,

417, 437, 451

java.applet package, 289, 307, 687

java.awt package, 707, 710, 736, 829, 830, 956

classes, tables of some, 736–737

java.awt.Dimension class, 919

java.awt.event package, 707, 709, 710, 720, 729, 954, 956

event classes, table of commonly used, 710

interfaces, table of commonly used, 720

java.awt.image package, 829, 839, 844, 860

java.beans package, 936, 938–940

classes, table of, 938–939

interfaces, tables of, 938

java.io package, 289, 290–292, 298, 304, 581–582, 588,

629, 652

classes, list of, 581–582

interfaces, list of, 582

java.io.Externalizable interface, 937

java.io.IOException, 93

java.io.Serializable interface, 937

java.lang package, 194, 220–221, 277, 286, 292, 298,

304, 348, 371, 397–451, 588

classes and interfaces, list of, 397

implicit importation of the, 194

java.lang.annotation package, 276, 286, 450

java.lang.annotation.RententionPolicy enumeration,

276–277, 450

java.lang.image package, 841

java.lang.instrument package, 450

java.lang.invoke package, 451

java.lang.management package, 451

java.lang.ref package, 451

java.lang.reflect package, 277, 282, 451, 909, 919

classes, table of, 920

java.net package, 667, 681

classes and interfaces, list of, 668–669

java.nio package, 290, 581, 585, 629, 630

 Index 1103

java.nio.channels package, 629, 631, 633

java.nio.channels.spi package, 629

java.nio.charset package, 629, 633

java.nio.charset.spi package, 629

java.nio.file package, 629, 634

java.nio.file.attribute package, 629, 634, 638

java.nio.file.spi package, 629, 634

java.rmi package, 909, 924

java.text package, 909, 927

java.util package, 453–454, 508, 525, 707, 709

classes, list of top-level, 453–454

interfaces defined by, list of, 454

java.util.concurrent package, 578, 862–863, 888

java.util.concurrent.atomic package, 578, 862, 863, 892

java.util.concurrent.locks package, 578, 862, 863, 889,

890, 892

java.util.jar package, 578

java.util.logging package, 578

java.util.prefs package, 578

java.util.regex package, 579, 909, 911

java.util.spi package, 579

java.util.zip package, 579

javac (Java compiler), 23–24, 188

and generics, 325

javadoc

tags, 1079–1083

utility program, 1079, 1083

javah.exe, 314, 315

javap, 364

javax.imageio package, 860

javax.servlet package, 997, 998–1002

interfaces and classes, list of core, 998–999

javax.servlet.http package, 998, 1004–1010

interfaces and classes, list of core, 1004

javax.swing package, 948, 950, 951, 965, 987

javax.swing.event package, 954, 967, 982, 987

javax.swing.table package, 990

javax.swing.tree package, 987

JButton class, 949, 956, 965, 969–971

JCheckBox class, 965. 969, 971, 973–975

JComboBox class, 965, 984–986

JComponent class, 948, 949, 957, 960, 961, 965

JDialog class, 949

JDK 7 (Java SE 7 Development Kit), 14, 23

JFrame class, 949, 950, 951–952, 953, 963

JIT (Just-In-Time) compiler, 10, 12

JLabel class, 950, 952, 954, 965–967

JLayeredPane class, 949

JList class, 965, 981–984

jni.h, 315

jni_md.h, 315

join(), 230, 238–240, 439, 894, 895, 903, 905

Joy, Bill, 6

JPanel class, 949, 963, 977

JPEG image format, 830

JRadioButton class, 965, 969, 971, 975–977

JRootPane class, 949

JScrollBar class, 949

JScrollPane class, 965, 979–981, 982, 987, 988, 990

JTabbedPane class, 965, 977–979

JTable class, 965, 990–992

JTextCompenent class, 967

JTextField class, 965, 967–968, 1025

JToggleButton class, 965, 969, 971–973, 975

JToggleButton.ToggleButtonModel class, 971

JTree class, 965, 986–989

Jump statements, 81, 102–108

Just In Time (JIT) compiler, 10, 12

JVM (Java Virtual Machine), 9–10, 12, 13, 16, 24, 25,

417, 437, 451

JWindow class, 949

K
Kernighan, Brian, 4

Key codes, virtual, 715–716, 728

KeyAdapter class, 730

Keyboard events, handling, 726–729

KeyEvent class, 710, 712, 713, 715–716

KeyListener interface, 720, 722, 726–729, 730

keyPressed(), 722, 726, 727

keyReleased(), 722, 726

keys(), 515, 517

keySet(), 483, 484, 518, 575, 681

keyTyped(), 722, 726, 727

Keywords, table of Java, 33

L
Label

AWT standard control, 775–776

Swing, 950, 952, 965–967

used with break statement, 104

used with continue statement, 107

Label class, 737, 775–776

last(), 461, 803

lastElement(), 510, 511

lastIndexOf(), 382–383, 395, 459, 460, 510, 511

lastKey(), 484

Late binding, 184

Layered pane, 949

Layout managers, 739, 773, 796–810

default, 773, 796, 797

LayoutManager interface, 796

length instance variable of arrays, 147–149

length(), 153, 374, 389–390, 448, 527

1104 Index

Lexer (lexical analyzer), 525

Libraries, class, 23, 34

Lindholm, Tim, 6

LineNumberInputStream deprecated class, 582

LineNumberReader class, 292

LinkedBlockingDeque class, 889

LinkedBlockingQueue class, 889

LinkedHashMap class, 487, 490–491

LinkedHashSet class, 465, 472

LinkedList class, 465, 469–470

example program using the, 480–481

LinkedTransferQueue, 889

List class, 737, 786

extending, 826–827

List controls, 720, 786–788

List interface, 456, 459, 466, 469, 478, 501, 509, 511

methods, table of, 460

List, Swing, 981–984

list() and directories, 583, 585–587

listFiles(), 587

ListIterator interface, 457, 476–477, 478–479, 507

methods, table of, 477

listIterator(), 460, 478

ListModel, 982

ListResourceBundle class, 575

ListSelectionEvent class, 982, 983, 990

ListSelectionListener interface, 982, 983

ListSelectionModel, 982, 990

Literals, 32, 41–44

class, 279

regular expression, 913

string, 374

load(), 418, 424, 520, 522–524

loadLibrary(), 314, 418, 424

Loan balance, applet to find, 1044–1047

Loan payments

applet to compute, 1020–1028

formula for calculating, 1020

servlet to compute, 1048–1051

Locale class, 387, 538–539, 927, 928

Locale Data Markup Language (LDML), 539

Locale.Builder class, 539

Lock interface, 863, 890

methods, table of, 890

lock(), 863, 890

lockInterruptibly(), 890

Locks, 889–892

log()

math method, 434

servlet method, 1000, 1002

log10(), 434

log1p(), 434

Logical operators

bitwise, 67–69

Boolean, 75–77

long, 35, 36, 37–38

literal, 41

Long class, 269, 403, 410

methods, table of, 408–409

LongBuffer class, 631

longValue(), 269, 398, 400, 401, 404, 405, 406, 408

Look and feels, 946–947

lookup(), 925

loop(), 706

Loop(s), 81

Boolean object to control, using a, 274

continue statement and, 106–107

do-while, 90–93

for. See for loop

infinite, 96–97, 103

nested, 102, 104, 105–106

with polling, event, 228, 245

while, 89–90

Low surrogate char, 414

M
main(), 25–26, 110, 142, 145

and applets, 26, 110, 308, 309, 688

and the java application launcher, 25

and command-line arguments, 25, 154–155

and Swing programs, 953–954

and windowed applications, 747, 748

main (default name of main thread), 232

MalformedURLException, 675

Map interface, 482–484, 486, 488, 491, 515, 516, 518

methods, table of, 483

map(), 633, 644, 647, 662, 664

Map(s), 455, 482–492

classes, 487–492

collection-view of a, obtaining a, 455, 482,

483–484

interfaces, 482–487

Map.Entry interface, 482, 486–487

methods, table of, 487

MapMode.PRIVATE, 644

MapMode.READ_ONLY, 644

MapMode.READ_WRITE, 644, 647

MappedByteBuffer class, 631, 644

mark(), 591, 592, 597, 600, 603, 611, 616, 631

markSupported(), 591, 600, 603, 610, 611, 616

Matcher class, 911, 912

matcher(), 912

matches(), 388, 912, 914, 919

Math class, 45, 131, 433–436

rounding methods, table of, 434–435

and static import example, 319–321

max(), 434, 497, 500

MAX_EXPONENT, 399

MAX_PRIORITY, 240, 437

 Index 1105

MAX_RADIX, 411

MAX_VALUE, 399, 403, 411

MediaTracker class, 737, 829, 836–839

Member, class, 19, 110

access and inheritance, 163–164

access, table of, 191

controlling access to, 141–144

static, 145–146

Member interface, 451, 919

Memory

allocation using new, 51–52, 53, 113–114

leaks, 298, 304

management, in Java, 11–12, 125

and Runtime class, 418–419

MemoryImageSource class, 839–840, 844

Menu bars and menus, 773, 810–816

action command string of, 812

and events, 812

Menu class, 737, 810, 811

Menu item as an event source, 720

MenuBar class, 737, 810, 811

MenuItem class, 737, 810–811, 812

Metadata, 276

See also Annotation(s)

Method class, 278, 281, 282, 451, 920, 921, 940

Method(s), 19, 110, 115–121

abstract, 181–184

and annotations, 276, 288

and autoboxing, 271–272

bridge, 362–364

calling, 117, 119

dispatch, dynamic, 178–181

and the dot (.) operator, 111, 117, 118

factory, 669

final, 147, 184

general form, 116

generic, 326, 338, 344–346, 366

getter, 934

hidden, using super to access, 170–171, 176

inlining, 184

interface, 196, 197–198

lookup, dynamic, 198

native, 312–316

overloading, 129–134, 158–160, 177

overriding. See Overriding, method

and parameters, 116, 119–121

passing an object to, 137–138

recursive, 139–141

resolution, dynamic, 196

returning an object from, 138–139

returning a value from, 118–119

scope defined by, 45–47

setter, 934

static, 145–146

subclasser responsibility, 182

synchronized, 230, 241–243

type inference and, 360

varargs. See Varargs

variable-arity, 155

MethodDescriptor class, 936, 939, 940

MethodHandle class, 451

methodModifiers(), 922

MethodType class, 451

MIME (Multipurpose Internet Mail Extensions),

993, 997

min(), 434, 497, 500

minimumLayoutSize(), 796

MIN_EXPONENT, 399

MIN_NORMAL, 399

MIN_PRIORITY, 240, 437

MIN_RADIX, 411

MIN_VALUE, 399, 403, 411

mkdir(), 588

mkdirs(), 588

Model-Delegate component architecture, 947–948

Model-View-Controller (MVC) component

architecture, 947

Modifier class, 921, 922

“is” methods, table of, 923

Modulus operator (%), 61, 63

Monitor, 230, 241, 243

Mouse events, handling, 723–726

MouseAdapter class, 730

mouseClicked(), 722, 730

mouseDragged(), 722, 729

mouseEntered(), 722

MouseEvent class, 710, 712, 713, 716–717

mouseExited(), 722

MouseListener interface, 720, 722, 723–726, 730

MouseMotionAdapter class, 729, 730

MouseMotionListener interface, 709, 720, 722,

723–726, 729, 730

mouseMoved(), 722, 729

mousePressed(), 722

mouseReleased(), 722

MouseWheelEvent class, 710, 717–718

MouseWheelListener interface, 720, 722, 723

mouseWheelMoved(), 722

Multicore systems, 228–229, 257, 862, 863,

893–894, 898

Multitasking, 227, 229

Multithreaded programming, 7, 11, 12, 227–257

context switching. See Context switching

effectively using, 257

and multicore versus single-core systems, 228

Observable class, Observer interface and, 544

and spurious wakeup, 245

and StringBuilder class, 395

and synchronization. See Synchronization

and threads. See Thread(s)

1106 Index

Multithreaded programming (continued)
versus the concurrency utilities, traditional,

861, 908

and parallel programming, 893–894

versus single-threaded system, 228

MutableComboBoxModel, 985

MutableTreeNode interface, 987

MVC (Model-View-Controller) component

architecture, 947

N
NAME, 700

Name-space collisions

between instance variables and local variables, 125

packages and, 187, 188, 321

Naming class, 924, 925

NaN, 399, 402

nanoTime(), 424, 425, 900

native modifier, 313

Natural ordering, 448, 492

Naughton, Patrick, 6

NavigableMap interface, 482, 484–486, 489

methods, table of, 485–486

NavigableSet interface, 456, 461, 472, 473

methods, table of, 462

Negative numbers in Java, representation of, 66, 67

NEGATIVE_INFINITY, 399

NegativeArraySizeException, 220, 501

.NET Framework, 8

NetBeans, 994, 995

Networking, 667–685

basics, 667–668

classes and interfaces, list of, 668–669

new, 51–52, 53, 113–114, 121, 123, 125, 139, 182

autoboxing and, 271

and enumerations, 260, 263

and type inference, 359–360

NEW, 256

New I/O. See NIO

newByteChannel(), 633, 636, 641, 644, 645, 646

newCachedThreadPool(), 883

newCondition(), 890

newDirectoryStream(), 636, 654, 655–657

newFixedThreadPool(), 883

newInputStream(), 637, 649, 650–651

newOutputStream(), 637, 649, 651

newScheduledThreadPool(), 883

next(), 477, 478, 566, 803

nextAfter(), 435

nextBoolean(), 539, 566

nextBytes(), 539

nextDouble(), 205, 539, 540, 566, 568, 570

nextElement(), 508–509, 526, 605

nextFloat(), 539, 540, 566

nextGaussian(), 539, 540

nextInt(), 539, 566, 570

nextLong(), 539, 566

nextToken(), 526

nextUp(), 435

nextX() Scanner methods, 564, 566, 568, 570

table of, 566

NIO, 15, 581, 629–665

packages, list of, 629

pre-JDK 7 NIO versus new, 660

reading a file using pre-JDK 7, 660–663

for path and file system operations, using,

652–659

for stream-based I/O, using, 649–651

writing to a file using pre-JDK 7, 663–665

NIO and channel-based I/O

copying a file using, 648–649

reading a file using, 641–645

writing to a file using, 645–648

NIO.2, 629, 640, 652

NORM_PRIORITY, 240, 437

NoSuchElementException, 461, 463, 484, 509, 566, 573

NoSuchFieldException, 221

NoSuchMethodException, 221, 278

NOT operator

bitwise unary (~), 66, 67, 68–69

Boolean logical unary (!), 75–76

NotDirectoryException, 654

notepad, 420, 423

notify(), 185, 186, 245, 247–249, 254–255, 427, 890, 908

notifyAll(), 185, 186, 245, 427

notifyObservers(), 541, 542

NotSerializableException, 627

null, 34, 113

Null statement, 90

NullPointerException, 217, 220, 457, 459, 461, 463,

475, 483, 484, 485, 501, 516, 573, 605

Number class, 269, 398

NumberFormat class, 927, 1024

NumberFormatException, 221, 269, 702

Numbers, formatting, 551–552, 555–557, 1024

O
Oak, 6

Object class, 185–186, 326, 427

as a data type, problems with using the, 330–332,

506

methods, table of, 185, 427

Object reference variables

and abstract classes, 182, 184

 Index 1107

assigning, 115

declaring, 113

and cloning, 427–428

and dynamic method dispatch, 178–181

interface, 198–199

to superclass reference variable, assigning

subclass, 166, 170

OBJECT tag, 688, 701

Object-oriented programming (OOP), 5, 6,

17–23, 109

model in Java, 11

Object(s), 19, 109, 114

bitwise copy (clone) of, 427

creating, 111, 113–114

initialization with a constructor, 121, 123–124

to a method, passing, 137–138

monitor, implicit, 230, 243

as parameters, 134–136

returning, 138–139

serialization of. See Serialization

type at run time, determining, 310–312

Object.notify(), 890

Object.wait(), 890

ObjectInput interface, 625

methods defined by, table of, 625

ObjectInputStream class, 291, 625

methods defined by, table of, 626

ObjectOutput interface, 623

methods defined by, table of, 623

ObjectOutputStream class, 291, 624

methods defined by, table of, 624

Objects class, 577

Observable class, 541–544

methods, table of, 541

Observer interface, 541–544

Octals, 41

as character values, 43

of(), 475, 476

offer(), 463, 474

offerFirst(), 463, 464, 469

offerLast(), 463, 464, 469

offsetByCodePoints(), 388, 395

onAdvance(), 879, 882

open(), 633

openConnection(), 676, 678, 679

OpenOption interface, 635

Operator(s)

arithmetic, 61–66

assignment. See Assignment operator(s)

bitwise, 66–74

Boolean logical, 75–77

conditional-and, 77

conditional-or, 77

diamond (<>), 359–360

parentheses and, 79

precedence, table of, 78

relational, 28, 41, 74–75

ternary if-then-else (?:), 77–78

OR operator (|)

bitwise, 66, 67, 68–69

Boolean logical, 75–76

OR operator, short-circuit (||) Boolean logical, 75,

76–77

Oracle, 14

Ordinal value enumeration constants, 265–266

ordinal(), 265, 266, 447

out output stream, 26, 292, 293, 420, 423

out(), 549, 551

OutputStream class, 290, 291, 296, 590, 591, 599, 601,

605, 607, 619, 624, 628, 651

methods, table of, 592

OutputStreamWriter class, 292

Overloading methods, 129–134, 158–160, 177

@Override, built-in annotation, 286, 287

Overriding, method, 175–181

and dynamic method dispatch, 178–181

final to prevent, using, 184

in a generic class, 358–359

and run-time polymorphism, 178, 179, 181

P
Package(s), 142, 187–196, 206

access to classes contained in, 190–194, 195

core Java API, table of, 909–911

defining, 188

finding, 188–189

importing, 194–196

Swing, 950

version data, obtaining, 444

Package class, 282, 444–445

methods, table of, 444–445

package statement, 188, 194

Paint mode, setting, 757–759

paint(), 297, 691, 692, 693, 694, 695, 696, 698, 742,

749, 832, 957, 960

lightweight components and overriding, 828

Paintable area, computing, 961

paintBorder(), 960

paintChildren(), 960

paintComponent(), 960, 963, 964

Painting in Swing, 959–964

Panel class, 688, 737, 738, 739, 803

Panes, Swing container, 949. See also Content pane

Parallel programming. See Programming, parallel

PARAM NAME, 700, 701

1108 Index

Parameter(s), 25, 116, 119–121

applets and, 701–703

and constructors, 123–124

objects as, 134–136

and overloaded constructors, 134

and overloaded methods, 129, 177

and the scope of a method, 46

servlet, reading, 298–300

type. See Type parameter(s)

variable-length (varargs), 157

Parameterized types, 326, 328

parseBoolean(), 416

parseByte(), 404, 410

parseDouble(), 401

parseFloat(), 400

parseInt(), 407, 410

parseLong(), 409, 410

parseShort(), 405, 410

Parsing, definition of, 525

Pascal, 4

Passwords, reading, 620

Path interface, 582, 585, 634–635, 640, 641, 652,

654, 660

instance for stream-based I/O, using a, 649–651

methods, table of a sampling of, 634–635

obtaining an instance of the, 638, 640

Paths class, 638, 640

Pattern class, 911–912

Pattern matching. See Regular expressions

PatternSyntaxException, 913

Payne, Jonathan, 6

peek(), 463, 513

peekFirst(), 464, 469

peekLast(), 464, 469

Peers, native, 945–946, 828

Persistence (Java Beans), 937

Phaser class, 862, 875–882

compatability with fork/join, 908

PI (Math constant), 433

PIPE, 421

PipedInputStream class, 291

PipedOutputStream class, 291

PipedReader class, 292

PipedWriter class, 292

PixelGrabber class, 841–843, 844

play(), 690, 706

Pluggable look and feel (PLAF), 946–947, 948, 992

PNG file format, 830, 831

Point class, 717, 747

Pointers, 59, 113

poll(), 463, 474

pollFirst(), 462, 464, 469

Polling, 228, 245

pollLast(), 462, 464, 469

Polygon class, 737, 753

Polymorphism, 5, 21–23

and dynamic method dispatch, 178–181, 182

and interfaces, 196, 199–200, 204

and overloaded methods, 129, 131, 132

pop(), 464, 465, 513

PopupMenu class, 737, 816

Port, 667, 675

Portability problem, 6–7, 8, 9, 10, 12, 16

and data types, 36

and native methods, 316

and thread context switching, 229

POSITIVE_INFINITY, 399

PosixFileAttributes class, 639, 654

PosixFileAttributeView interface, 639

postVisitDirectory(), 658

pow(), 319–321, 434

preferredLayoutSize(), 796

previous(), 477, 803

preVisitDirectory(), 658

print(), 27, 34, 296, 297, 376, 606, 620, 1002

printf()

function, C/C++, 548

method, Java, 155, 562, 606–607, 619,

620, 621

println(), 26, 27, 34, 186, 296, 297, 376, 606, 619,

620, 1002

and applets, 706

and String objects, 58

printStackTrace(), 222

PrintStream class, 291, 293, 296, 562, 605–607

PrintWriter class, 292, 296–297, 562, 619–620, 997

PriorityBlockingQueue class, 889

PriorityQueue class, 465, 473–474

private access modifier, 25, 142–144, 190–191

and inheritance, 163–164

Process class, 416–417, 420, 421

methods, table of, 417

Process, definition of, 416

Process-based versus thread-based multitasking, 227

processActionEvent(), 823, 827

processAdjustmentEvent(), 823, 827

ProcessBuilder class, 416, 421–423

methods, table of, 421–422

ProcessBuilder.Redirect class, 421

ProcessBuilder.Redirect.Type enumeration, 421

processComponentEvent(), 823

processFocusEvent(), 823

processItemEvent(), 823, 824, 826

processKeyEvent(), 823

processMouseEvent(), 823

processMouseMotionEvent(), 823

processMouseWheelEvent(), 823

processTextEvent(), 823

 Index 1109

Programming

multithreaded. See Multithreaded programming

object-oriented. See Object-oriented programming

process-oriented, 17, 18, 22

structured, 4, 5

Programming, parallel, 15, 229, 862, 863, 893–894

and specifying the level of parallelism, 896,

900–903

Project Coin, 15

Properties class, 454, 508, 519–522

methods, table of, 520

Properties, environment, 426

Property, Java Bean, 940

bound and constrained, 937

design patterns for, 934–935, 937, 940

PropertyChangeEvent, 937

PropertyChangeListener interface, 937, 938

PropertyDescriptor class, 936, 939, 940, 942

PropertyPermission class, 577

PropertyResourceBundle class, 575

PropertyVetoException, 937

protected access modifier, 126, 142, 190–191

public access modifier, 25, 142–143, 190–191

Push buttons, 691, 776–779

action command string of, 776, 778, 779, 969

Swing, 954–957, 969–971

push(), 464, 465, 513

Pushback, 602

PushbackInputStream, 291, 599, 602–603

PushbackReader class, 292, 618–619

put(), 483, 488, 489, 491, 515, 517

and buffers, 631, 632, 646–647, 664

putAll(), 483, 491

PutField inner class, 624

Q
Query string, 1011

Queue interface, 456, 462–463, 469, 473, 474

methods, table of, 463

quietlyInvoke(), 907

quietlyJoin(), 907

R
Race condition, 243

Radio buttons, 782

Swing, 975–977

Radix, 403

radix(), 573

Random class, 205, 539–540

methods, table of, 539

random(), 435

RandomAccess interface, 457, 482

RandomAccessFile class, 609–610, 632, 664

range(), 475, 476

Raw types, 349–352, 508

and erasure, 362

READ, 421

read(), 93, 292, 293–294, 298–299, 303, 449, 591, 600,

602, 611, 618, 625, 626, 633, 641, 650, 661

and end-of-file condition, 303

Readable interface, 449, 563, 569, 610

ReadableByteChannel interface, 563

readAttributes(), 637, 639, 652

readBoolean(), 608, 626

readDouble(), 608, 626

Reader class, 291, 292, 293, 590, 610, 612, 614, 628

methods defined by, table of, 611

readExternal(), 623

readInt(), 608, 626

readLine(), 294–295, 410, 620, 621, 1002

readObject(), 625, 626

readPassword(), 620, 621

ReadWriteLock interface, 892

Real numbers, 38

rebind(), 924

receive(), 683

Recursion, 139–141

and the Fork/Join Framework divide-and-conquer

strategy, 897

RecursiveAction class, 863, 894, 895, 897, 898, 899, 903

RecursiveTask class, 863, 894, 895–896, 897

example program using, 903–905

Redirect class, 421

ReentrantLock, 890

ReentrantReadWriteLock, 892

Reflection, 277, 451, 909, 919–923

and annotations, 277–282

ReflectiveOperationException, 221

regionMatches(), 379–380

register(), 876

Regular expressions, 389, 564, 571, 909, 911–919

syntax, 913

wildcards and quantifiers, 911, 913, 915–916

reinitialize(), 906

Relational operators, 28, 41, 74–75

release(), 864–867

Remote interface, 924

Remote method invocation (RMI), 12, 622, 909,

923–927

RemoteException, 924

remove(), 457, 458, 460, 463, 471, 477, 483, 515, 516,

517, 774, 953

removeActionListener(), 956

removeAll(), 457, 458, 774

removeAttribute(), 1007, 1015

removeEldestEntry(), 491

1110 Index

removeElement(), 510, 511

removeElementAt(), 510, 511

removeFirst(), 464, 469

removeKeyListener(), 709

removeLast(), 465, 469

removeTListener(), 936

removeTypeListener(), 709

renameTo(), 584

repaint(), 696–698, 742, 960

replace(), 385, 393–394

replaceAll(), 388, 498, 912, 917–918

replaceFirst(), 388

replaceRange(), 795

ReplicateScaleFilter class, 844

reset(), 573, 591, 592, 597, 599, 600, 603, 611, 616, 631

resolve(), 634, 635

Resource bundles, 573–577

ResourceBundle class, 573–575

methods, table of, 574–575

ResourceBundle.Control class, 573

resume(), 13, 251–254, 437, 443

retainAll(), 457, 458

@Retention built-in annotation, 277, 286

RetentionPolicy enumeration, 276–277, 450

return statement, 108, 116

reverse(), 392–393, 407, 409, 498

reverseBytes(), 405, 407, 409

reverseOrder(), 498, 500

rewind(), 631, 643, 646, 647, 661, 664

RGB (red-green-blue) color model, 756

default, 840

RGBImageFilter class, 844, 845–857

RGBtoHSB(), 756

Richards, Martin, 4

rint(), 435

Ritchie, Dennis, 4

RMI compiler (rmic), 925–926

rmi protocol, 925

rmiregistry (RMI registry), 926

round(), 435

Run-time

system, Java, 9. See also Java Virtual Machine (JVM)

type information, 13, 310, 355, 357, 432

run(), 230, 233, 234, 437, 439, 544, 545, 907, 954

overriding, 235, 236, 544

using a flag variable with, 255–256

Runnable interface, 230–231, 437, 544, 905, 907, 954

implementing the, 233–235, 236

Runtime class, 416, 417–420, 903

executing other programs and, 420

memory management and, 418–419

methods, table of some, 417–418

RUNTIME retention policy, 276–277, 278, 281

RuntimeException class, 208–209, 217, 220, 224

RuntimePermission class, 445

S
@SafeVarargs built-in annotation, 286, 287

save(), 519

scalb(), 434

Scanner, 525

Scanner class, 563–573

closing an instance of the, 569

constructors, 563–564

delimiters, 564, 570–572

demonstration programs, 567–570

hasNextX() methods, table of, 565

how to use, 564, 566

methods, miscellaneous, 572–573

nextX() methods, table of, 566

schedule(), 545–546

ScheduledExecutorService interface, 883

ScheduledThreadPoolExecutor class, 863, 883

Scientific notation, 42, 551–552

Scopes in Java, 45–47

Scroll bars, 720, 788–791, 979

Scroll pane, 979–981

Scrollbar class, 737, 789

extending, 827–828

search(), 513–514

Security manager, 298, 994

Security problem, 8, 9–10, 16

and native methods, 316

and servlets, 994

SecurityException, 220, 298, 417, 423, 589, 606, 654, 657

SecurityManager class, 445

seek(), 610

SeekableByteChannel interface, 633, 641, 644, 645

select(), 784, 787, 792, 795

Selection statements, 81–89

Selectors, 633

Semaphore, 861, 862, 863–869

and setting initial synchronization state, 869

Semaphore class, 862, 863–864

send(), 683

Separable Model architecture, 947

Separators, 33

SequenceInputStream class, 291, 603–605

Serializable interface, 622–623, 907

Serialization, 622–628

example program, 626–628

and Java Beans, 937

and static variables, 623

and transient variables, 623, 627

Server, 667

ServerSocket class, 632, 671, 681–682

service(), 994, 997, 999

ServiceLoader class, 577

Servlet interface, 998, 999

methods, table of, 999

 Index 1111

Servlet(s), 10, 16, 993–1016, 1019

advantages of, 994

API, 998

development options, 994–1000

example program for a simple, 996–998

financial calculation example, 1048–1052

life cycle of, 994

parameters, reading, 1002–1004

and portability, 10

and security, 994

and session tracking, 1015–1016

using Tomcat to develop, 994, 995–996

ServletConfig interface, 998, 1000

ServletContext interface, 998, 1000

methods, table of various, 1000

ServletException class, 999, 1002

ServletInputStream class, 999, 1002

ServletOutputStream class, 999, 1002

ServletRequest interface, 997, 998, 1000, 1002

methods, table of various, 1001

ServletResponse interface, 997, 998, 1000

methods, table of various, 1001

Session tracking, HTTP, 1015–1016

Set interface, 456, 459–460, 470, 475, 484, 486

Set-view, obtaining, 483, 488–489, 518

set(), 459, 460, 470, 477, 528, 532–533, 892

setActionCommand(), 779, 812, 969, 975

setAddress(), 684

setAlignment(), 775

setAttribute(), 1000, 1007, 1015

setBackground(), 694, 755

setBlockIncrement(), 790

setBorder(), 963–964

setBounds(), 739, 796

setChanged(), 541

setCharAt(), 390–391

setColor(), 756

setConstraints(), 806

setContentType(), 997, 1001

setData(), 684

setDefault(), 536, 538

setDefaultCloseOperation(), 952

setDisabledIcon(), 969

setEchoChar(), 793

setEditable(), 793, 795, 1025

setEnabled(), 811

setFollowRedirects(), 679

setFont(), 762

setForeground(), 694, 755

setIcon(), 966

SetIntField(), 315

setLabel(), 776, 780, 811

setLastModified(), 585

setLayout(), 796, 953

setLength(), 390, 610, 684

setLocation(), 739

setMaxAge(), 1008, 1015

setMultipleMode(), 822

setName(), 232, 439

setPaintMode(), 758

setPort(), 684

setPreferredSize(), 739, 790

setPressedIcon(), 969

setPriority(), 240, 439

setReadOnly(), 585

setRequestMethod(), 680

setRolloverIcon(), 969

setSelectedCheckbox(), 782

setSelectedIcon(), 969

setSelectionMode(), 982

setSize(), 510, 739, 740, 741, 952

setSoTimeout(), 683

setStackTrace(), 222

setState(), 780, 811

setStream(), 705

setText(), 775, 792, 795, 966, 969, 1025

setTitle(), 740

setUnitIncrement(), 790

setValue(), 487, 789, 1008

setValues(), 789

setVisible(), 740, 741, 953

setXORMode(), 757, 758–759

Sheridan, Mike, 6

Shift operators, bitwise, 66, 69–73

Short class, 269, 403, 410

methods defined by, table of, 405

short data type, 35, 36, 37, 41

ShortBuffer class, 631

shortValue(), 269, 398, 400, 402, 404, 405, 407, 409

show(), 803

showDocument(), 704–706

showStatus(), 690, 699, 706

shuffle(), 498, 500

shutdown(), 882, 885, 897, 908

shutdownNow(), 908

Sign extension, 71

signal(), 890

signum(), 407, 409, 435

SimpleBeanInfo class, 937, 943

SimpleDateFormat class, 539, 929–930

formatting string symbols, table of, 929

SimpleFileVisitor class, 658, 659

SimpleTimeZone class, 537–538

sin(), 38, 433

SingleSelectionModel, 977

sinh(), 433

SIZE, 399, 403

size(), 457, 458, 471, 483, 511, 515–516, 517, 528,

637, 638

skip(), 573, 591, 592–594, 600, 611, 625

1112 Index

sleep(), 230, 232, 237, 238, 439, 888

slice(), 631

Slider box, 789

Socket class, 632, 671–675, 680, 682

Socket(s)

overview, 667

TCP/IP client, 671–675

TCP/IP server, 671, 681–682

SocketAddress class, 683

SocketChannel class, 632, 633

SocketException, 683

sort(), 498, 503–504

SortedMap interface, 482, 484

methods, table of, 484

SortedSet interface, 456, 460–461

methods, table of, 461

Source code file, naming a, 23–24

SOURCE retention policy, 276–277

split(), 388, 918

sqrt(), 38, 45, 319–321, 434

Stack

definition of, 21, 126–127

ways to implement a, 201

Stack class, 454, 466, 508, 513–515

methods, table of, 513

Stack frame, 446

Stack trace, 209–210, 216, 446

StackTraceElement class, 222, 446

methods, table of, 446

StandardOpenOption class, 635, 650, 651

enumeration, table of values for the, 637

StandardOpenOption.CREATE, 637, 645, 651

StandardOpenOption.READ, 637, 648, 650

StandardOpenOption.TRUNCATE_EXISTING, 637, 651

StandardOpenOption.WRITE, 637, 645, 651

Standard Template Library (STL), 455

start(), 230, 233, 234, 235, 416, 422, 439, 690, 691, 692,

693, 695, 698, 741, 912, 915, 957, 959

startsWith(), 380, 635

State enumeration, 256

Statements, 26

null, 90

Statements, control, 28

iteration, 81, 89–102

jump, 81, 102–108

selection, 81–89

static, 25, 145–146, 149, 313, 319, 320–321

member restrictions, 366

Static import, 14, 319–321

stop(), 13, 253–254, 437, 690, 691, 692, 693, 695, 698,

706, 741, 957

store(), 519, 520, 522–524

Stream(s)

benefits, 628

buffered, 599–603

classes, byte, 290–291, 590–610

classes, character, 290, 291–292, 590, 610–620

closing, 589–590

definition of, 290, 581

filtered, 599, 628

and NIO, 649–651

predefined, 292–293

strictfp, 312

StrictMath class, 436

String class, 25, 58, 152–154, 371, 448, 563

constructors, 372–374

String(s)

arrays of, 154

changing case of characters in, 387, 412, 413

comparison, 153, 378–382

concatenating, 152–153, 374–376, 385, 391–392

constants, 152

converting data into a, 376, 386–387

creating, 152, 372–374

extracting characters from, 377–378

formatted, creating a, 549–551

formatting a, 551, 556

immutable, 371, 389

length, obtaining, 153, 374

literals, 43–44, 374

modifying, 384–386

numbers to and from, converting, 410–411

as objects, 44, 58, 152, 371

parsing a formatted input, 525

reading, 294–296

searching, 382–383

StringBuffer class, 152, 371, 373, 384, 389–395, 448

StringBufferInputStream deprecated class, 582

StringBuilder class, 371, 373, 384, 395, 448, 549

and synchronization, 395

StringIndexOutOfBounds exception, 220

StringReader class, 292

StringTokenizer class, 525–526

methods, table of, 526

stringWidth(), 766

StringWriter class, 292

Stroustrup, Bjarne, 6

Stubs (RMI), 925–926

Subclass, 20, 161, 162, 163, 179

subList(), 459, 460

subMap(), 484, 486

submit(), 885

subSequence(), 389, 395, 448

subSet(), 461, 462, 473

substring(), 384, 394

Sun Microsystems, 6, 14

super, 145

and bounded wildcard arguments, 344

and methods or instance variables,

170–171, 176

 Index 1113

super(), 323

and superclass constructors, 167–170, 174

Superclass, 20, 161, 162, 163, 179, 187

abstract, 181–184

Supplemental character, definition of, 414

@SuppressWarnings built-in annotation, 286, 288

suspend(), 13, 251–254, 437, 443

Swing, 13, 289, 307, 309, 687, 735, 945–964, 965–992

applet, example of a simple, 957–959

application, example of a simple, 950–954

and the AWT, 735, 945, 946

component classes, list of, 948–949

components. See Components, Swing

download manger using, 1053–1077

event handling, 953–957

history of, 945–946

and MVC architecture, 947

packages, list of, 950

and painting, 957, 959–964

threading issues, 953–954, 957

Swing: A Beginner’s Guide (Schildt), 945

SwingConstants interface, 966

SwingUtilities class, 954

switch statement, 84–89

and auto-unboxing, 273

using enumeration constants to control a, 85,

260–261

using a String to control a, 15, 84–85, 87–88

versus the if statement, 88–89

Synchronization, 12, 229–230, 241–245

and atomic operations, 892–893

and collections, 465, 499, 508

and deadlock, 249–251, 253

and interprocess communication, 245–251

objects, using, 863–882

race condition and, 243

and StringBuilder class, 395

via synchronized block, 243–245, 499

via synchronized method, 230, 241–243

versus concurrency utilities, traditional, 861, 908

synchronized modifier, 241, 908

used with method, 241–243

used with object, 243–245

synchronizedList(), 498, 499

synchronizedSet(), 498, 499

Synchronizers, 862

SynchronousQueue class, 889

System class, 26, 34, 292, 423–426

methods, table of, 423–424

System.console(), 423, 620

System.err standard error stream, 292, 293

System.getProperties(), 424, 519

System.getProperty(), 424, 426

System.in standard input stream, 292, 293, 564, 620

System.in.read(), 93

System.nanoTime(), 900

System.out standard output stream, 26, 292, 293, 296,

297, 562, 605, 606, 620

and static import, 321

T
Tabbed panes, 977–979

TableColumnModel, 990

TableModel, 990

TableModelEvent class, 990

tailMap(), 484, 486

tailSet(), 461, 462

tan(), 433

tanh(), 433

@Target built-in annotation, 286–287

TCP/IP, 12, 668

client sockets, 671–675

disadvantages of, 682

server sockets, 671, 681–682

See also Transmission Control Protocol (TCP)

TERMINATED, 256

Ternary if-then-else operator (?:), 75, 77–78

Text area, 794–796

Text components as an event source, 720

Text fields, 792–794, 1025

Swing, 967–968

Text formatting using java.text classes, 909, 927–930

Text output using font metrics, managing, 764–772

TextArea class, 737, 794–795

textChanged(), 722

TextComponent class, 737, 792, 795

TextEvent class, 710, 718, 795

TextField class, 737, 792

TextListener interface, 720, 722

this, 124–125, 145

this(), 321–323

Thompson, Ken, 4

Thread class, 13, 230–231, 232, 437–439, 544

constructors, 233, 236, 437

extending, 235–236

methods, table of, 438–439

Thread(s)

creating, 232–237

daemon, 897, 905

and deadlock, 249–251, 253, 437

definition of, 227

executors to manage, using, 863, 701–887

group, 232, 439–443

main, 231–232, 234–235, 236, 237, 238

messaging, 230, 245–250

pool, 883–885, 894

priorities, 229, 240–241, 437

resuming, 251–256, 441–443

states of, possible, 229, 256–257

1114 Index

Thread(s) (continued)
stopping, 253–256

suspending, 230, 232, 251–256, 441–443

and Swing, event dispatching, 953–954, 957, 959

synchronization. See Synchronization

Thread.UncaughtExceptionHandler interface, 450

ThreadGroup class, 439–443, 450

methods, table of, 440–441

ThreadLocal class, 444

ThreadPoolExecutor class, 863, 883

throw, 207, 216–217

Throwable class, 208–209, 212, 216, 217, 221, 224, 306,

367, 445

methods defined by, table of, 222

obtaining object of the, 216–217

throws, 207, 217–218, 220

Thumb, 789

time, 531

Time and date

formatting, 552–554, 927–930

java.util classes that deal with, 530–539

timedJoin(), 889

timedWait(), 889

TIMED_WAITING, 256

Timer class, 544–546

methods, table of, 545–546

TimerTask class, 544–546

methods, table of, 545

Timestamp, event, 711

TimeUnit enumeration, 863, 869, 886, 888–889

TimeZone class, 536–537

methods defined by, table of some,

536–537

to(), 421

toAbsolutePath(), 635, 652

toArray(), 458, 459, 468–469

toBinaryString(), 407, 409, 411

toCharArray(), 378

toDays(), 888

toDegrees(), 436

toFile(), 635

toHexString(), 400, 402, 407, 409, 411

toHours(), 888

Tokens, 525, 564

toLanguageTag(), 539

toLowerCase(), 387, 413, 414

Tomcat, 994, 995–996

toMicros(), 888

toMillis(), 888

toMinutes(), 888

toNanos(), 888

toOctalString(), 407, 409, 411

TooManyListenersException, 936

toPath(), 585, 635, 652

toRadians(), 436

toSeconds(), 888

toString(), 185, 186, 212, 221, 222, 270, 276, 282, 297,

376–377, 386, 400, 402, 404, 405, 16:11, 409, 410,

416, 427, 431, 439, 441, 445, 446, 447, 448, 467, 504,

511, 517, 528, 529, 530, 531, 548, 549, 550, 606, 620,

634, 635, 671, 710, 760, 766, 907, 919, 987

totalMemory(), 418–419

toUpperCase(), 387, 413

transient modifier, 309, 937

translatePoint(), 717

Transmission Control Protocol (TCP)

definition of, 667

and stream-based I/O, 668

See also TCP/IP

TreeExpansionEvent class, 987

TreeExpansionListener interface, 987

TreeMap class, 487, 492, 524

TreeModel, 987

TreeModelEvent class, 987

TreeModelListener interface, 987

TreeNode interface, 987

TreePath class, 987

Trees, Swing, 986–989

TreeSelectionEvent class, 987

TreeSelectionListener interface, 987, 988

TreeSelectionModel, 987

TreeSet class, 465, 471, 472–473, 492, 524

trim(), 385–386

trimToSize(), 395, 467, 511

true, 34, 40, 41, 43, 75, 76

TRUE, 414

True and false in Java, 43, 75

Truncation, 49

try block(s), 207, 208, 210–216, 218–219

nested, 214–216

try-with-resources statement, 15, 208, 225, 298, 303–306,

449–450, 562, 569, 588, 589–590, 596, 632, 634, 641,

672, 674, 683

advantages to using, 590

tryLock(), 863, 890

tryUnfork(), 907

Two’s complement, 66–67

TYPE, 399, 403, 411, 414, 416

Type argument(s), 328, 330, 334

and bounded types, 335–337

and generic class hierarchies, 352

and type inference, 359–361

Type conversion

automatic, 35, 48, 130–131

narrowing, 48

widening, 48

 Index 1115

Type enumeration, 421

Type interface, 451

Type parameter(s)

and bounded types, 334–336, 348–349

cannot create an instance of a, 365–366

and class hierarchies, 353–355

and erasure, 361–362, 366

and primitive types, 330

and static members, 366

and type safety, 330

used with a class, 327, 332, 334

used with a method, 328, 345, 346

Type safety

and arrays, 367

and collections, 455, 499, 505

and generic methods, 346

and generics, 325, 326, 329, 330–332, 455,

505, 506

and raw types, 349–352

and wildcard arguments, 337–339, 341

Typesafe view of a collection, obtaining a

dynamically, 499

Type(s), 27

bounded, 335, 336

casting, 48–49, 50

checking, 10, 11, 35, 329, 330–332, 351, 367

class as a data, 109, 111, 113, 114, 126

inference, 359–361

parameterized, 326, 328

promotion, 37, 49–51, 69–70

raw. See Raw types

simple, 35

Types, primitive, 35–36, 114, 136, 268–269, 270,

275, 330

and collections, 456, 469

to a string representation, converting, 375,

376, 386

to or from a sequence of bytes, converting,

607, 608

wrappers for, 268–270, 275, 330, 398–416

TypeNotPresentException, 220

U
UDP protocol, 667, 668, 682

UI delegate, 947, 948

ulp(), 434, 435

UnavailableException class, 999, 1002

Unboxing, 270

uncaughtException(), 450

UncaughtExceptionHandler interface, 450

Unchecked warnings and raw types, 351

UnicastRemoteObject, 924

Unicode, 39, 40, 43, 290, 291, 373, 378, 388, 394, 395,

414, 610

code points, table of some Character methods

providing support for, 415

support for 32–bit, 414

Unicode Technical Standard (UTS) 35, 539

Uniform Resource Identifier (URI), 681

Uniform Resource Locator (URL). See URL (Uniform

Resource Locator)

UNIX, 4, 667

UnknownHostException, 669, 670

unlock(), 863, 890

unmodifiable... collections methods, 499

Unreachable code, 213

unread(), 602, 618

UnsupportedOperationException, 220, 457, 459, 477,

483, 499, 639

update(), 541, 542, 693, 694, 695, 696, 749

overriding, 693

URI (Uniform Resource Identifier), 681

URI class, 681

URL (Uniform Resource Locator), 675, 681, 993

specification format, 675

URL class, 675–676, 678, 679, 704

URLConnection class, 676–679

useDelimiter(), 570–572

User Datagram Protocol (UDP), 667, 668, 682

useRadix(), 573

UTS 35, 539

UUID class, 577

V
value (annotation member name), 285, 286

VALUE (PARAM NAME), 701

valueBound(), 1006

valueChanged(), 982, 983, 987, 988

valueOf(), 262–263, 376, 386–387, 400, 402, 404, 405,

407, 409, 416, 447, 528

values(), 262–263, 483, 484

valueUnbound(), 1006

van Hoff, Arthur, 6

Varargs, 14, 155–160

and ambiguity, 159–160

methods, overloading, 158–159

and Java’s printf(), 155

parameter, 157, 475

Variable(s), 44–47

declaration, 27, 29, 44–45, 46

definition of, 26, 44

dynamic initialization of, 45

enumeration, 260

final, 147

1116 Index

Variable(s) (continued)
instance. See Instance variables

interface, 197, 204–205

object reference. See Object reference variables

scope and lifetime of, 45–47

Vector class, 454, 466, 482, 508, 509–513

legacy methods, table of, 510–511

VetoableChangeListener interface, 937, 938

Viewport, scroll pane, 980

visitFile(), 658, 659

void, 25, 116

Void class, 416

volatile modifier, 310

VSPACE, 700, 701

W
wait(), 185, 186, 245, 247–249, 254–255, 427, 890, 908

waitFor(), 417, 420

WAITING, 256

WALL_TIME, 538

walkFileTree(), 657–659

Warth, Chris, 6

Watchable interface, 634

WeakHashMap class, 487

Web browser

executing applet in, 308, 309, 687, 691, 699, 739

using status window of, 699

Web server and servlets, 993, 994

weightx constraint field, 807, 808

while loop, 89–90

Whitespace, 32, 82

from a string, removing, 385–386

whois, 668, 672, 674, 675

WIDTH, 700

Wildcard arguments, 337–344

bounded, 339–344

used in creating an array, 367

Window

displaying information within a, 749

as an event source, 720

frame. See Frame window

fundamentals, 738–739

and graphics, 749

status, using, 699

Window class, 719, 737, 739, 816

windowActivated(), 723

WindowAdapter class, 730

windowClosed(), 723

windowClosing(), 723, 740, 741

WindowConstants interface, 952

windowDeactivated(), 723

windowDeiconified(), 723

WindowEvent class, 710, 712, 718–719

WindowFocusListener interface, 720, 723

windowGainedFocus(), 723

windowIconified(), 723

WindowListener interface, 720, 723, 730, 740, 741

windowLostFocus(), 723

windowOpened(), 723

Work stealing, 897, 907

World Wide Web (WWW), 6, 7, 11, 675

wrap(), 631

Wrappers, primitive type, 268–270, 275, 330, 398–416

WRITE, 421

write(), 292, 296, 302, 592, 611, 623, 624, 633, 646,

647, 651, 663, 664

writeBoolean(), 608, 624

writeDouble(), 608, 624

Writer class, 291, 292, 590, 610, 613, 628

methods defined by, table of, 611–612

writeExternal(), 623

writeInt(), 608, 624

writeObject(), 623

writeTo(), 599

X
XOR (exclusive OR) operator (^)

bitwise, 66, 67, 68–69

Boolean logical, 75–76

Y
Yellin, Frank, 6

Z
Zero crossing, 67

ZIP file format, 579

	Contents
	Preface
	Part I: The Java Language
	Chapter 1 The History and Evolution of Java
	Java’s Lineage
	The Creation of Java
	How Java Changed the Internet
	Java’s Magic: The Bytecode
	Servlets: Java on the Server Side
	The Java Buzzwords
	The Evolution of Java
	A Culture of Innovation

	Chapter 2 An Overview of Java
	Object-Oriented Programming
	A First Simple Program
	A Second Short Program
	Two Control Statements
	Using Blocks of Code
	Lexical Issues
	The Java Class Libraries

	Chapter 3 Data Types, Variables, and Arrays
	Java Is a Strongly Typed Language
	The Primitive Types
	Integers
	Floating-Point Types
	Characters
	Booleans
	A Closer Look at Literals
	Variables
	Type Conversion and Casting
	Automatic Type Promotion in Expressions
	Arrays
	A Few Words About Strings
	A Note to C/C++ Programmers About Pointers

	Chapter 4 Operators
	Arithmetic Operators
	The Bitwise Operators
	Relational Operators
	Boolean Logical Operators
	The Assignment Operator
	The ? Operator
	Operator Precedence
	Using Parentheses

	Chapter 5 Control Statements
	Java’s Selection Statements
	Iteration Statements
	Jump Statements

	Chapter 6 Introducing Classes
	Class Fundamentals
	Declaring Objects
	Assigning Object Reference Variables
	Introducing Methods
	Constructors
	The this Keyword
	Garbage Collection
	The finalize() Method
	A Stack Class

	Chapter 7 A Closer Look at Methods and Classes
	Overloading Methods
	Using Objects as Parameters
	A Closer Look at Argument Passing
	Returning Objects
	Recursion
	Introducing Access Control
	Understanding static
	Introducing final
	Arrays Revisited
	Introducing Nested and Inner Classes
	Exploring the String Class
	Using Command-Line Arguments
	Varargs: Variable-Length Arguments

	Chapter 8 Inheritance
	Inheritance Basics
	Using super
	Creating a Multilevel Hierarchy
	When Constructors Are Called
	Method Overriding
	Dynamic Method Dispatch
	Using Abstract Classes
	Using final with Inheritance
	The Object Class

	Chapter 9 Packages and Interfaces
	Packages
	Access Protection
	Importing Packages
	Interfaces

	Chapter 10 Exception Handling
	Exception-Handling Fundamentals
	Exception Types
	Uncaught Exceptions
	Using try and catch
	Multiple catch Clauses
	Nested try Statements
	throw
	throws
	finally
	Java’s Built-in Exceptions
	Creating Your Own Exception Subclasses
	Chained Exceptions
	Three New JDK 7 Exception Features
	Using Exceptions

	Chapter 11 Multithreaded Programming
	The Java Thread Model
	The Main Thread
	Creating a Thread
	Creating Multiple Threads
	Using isAlive() and join()
	Thread Priorities
	Synchronization
	Interthread Communication
	Suspending, Resuming, and Stopping Threads
	Obtaining A Thread’s State
	Using Multithreading

	Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata)
	Enumerations
	Type Wrappers
	Autoboxing
	Annotations (Metadata)

	Chapter 13 I/O, Applets, and Other Topics
	I/O Basics
	Reading Console Input
	Writing Console Output
	The PrintWriter Class
	Reading and Writing Files
	Automatically Closing a File
	Applet Fundamentals
	The transient and volatile Modifiers
	Using instanceof
	Strictfp
	Native Methods
	Problems with Native Methods
	Using assert
	Static Import
	Invoking Overloaded Constructors Through this()

	Chapter 14 Generics
	What Are Generics?
	A Simple Generics Example
	A Generic Class with Two Type Parameters
	The General Form of a Generic Class
	Bounded Types
	Using Wildcard Arguments
	Creating a Generic Method
	Generic Interfaces
	Raw Types and Legacy Code
	Generic Class Hierarchies
	Type Inference with Generics
	Erasure
	Ambiguity Errors
	Some Generic Restrictions

	Part II: The Java Library
	Chapter 15 String Handling
	The String Constructors
	String Length
	Special String Operations
	Character Extraction
	String Comparison
	Searching Strings
	Modifying a String
	Data Conversion Using valueOf()
	Changing the Case of Characters Within a String
	Additional String Methods
	StringBuffer
	StringBuilder

	Chapter 16 Exploring java.lang
	Primitive Type Wrappers
	Void
	Process
	Runtime
	ProcessBuilder
	System
	Object
	Using clone() and the Cloneable Interface
	Class
	ClassLoader
	Math
	StrictMath
	Compiler
	Thread, ThreadGroup, and Runnable
	ThreadLocal and InheritableThreadLocal
	Package
	RuntimePermission
	Throwable
	SecurityManager
	StackTraceElement
	Enum
	ClassValue
	The CharSequence Interface
	The Comparable Interface
	The Appendable Interface
	The Iterable Interface
	The Readable Interface
	The AutoCloseable Interface
	The Thread.UncaughtExceptionHandler Interface
	The java.lang Subpackages

	Chapter 17 java.util Part 1: The Collections Framework
	Collections Overview
	JDK 5 Changed the Collections Framework
	The Collection Interfaces
	The Collection Classes
	Accessing a Collection via an Iterator
	Storing User-Defined Classes in Collections
	The RandomAccess Interface
	Working with Maps
	Comparators
	The Collection Algorithms
	Arrays
	Why Generic Collections?
	The Legacy Classes and Interfaces
	Parting Thoughts on Collections

	Chapter 18 java.util Part 2: More Utility Classes
	StringTokenizer
	BitSet
	Date
	Calendar
	GregorianCalendar
	TimeZone
	SimpleTimeZone
	Locale
	Random
	Observable
	Timer and TimerTask
	Currency
	Formatter
	The ResourceBundle, ListResourceBundle, and PropertyResourceBundle Classes
	Miscellaneous Utility Classes and Interfaces
	The java.util Subpackages

	Chapter 19 Input/Output: Exploring java.io
	The I/O Classes and Interfaces
	File
	The AutoCloseable, Closeable, and Flushable Interfaces
	I/O Exceptions
	Two Ways to Close a Stream
	The Stream Classes
	The Byte Streams
	The Character Streams
	The Console Class
	Serialization
	Stream Benefits

	Chapter 20 Exploring NIO
	The NIO Classes
	NIO Fundamentals
	Enhancements Added to NIO by JDK 7
	Using the NIO System
	Pre-JDK 7 Channel-Based Examples

	Chapter 21 Networking
	Networking Basics
	The Networking Classes and Interfaces
	InetAddress
	Inet4Address and Inet6Address
	TCP/IP Client Sockets
	URL
	URLConnection
	HttpURLConnection
	The URI Class
	Cookies
	TCP/IP Server Sockets
	Datagrams

	Chapter 22 The Applet Class
	Two Types of Applets
	Applet Basics
	Applet Architecture
	An Applet Skeleton
	Simple Applet Display Methods
	Requesting Repainting
	Using the Status Window
	The HTML APPLET Tag
	Passing Parameters to Applets
	getDocumentBase() and getCodeBase()
	AppletContext and showDocument()
	The AudioClip Interface
	The AppletStub Interface
	Outputting to the Console

	Chapter 23 Event Handling
	Two Event Handling Mechanisms
	The Delegation Event Model
	Event Classes
	The KeyEvent Class
	Sources of Events
	Event Listener Interfaces
	Using the Delegation Event Model
	Adapter Classes
	Inner Classes

	Chapter 24 Introducing the AWT: Working with Windows, Graphics, and Text
	AWT Classes
	Window Fundamentals
	Working with Frame Windows
	Creating a Frame Window in an Applet
	Creating a Windowed Program
	Displaying Information Within a Window
	Working with Graphics
	Working with Color
	Setting the Paint Mode
	Working with Fonts
	Managing Text Output Using FontMetrics

	Chapter 25 Using AWT Controls, Layout Managers, and Menus
	Control Fundamentals
	Labels
	Using Buttons
	Applying Check Boxes
	CheckboxGroup
	Choice Controls
	Using Lists
	Managing Scroll Bars
	Using a TextField
	Using a TextArea
	Understanding Layout Managers
	Menu Bars and Menus
	Dialog Boxes
	FileDialog
	Handling Events by Extending AWT Components
	A Word About Overriding paint()

	Chapter 26 Images
	File Formats
	Image Fundamentals: Creating, Loading, and Displaying
	ImageObserver
	Double Buffering
	MediaTracker
	ImageProducer
	ImageConsumer
	ImageFilter
	Cell Animation
	Additional Imaging Classes

	Chapter 27 The Concurrency Utilities
	The Concurrent API Packages
	Using Synchronization Objects
	Phaser
	Using an Executor
	The TimeUnit Enumeration
	The Concurrent Collections
	Locks
	Atomic Operations
	Parallel Programming via the Fork/Join Framework
	The Concurrency Utilities Versus Java’s Traditional Approach

	Chapter 28 Regular Expressions and Other Packages
	The Core Java API Packages
	Regular Expression Processing
	Reflection
	Remote Method Invocation (RMI)
	Text Formatting

	Part III: Software Development Using Java
	Chapter 29 Java Beans
	What Is a Java Bean?
	Advantages of Java Beans
	Introspection
	Bound and Constrained Properties
	Persistence
	Customizers
	The Java Beans API
	A Bean Example

	Chapter 30 Introducing Swing
	The Origins of Swing
	Swing Is Built on the AWT
	Two Key Swing Features
	The MVC Connection
	Components and Containers
	The Swing Packages
	A Simple Swing Application
	Event Handling
	Create a Swing Applet
	Painting in Swing

	Chapter 31 Exploring Swing
	JLabel and ImageIcon
	JTextField
	The Swing Buttons
	JTabbedPane
	JList
	JComboBox
	Trees
	JTable
	Continuing Your Exploration of Swing

	Chapter 32 Servlets
	Background
	The Life Cycle of a Servlet
	Servlet Development Options
	Using Tomcat
	A Simple Servlet
	The Servlet API
	The javax.servlet Package
	Reading Servlet Parameters
	The javax.servlet.http Package
	Handling HTTP Requests and Responses
	Using Cookies
	Session Tracking

	Part IV: Applying Java
	Chapter 33 Financial Applets and Servlets
	Finding the Payments for a Loan
	Finding the Future Value of an Investment
	Finding the Initial Investment Required to Achieve a Future Value
	Finding the Initial Investment Needed for a Desired Annuity
	Finding the Maximum Annuity for a Given Investment
	Finding the Remaining Balance on a Loan
	Creating Financial Servlets
	Some Things to Try

	Chapter 34 Creating a Download Manager in Java
	Understanding Internet Downloads
	An Overview of the Download Manager
	The Download Class
	The ProgressRenderer Class
	The DownloadsTableModel Class
	The DownloadManager Class
	Compiling and Running the Download Manager
	Enhancing the Download Manager

	Appendix: Using Java’s Documentation Comments
	The javadoc Tags
	@author
	{@code}
	@deprecated
	{@docRoot}
	@exception
	{@inheritDoc}
	{@link}
	{@linkplain}
	{@literal}
	@param
	@return
	@see
	@serial
	@serialData
	@serialField
	@since
	@throws
	{@value}
	@version

	The General Form of a Documentation Comment
	What javadoc Outputs
	An Example that Uses Documentation Comments

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

